欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (10): 1503-1510.doi: 10.3724/SP.J.1006.2019.91011

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦新种质CH1357抗白粉病遗传分析及染色体定位

陈芳1,乔麟轶2,3,李锐2,刘成4,李欣2,3,郭慧娟2,张树伟2,常利芳2,李东方5,阎晓涛2,任永康2,张晓军2,3,*(),畅志坚2,3,*()   

  1. 1山西大学生命科学学院, 山西太原 030006
    2山西省农业科学院作物科学研究所 / 作物遗传与分子改良山西省重点实验室, 山西太原 030031
    3农业部黄土高原作物基因资源与种质创制重点实验室, 山西太原 030031
    4山东省农业科学院作物研究所, 山东济南 250100
    5新疆生产建设兵团第六师农业科学研究所, 新疆五家渠 831300
  • 收稿日期:2019-01-18 接受日期:2019-05-12 出版日期:2019-10-12 网络出版日期:2019-09-10
  • 通讯作者: 张晓军,畅志坚
  • 基金资助:
    本研究由国家重点研发计划项目(2017YFD0100600);山西省农业科学院项目(YGG17123);山西省农业科学院项目(YCX2018D2YS01);山东省自然科学基金项目(ZR2017MC004);山西省重点研发计划项目(201703D211007);山西省重点研发计划项目(201803D221018-5);山西省重点研发计划项目(201803D421020);山西省重点科技创新平台资助(201605D151002)

Genetic analysis and chromosomal localization of powdery mildew resistance gene in wheat germplasm CH1357

CHEN Fang1,QIAO Lin-Yi2,3,LI Rui2,LIU Cheng4,LI Xin2,3,GUO Hui-Juan2,ZHANG Shu-Wei2,CHANG Li-Fang2,LI Dong-Fang5,YAN Xiao-Tao2,REN Yong-Kang2,ZHANG Xiao-Jun2,3,*(),CHANG Zhi-Jian2,3,*()   

  1. 1College of Life Science, Shanxi University, Taiyuan 030006, Shanxi, China
    2Institute of Crop Science, Shanxi Academy of Agricultural Sciences / Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Taiyuan 030006, Shanxi, China
    3Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau of Ministry of Agriculture, Taiyuan 030006, Shanxi, China
    4Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
    5Sixth Agricultural Division Agricultural Science Research Institute of Xinjiang Production and Construction Crops, Wujiaqu 831300, Xinjiang, China
  • Received:2019-01-18 Accepted:2019-05-12 Published:2019-10-12 Published online:2019-09-10
  • Contact: Xiao-Jun ZHANG,Zhi-Jian CHANG
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2017YFD0100600);Shanxi Academy of Agricultural Sciences(YGG17123);Shanxi Academy of Agricultural Sciences(YCX2018D2YS01);the National Natural Science Foundation of Shandong Province(ZR2017MC004);the Key Research and Development Program of Shanxi Province(201703D211007);the Key Research and Development Program of Shanxi Province(201803D221018-5);the Key Research and Development Program of Shanxi Province(201803D421020);the Key Scientific and Technological Innovation Platform(201605D151002)

摘要:

白粉病是影响小麦产量和品质的一种主要病害。小偃麦衍生品系CH1357对白粉病具有较好的成株抗性, 苗期对27个菌株表现为免疫或高抗, 是一个高抗白粉病的优异抗源。为了明确其抗白粉病基因在染色体上的位置, 对台长29/CH1357和绵阳11/CH1357的F1、BC1及F2:3家系进行了遗传分析, 并利用分离群体分组分析法(bulked segregant analysis, BSA)将其初步定位。CH1357的白粉病抗性受1对显性核基因控制, 位于染色体5DS, 暂命名为PmCH1357。其侧翼连锁标记为Xcfd81Xbwm8, 在2个作图群体台长29/CH1357和绵阳11/CH1357中的遗传距离分别为2.0 cM/11.3 cM和1.5 cM/8.9 cM。PmCH1357与5DS染色体上已报道的其他抗白粉病基因抗谱不同, 可能是一个新的抗源。

关键词: 白粉病抗性, SSR标记, 连锁图谱, 基因定位, Pm2

Abstract:

