作物学报 ›› 2019, Vol. 45 ›› Issue (10): 1503-1510.doi: 10.3724/SP.J.1006.2019.91011
陈芳1,乔麟轶2,3,李锐2,刘成4,李欣2,3,郭慧娟2,张树伟2,常利芳2,李东方5,阎晓涛2,任永康2,张晓军2,3,*(),畅志坚2,3,*()
CHEN Fang1,QIAO Lin-Yi2,3,LI Rui2,LIU Cheng4,LI Xin2,3,GUO Hui-Juan2,ZHANG Shu-Wei2,CHANG Li-Fang2,LI Dong-Fang5,YAN Xiao-Tao2,REN Yong-Kang2,ZHANG Xiao-Jun2,3,*(),CHANG Zhi-Jian2,3,*()
摘要:
白粉病是影响小麦产量和品质的一种主要病害。小偃麦衍生品系CH1357对白粉病具有较好的成株抗性, 苗期对27个菌株表现为免疫或高抗, 是一个高抗白粉病的优异抗源。为了明确其抗白粉病基因在染色体上的位置, 对台长29/CH1357和绵阳11/CH1357的F1、BC1及F2:3家系进行了遗传分析, 并利用分离群体分组分析法(bulked segregant analysis, BSA)将其初步定位。CH1357的白粉病抗性受1对显性核基因控制, 位于染色体5DS, 暂命名为PmCH1357。其侧翼连锁标记为Xcfd81和Xbwm8, 在2个作图群体台长29/CH1357和绵阳11/CH1357中的遗传距离分别为2.0 cM/11.3 cM和1.5 cM/8.9 cM。PmCH1357与5DS染色体上已报道的其他抗白粉病基因抗谱不同, 可能是一个新的抗源。
[1] | Johnson J W, Baenziger P S, Yamazaki W T, Smith R T . Effects of powdery mildew on yield and quality of isogenic lines of ‘Chancellor’ wheat. Crop Sci, 1979,19:349-352. |
[2] | Bennett A G A . Resistance to powdery mildew in wheat: a review of its use in agriculture and breeding programmes. Plant Pathol, 1984,33:279-300. |
[3] | Line R F, Chen X M . Successes in breeding for and managing durable resistance to wheat rusts. Plant Dis, 1995,79:1254-1255. |
[4] | Zhang D Y, Zhu K Y, Dong L L, Liang Y, Li G Q, Fang T L, Guo G H, Wu Q H, Xie J Z, Chen Y X, Lu P, Li M M, Zhang H Z, Wang Z Z, Zhang Y, Sun Q X, Liu Z Y . Wheat powdery mildew resistance gene Pm64 derived from wild emmer( Triticum turgidum var. dicoccoides) is tightly linked in repulsion with stripe rust resistance gene Yr5. Crop J, 2019. doi: 10.1016/j.cj.2019. 03.003. |
[5] | 杨作民, 唐伯让, 沈克全, 夏先春 . 小麦抗病育种的战略问题: 小麦对锈病和白粉病第二线抗源的建立和利用. 作物学报, 1994,20:385-394. |
Yang Z M, Tang B R, Shen K Q, Xia X C . Strategic issues in wheat disease resistance breeding: Establishment and utilization of second-line resistance sources of wheat rust and powdery mildew. Acta Agron Sin, 1994,20:385-394 (in Chinese with English abstract). | |
[6] | Huang X Q, Hsam S L K, Zeller F J . Identification of powdery mildew resistance genes in common wheat ( Triticum aestivum L.). IX. cultivars, land races and breeding lines grown in China. Plant Breed, 1997,116:233-238. |
[7] | 周阳, 何中虎, 张改生, 夏兰琴, 陈新民, 高永超, 井赵斌, 于广军 . 1BL/1RS易位系在我国小麦育种中的应用. 作物学报, 2004,30:531-535. |
Zhou Y, He Z H, Zhang G S, Xia L Q, Chen X M, Gao Y C, Jing Z B, Yu G J . Utilization of 1BL/1RS translocation in wheat breeding in China. Acta Agron Sin, 2004,30:531-535 (in Chinese with English abstract). | |
[8] | Zeller F J, Hsam S L . Chromosomal location of a gene suppressing powdery mildew resistance genes Pm8 and Pm17 in common wheat( Triticum aestivum L. em. Thell.). Theor Appl Genet, 1996,93:38-40. |
[9] | 盛宝钦 . 用反应型记载小麦苗期白粉病. 植物保护, 1988,14(1):49. |
Sheng B Q . Using infection type records the wheat powdery mildew at seedling stage. Plant Prot, 1988,14(1):49 (in Chinese with English abstract). | |
[10] | Murray M G, Thompson W F . Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980,8:4321-4325. |
[11] | 陈昆松, 李方, 徐昌杰, 张上隆, 傅承新 . 改良CTAB法用于多年生植物组织基因组DNA的大量提取. 遗传, 2004,26:529-531. |