Powdery mildew is a serious disease affecting yield and quality of wheat. Wheat-Thinopyrum imtermedium introgression line CH1357 is highly resistant to Blumeria graminis f. sp. tritici (Bgt) at the adult plant stage and immune or highly resistant to 27 Bgt isolates at the seedling stage. Two mapping populations (F1, BC1, and F2:3) derived from Taichang 29/CH1357 and Mianyang 11/CH1357 were used to map the powdery mildew resistance gene by the bulked segregant analysis. The powdery mildew resistance in CH1357 was controlled by a single dominant gene, temporarily named PmCH1357. This gene was located on the short arm of chromosome 5D and linked to SSR markers Xcfd81 and Xbwm8, with genetic distances of 2.0 cM and 11.3 cM in the Taichang 29/CH1357 population and 1.5 cM and 8.9 cM in the Mianyang 11/CH1357 population, respectively. PmCH1357 differs from other Pm genes reported on chromosome 5DS in resistance spectrum, which may be a new source of resistance.

Key words: resistance to powdery mildew, SSR markers, linkage map, gene mapping, Pm2

表1

CH1357、台长29 (TC29)和绵阳11 (MY11)苗期对32个白粉菌株的抗性反应"

白粉菌株Bgt 材料Material 白粉菌株Bgt 材料Material 白粉菌株Bgt 材料Material
CH1357 TC29 MY11 CH1357 TC29 MY11 CH1357 TC29 MY11
B09 0 4 4 B33 0 4 4 B50 3 4 4
B13 0 4 4 B37 0 4 4 B51 2 4 4
B14 4 4 4 B38 1 4 4 B52 0 4 3
B15 0 4 4 B39 0 4 4 B55 0 4 4
B17 0 4 4 B40 0 4 4 B56 0 4 4
B21 0 4 4 B41 0 4 4 B57 0 4 4
B22 0 4 4 B42 0 4 4 E09 0 4 4
B23 0 4 3 B44 0 4 4 E18 4 4 4
B25 0 4 4 B46 0 4 3 E21 0 4 4
B28 0 4 4 B48 0 4 4 E23-1 0 4 4
B30 0 4 4 B49 0 4 4 - - - -

表2

2个作图群体不同世代对白粉菌株E09的苗期抗性和分离比率"

亲本/组合
Parent/cross
对白粉菌株E09的侵染类型 Infection types to Bgt isolates E09 理论比率
Theoretical ratio
R:S
χ2
χ2 value
P
P-value
0 0; 1 2 3 4
CH1357 (P1) 12 8
台长29 Taichang 29 (P2) 5 15
绵阳11 Mianyang 11 (P3) 5 14
P2/P1 (F1) 13 7
P1/P2 (F1) 15 5
P2/P1//P2 (BC1) 14 10 4 2 12 17 1:1 0.017 0.896
P3/P1 (F1) 14 5
P1/P3 (F1) 16 4
P3/P1//P3 (BC1) 12 14 2 1 12 15 1:1 0.071 0.789

表3

2个F2:3作图群体对白粉菌株E09的苗期抗性"

F2: 3家系表现型
Phenotype of F2:3 lines
杂交组合 Hybrid cross
CH1357/Taichang 29 CH1357/Mianyang 11
实际值 Actual value 期望值 Expected value 实际值 Actual value 期望值 Expected value
纯合抗病株 Resistant plants 120 120.75 108 102.75
抗性分离株 Heterozygous plants 231 241.50 208 205.50
纯合感病株 Susceptible plants 132 120.75 95 102.75
合计 Total 483 411
χ2 (1:2:1) 1.509 0.883
PP-value 0.470 0.643

图1

SSR标记Xcfd81和Xgwm190在CH1357 F2群体中的扩增结果 M: marker; Pr: 抗病亲本CH1357; Ps: 感病亲本台长29; Br: 抗病池; Bs: 感病池; 1~6: 纯合抗病株; 7~12: 纯合感病株。"

图2

PmCH1357在群体台长29/CH1357 (a)与绵阳11/CH1357 (b)中的遗传定位及其与Pm2位点其他基因的比较"

图3

CH1357中连锁标记与染色体5DS上部分已知抗白粉病基因的比较 M: marker; 1: 台长29; 2: CH1357; 3: UIka (Pm2a) ; 4: KM2939 (Pm2b); 5: 鸟麦(Pm2c)。"

表4

CH1357与染色体5DS上已知抗白粉病基因对12个白粉菌株的抗性反应比较"

品种/品系
Variety/line
抗白粉病基因
Pm gene
白粉菌株 Blumeria graminis tritici isolate
B13 B14 B38 B40 B41 B50 B51 B56 E09 E18 E21 E23-1
CH1357 PmCH1357 0 4 1 0 0 3 2 0 0 4 0 0
UIka/8*Cc Pm2a 0 4 3 3 1 4 3 0; 0; 4 0; 0;
KM2939 Pm2b 0 4 1 0 0; 4 0 0; 0; 1 3 0;
鸟麦Niaomai Pm2c 0 0 2 0 0 4 0 0 0; 0 0; 0;
[1] Johnson J W, Baenziger P S, Yamazaki W T, Smith R T . Effects of powdery mildew on yield and quality of isogenic lines of ‘Chancellor’ wheat. Crop Sci, 1979,19:349-352.
[2] Bennett A G A . Resistance to powdery mildew in wheat: a review of its use in agriculture and breeding programmes. Plant Pathol, 1984,33:279-300.
[3] Line R F, Chen X M . Successes in breeding for and managing durable resistance to wheat rusts. Plant Dis, 1995,79:1254-1255.
[4] Zhang D Y, Zhu K Y, Dong L L, Liang Y, Li G Q, Fang T L, Guo G H, Wu Q H, Xie J Z, Chen Y X, Lu P, Li M M, Zhang H Z, Wang Z Z, Zhang Y, Sun Q X, Liu Z Y . Wheat powdery mildew resistance gene Pm64 derived from wild emmer( Triticum turgidum var. dicoccoides) is tightly linked in repulsion with stripe rust resistance gene Yr5. Crop J, 2019. doi: 10.1016/j.cj.2019. 03.003.
[5] 杨作民, 唐伯让, 沈克全, 夏先春 . 小麦抗病育种的战略问题: 小麦对锈病和白粉病第二线抗源的建立和利用. 作物学报, 1994,20:385-394.
Yang Z M, Tang B R, Shen K Q, Xia X C . Strategic issues in wheat disease resistance breeding: Establishment and utilization of second-line resistance sources of wheat rust and powdery mildew. Acta Agron Sin, 1994,20:385-394 (in Chinese with English abstract).
[6] Huang X Q, Hsam S L K, Zeller F J . Identification of powdery mildew resistance genes in common wheat ( Triticum aestivum L.). IX. cultivars, land races and breeding lines grown in China. Plant Breed, 1997,116:233-238.
[7] 周阳, 何中虎, 张改生, 夏兰琴, 陈新民, 高永超, 井赵斌, 于广军 . 1BL/1RS易位系在我国小麦育种中的应用. 作物学报, 2004,30:531-535.
Zhou Y, He Z H, Zhang G S, Xia L Q, Chen X M, Gao Y C, Jing Z B, Yu G J . Utilization of 1BL/1RS translocation in wheat breeding in China. Acta Agron Sin, 2004,30:531-535 (in Chinese with English abstract).
[8] Zeller F J, Hsam S L . Chromosomal location of a gene suppressing powdery mildew resistance genes Pm8 and Pm17 in common wheat( Triticum aestivum L. em. Thell.). Theor Appl Genet, 1996,93:38-40.
[9] 盛宝钦 . 用反应型记载小麦苗期白粉病. 植物保护, 1988,14(1):49.
Sheng B Q . Using infection type records the wheat powdery mildew at seedling stage. Plant Prot, 1988,14(1):49 (in Chinese with English abstract).
[10] Murray M G, Thompson W F . Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980,8:4321-4325.
[11] 陈昆松, 李方, 徐昌杰, 张上隆, 傅承新 . 改良CTAB法用于多年生植物组织基因组DNA的大量提取. 遗传, 2004,26:529-531.
Chen K S, Li F, Xu C J, Zhang S L, Fu C X . An efficient macro-method of genomic DNA isolation from Actinidia chinensis leaves. Hereditas ( Beijing), 2004,26:529-531 (in Chinese with English abstract).
[12] Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newberg L A . MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987,1:174-181.