Chen K S, Li F, Xu C J, Zhang S L, Fu C X . An efficient macro-method of genomic DNA isolation from Actinidia chinensis leaves. Hereditas ( Beijing), 2004,26:529-531 (in Chinese with English abstract). | |
[12] | Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newberg L A . MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987,1:174-181. |
[13] | Lu Y Q, Wu X Y, Yao M M, Zhang J P, Liu W H, Yang X M, Li X Q, Du J, Gao A N, Li L H . Genetic mapping of a putative Agropyron cristatum-derived powdery mildew resistance gene by a combination of bulked segregant analysis and single nucleotide polymorphism array. Mol Breed, 2015,35:96. |
[14] | 付必胜, 刘颖, 张巧凤, 吴小有, 高海东, 蔡士宾, 戴廷波, 吴纪中 . 与小麦抗白粉病基因Pm48紧密连锁分子标记的开发. 作物学报, 2017,43:307-312. |
Fu B S, Liu Y, Zhang Q F, Wu X Y, Gao H D, Cai S B, Dai T B, Wu J Z . Development of markers closely linked with wheat powdery mildew resistance gene Pm48. Acta Agron Sin, 2017,43:307-312 (in Chinese with English abstract). | |
[15] | McIntosh R A, Baker E P . Cytogenetical studies in wheat: IV. Chromosome location and linkage studies involving the Pm2 locus for powdery mildew resistance. Euphytica, 1970,19:71-77. |
[16] | Ma P T, Xu H X, Xu Y F, Li L H, Qie Y M, Luo Q L, Zhang X T, Li X Q, Zhou Y L, An D G . Molecular mapping of a new powdery mildew resistance gene Pm2b in Chinese breeding line KM2939. Theor Appl Genet, 2015,128:613-622. |
[17] | Xu H X, Yi Y J, Ma P T, Qie Y M, Fu X Y, Xu Y F, Zhang X T, An D G . Molecular tagging of a new broad-spectrum powdery mildew resistance allele Pm2c in Chinese wheat landrace Niaomai. Theor Appl Genet, 2015,128:2077-2084. |
[18] | Sun Y L, Zou J W, Sun H G, Song W, Wang X M, Li H J . PmLX66 and PmW14: new alleles of Pm2 for resistance to powdery mildew in the Chinese winter wheat cultivars Liangxing 66 and Wennong 14. Plant Dis, 2015,99:1118-1124. |
[19] | Sun H G, Song W, Sun Y L, Chen X M, Liu J J, Zou J W, Wang X M, Zhou Y F, Lin X H, Li H J . Resistance of ‘Zhongmai 155’ wheat to powdery mildew: effectiveness and detection of the resistance gene. Crop Sci, 2015,55:1017-1025. |
[20] | Ma P T, Zhang H X, Xu H X, Xu Y F, Cao Y W, Zhang X T, An D G . The gene PmYB confers broad-spectrum powdery mildew resistance in the multi-allelic Pm2 chromosome region of the Chinese wheat cultivar YingBo 700. Mol Breed, 2015,35:124. |
[21] | Jin Y, Xu H X, Ma P T, Fu X Y, Song L P, Xu Y F, Zhang X T, An D G . Characterization of a new Pm2 allele associated with broad-spectrum powdery mildew resistance in wheat line Subtil. Sci Rep, 2018,8:475. |
[22] | Gao H D, Zhu F F, Jiang Y J, Wu J Z, Yan W, Zhang Q F, Jacobi A, Cai S B . Genetic analysis and molecular mapping of a new powdery mildew resistant gene Pm46 in common wheat. Theor Appl Genet, 2012,125:967-973. |
[23] | Ma P T, Xu H X, Li L H, Zhang H X, Han G H, Xu Y F, Fu X Y, Zhang X T, An D G . Characterization of a new Pm2 allele conferring powdery mildew resistance in the wheat germplasm line FG-1. Front Plant Sci, 2016,7:546. |
[24] | 李根桥, 房体麟, 朱婕, 高亮亮, 李闪, 解超杰, 杨作民, 孙其信, 刘志勇 . 普通小麦品种Brock抗白粉病基因分子标记定位. 作物学报, 2009,35:1613-1619. |