[13] Lu Y Q, Wu X Y, Yao M M, Zhang J P, Liu W H, Yang X M, Li X Q, Du J, Gao A N, Li L H . Genetic mapping of a putative Agropyron cristatum-derived powdery mildew resistance gene by a combination of bulked segregant analysis and single nucleotide polymorphism array. Mol Breed, 2015,35:96.
[14] 付必胜, 刘颖, 张巧凤, 吴小有, 高海东, 蔡士宾, 戴廷波, 吴纪中 . 与小麦抗白粉病基因Pm48紧密连锁分子标记的开发. 作物学报, 2017,43:307-312.
Fu B S, Liu Y, Zhang Q F, Wu X Y, Gao H D, Cai S B, Dai T B, Wu J Z . Development of markers closely linked with wheat powdery mildew resistance gene Pm48. Acta Agron Sin, 2017,43:307-312 (in Chinese with English abstract).
[15] McIntosh R A, Baker E P . Cytogenetical studies in wheat: IV. Chromosome location and linkage studies involving the Pm2 locus for powdery mildew resistance. Euphytica, 1970,19:71-77.
[16] Ma P T, Xu H X, Xu Y F, Li L H, Qie Y M, Luo Q L, Zhang X T, Li X Q, Zhou Y L, An D G . Molecular mapping of a new powdery mildew resistance gene Pm2b in Chinese breeding line KM2939. Theor Appl Genet, 2015,128:613-622.
[17] Xu H X, Yi Y J, Ma P T, Qie Y M, Fu X Y, Xu Y F, Zhang X T, An D G . Molecular tagging of a new broad-spectrum powdery mildew resistance allele Pm2c in Chinese wheat landrace Niaomai. Theor Appl Genet, 2015,128:2077-2084.
[18] Sun Y L, Zou J W, Sun H G, Song W, Wang X M, Li H J . PmLX66 and PmW14: new alleles of Pm2 for resistance to powdery mildew in the Chinese winter wheat cultivars Liangxing 66 and Wennong 14. Plant Dis, 2015,99:1118-1124.
[19] Sun H G, Song W, Sun Y L, Chen X M, Liu J J, Zou J W, Wang X M, Zhou Y F, Lin X H, Li H J . Resistance of ‘Zhongmai 155’ wheat to powdery mildew: effectiveness and detection of the resistance gene. Crop Sci, 2015,55:1017-1025.
[20] Ma P T, Zhang H X, Xu H X, Xu Y F, Cao Y W, Zhang X T, An D G . The gene PmYB confers broad-spectrum powdery mildew resistance in the multi-allelic Pm2 chromosome region of the Chinese wheat cultivar YingBo 700. Mol Breed, 2015,35:124.
[21] Jin Y, Xu H X, Ma P T, Fu X Y, Song L P, Xu Y F, Zhang X T, An D G . Characterization of a new Pm2 allele associated with broad-spectrum powdery mildew resistance in wheat line Subtil. Sci Rep, 2018,8:475.
[22] Gao H D, Zhu F F, Jiang Y J, Wu J Z, Yan W, Zhang Q F, Jacobi A, Cai S B . Genetic analysis and molecular mapping of a new powdery mildew resistant gene Pm46 in common wheat. Theor Appl Genet, 2012,125:967-973.
[23] Ma P T, Xu H X, Li L H, Zhang H X, Han G H, Xu Y F, Fu X Y, Zhang X T, An D G . Characterization of a new Pm2 allele conferring powdery mildew resistance in the wheat germplasm line FG-1. Front Plant Sci, 2016,7:546.
[24] 李根桥, 房体麟, 朱婕, 高亮亮, 李闪, 解超杰, 杨作民, 孙其信, 刘志勇 . 普通小麦品种Brock抗白粉病基因分子标记定位. 作物学报, 2009,35:1613-1619.
Li G Q, Fang T L, Zhu J, Gao L L, Li S, Xie C J, Yang Z M, Sun Q X, Liu Z Y . Molecular identification of a powdery mildew resistance gene from common wheat cultivar Brock. Acta Agron Sin, 2009,35:1613-1619 (in Chinese with English abstract).
[25] Ch S, Hsam S L, Hartl L, Zeller F J, Mohler V . Powdery mildew resistance gene Pm22 in cultivar Virest is a member of the complex Pm1 locus in common wheat( Triticum aestivum L. em Thell.). Theor Appl Genet, 2003,106:1420-1424.
[26] Sourdille P, Robe P, Tixier M H, Doussinault G, Pavoine M T, Bernard M . Location of Pm3g, a powdery mildew resistance allele in wheat, by using a monosomic analysis and by identifying associated molecular markers. Euphytica, 1999,110:193-198.
[27] Schmolke M, Mohler V, Hartl L, Zeller F J, Hsam S L K . A new powdery mildew resistance allele at the Pm4 wheat locus transferred from einkorn( Triticum monococcum). Mol Breed, 2012,29:449-456.
[28] Huang X Q, Wang L X, Xu M X, Röder M . Microsatellite mapping of the powdery mildew resistance gene Pm5e in common wheat( Triticum aestivum L.). Theor Appl Genet, 2003,106:858-865.
[29] Xue F, Wang C Y, Li C, Duan X Y, Zhou Y L, Zhao N J, Wang Y J, Ji W Q . Molecular mapping of a powdery mildew resistance gene in common wheat landrace Baihulu and its allelism with Pm24. Theor Appl Genet, 2012,125:1425-1432.
[30] Sánchez-Martín J, Steuernagel B, Ghosh S, Herren G, Hurni S, Adamski N, Vrána J, Kubaláková M, Krattinger S G, Wicker T, Doležel J, Keller B, Wulff BB . Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Genome Biol, 2016,17:221.
[1] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[2] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[3] 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274.
[4] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[5] 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450.
[6] 蒋成功, 石慧敏, 王红武, 李坤, 黄长玲, 刘志芳, 吴宇锦, 李树强, 胡小娇, 马庆. 玉米籽粒突变体smk7的表型分析和基因定位[J]. 作物学报, 2021, 47(2): 285-293.
[7] 刘少荣, 杨扬, 田红丽, 易红梅, 王璐, 康定明, 范亚明, 任洁, 江彬, 葛建镕, 成广雷, 王凤格. 基于农艺及品质性状与SSR标记的青贮玉米品种遗传多样性分析[J]. 作物学报, 2021, 47(12): 2362-2370.
[8] 郭青青, 周蓉, 陈雪, 陈蕾, 李加纳, 王瑞. 甘蓝型油菜桔红花显性基因候选区域的NGS定位及InDel标记开发[J]. 作物学报, 2021, 47(11): 2163-2172.
[9] 黄妍, 贺焕焕, 谢之耀, 李丹莹, 赵超越, 吴鑫, 黄福灯, 程方民, 潘刚. 水稻矮化宽叶突变体osdwl1的生理特性和基因定位[J]. 作物学报, 2021, 47(1): 50-60.
[10] 姜鸿瑞, 叶亚峰, 何丹, 任艳, 杨阳, 谢建, 程维民, 陶亮之, 周利斌, 吴跃进, 刘斌美. 一个新的水稻脆秆突变体bc17的鉴定及基因定位[J]. 作物学报, 2021, 47(1): 71-79.
[11] 石慧敏, 蒋成功, 王红武, 马庆, 李坤, 刘志芳, 吴宇锦, 李树强, 胡小娇, 黄长玲. 玉米籽粒突变体dek48的表型鉴定与基因定位[J]. 作物学报, 2020, 46(9): 1359-1367.
[12] 田士可, 秦心儿, 张文亮, 董雪, 代明球, 岳兵. 玉米雄性不育突变体mi-ms-3的遗传分析及分子鉴定[J]. 作物学报, 2020, 46(12): 1991-1996.
[13] 刘荣, 王芳, 方俐, 杨涛, 张红岩, 黄宇宁, 王栋, 季一山, 徐东旭, 李冠, 郭瑞军, 宗绪晓. 利用2个F2群体整合中国豌豆高密度SSR遗传连锁图谱[J]. 作物学报, 2020, 46(10): 1496-1506.
[14] 谢园华,李凤菲,马晓慧,谭佳,夏赛赛,桑贤春,杨正林,凌英华. 水稻半外卷叶突变体sol1的表型分析与基因定位[J]. 作物学报, 2020, 46(02): 204-213.
[15] 霍强,杨鸿,陈志友,荐红举,曲存民,卢坤,李加纳. 基于QTL定位和全基因组关联分析筛选甘蓝型油菜株高和一次有效分枝高度的候选基因[J]. 作物学报, 2020, 46(02): 214-227.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!