Li G Q, Fang T L, Zhu J, Gao L L, Li S, Xie C J, Yang Z M, Sun Q X, Liu Z Y . Molecular identification of a powdery mildew resistance gene from common wheat cultivar Brock. Acta Agron Sin, 2009,35:1613-1619 (in Chinese with English abstract). | |
[25] | Ch S, Hsam S L, Hartl L, Zeller F J, Mohler V . Powdery mildew resistance gene Pm22 in cultivar Virest is a member of the complex Pm1 locus in common wheat( Triticum aestivum L. em Thell.). Theor Appl Genet, 2003,106:1420-1424. |
[26] | Sourdille P, Robe P, Tixier M H, Doussinault G, Pavoine M T, Bernard M . Location of Pm3g, a powdery mildew resistance allele in wheat, by using a monosomic analysis and by identifying associated molecular markers. Euphytica, 1999,110:193-198. |
[27] | Schmolke M, Mohler V, Hartl L, Zeller F J, Hsam S L K . A new powdery mildew resistance allele at the Pm4 wheat locus transferred from einkorn( Triticum monococcum). Mol Breed, 2012,29:449-456. |
[28] | Huang X Q, Wang L X, Xu M X, Röder M . Microsatellite mapping of the powdery mildew resistance gene Pm5e in common wheat( Triticum aestivum L.). Theor Appl Genet, 2003,106:858-865. |
[29] | Xue F, Wang C Y, Li C, Duan X Y, Zhou Y L, Zhao N J, Wang Y J, Ji W Q . Molecular mapping of a powdery mildew resistance gene in common wheat landrace Baihulu and its allelism with Pm24. Theor Appl Genet, 2012,125:1425-1432. |
[30] | Sánchez-Martín J, Steuernagel B, Ghosh S, Herren G, Hurni S, Adamski N, Vrána J, Kubaláková M, Krattinger S G, Wicker T, Doležel J, Keller B, Wulff BB . Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Genome Biol, 2016,17:221. |
[1] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[2] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
[3] | 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274. |
[4] | 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598. |
[5] | 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450. |
[6] | 蒋成功, 石慧敏, 王红武, 李坤, 黄长玲, 刘志芳, 吴宇锦, 李树强, 胡小娇, 马庆. 玉米籽粒突变体smk7的表型分析和基因定位[J]. 作物学报, 2021, 47(2): 285-293. |
[7] | 刘少荣, 杨扬, 田红丽, 易红梅, 王璐, 康定明, 范亚明, 任洁, 江彬, 葛建镕, 成广雷, 王凤格. 基于农艺及品质性状与SSR标记的青贮玉米品种遗传多样性分析[J]. 作物学报, 2021, 47(12): 2362-2370. |
[8] | 郭青青, 周蓉, 陈雪, 陈蕾, 李加纳, 王瑞. 甘蓝型油菜桔红花显性基因候选区域的NGS定位及InDel标记开发[J]. 作物学报, 2021, 47(11): 2163-2172. |
[9] | 黄妍, 贺焕焕, 谢之耀, 李丹莹, 赵超越, 吴鑫, 黄福灯, 程方民, 潘刚. 水稻矮化宽叶突变体osdwl1的生理特性和基因定位[J]. 作物学报, 2021, 47(1): 50-60. |
[10] | 姜鸿瑞, 叶亚峰, 何丹, 任艳, 杨阳, 谢建, 程维民, 陶亮之, 周利斌, 吴跃进, 刘斌美. 一个新的水稻脆秆突变体bc17的鉴定及基因定位[J]. 作物学报, 2021, 47(1): 71-79. |
[11] | 石慧敏, 蒋成功, 王红武, 马庆, 李坤, 刘志芳, 吴宇锦, 李树强, 胡小娇, 黄长玲. 玉米籽粒突变体dek48的表型鉴定与基因定位[J]. 作物学报, 2020, 46(9): 1359-1367. |
[12] | 田士可, 秦心儿, 张文亮, 董雪, 代明球, 岳兵. 玉米雄性不育突变体mi-ms-3的遗传分析及分子鉴定[J]. 作物学报, 2020, 46(12): 1991-1996. |
[13] | 刘荣, 王芳, 方俐, 杨涛, 张红岩, 黄宇宁, 王栋, 季一山, 徐东旭, 李冠, 郭瑞军, 宗绪晓. 利用2个F2群体整合中国豌豆高密度SSR遗传连锁图谱[J]. 作物学报, 2020, 46(10): 1496-1506. |
[14] | 谢园华,李凤菲,马晓慧,谭佳,夏赛赛,桑贤春,杨正林,凌英华. 水稻半外卷叶突变体sol1的表型分析与基因定位[J]. 作物学报, 2020, 46(02): 204-213. |
[15] | 霍强,杨鸿,陈志友,荐红举,曲存民,卢坤,李加纳. 基于QTL定位和全基因组关联分析筛选甘蓝型油菜株高和一次有效分枝高度的候选基因[J]. 作物学报, 2020, 46(02): 214-227. |
|