欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (5): 676-682.doi: 10.3724/SP.J.1006.2019.84132

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

花生品种主要脂肪酸含量在不同生态区的稳定性

郭建斌,吴贝,陈伟刚,黄莉,陈玉宁,周小静,罗怀勇,刘念,任小平,姜慧芳()   

  1. 中国农业科学院油料作物研究所 / 农业农村部油料作物生物学与遗传育种重点实验室, 湖北武汉 430062
  • 收稿日期:2018-10-21 接受日期:2019-01-12 出版日期:2019-05-12 网络出版日期:2019-02-19
  • 通讯作者: 姜慧芳
  • 基金资助:
    本研究由国家自然科学基金项目(31471534);本研究由国家自然科学基金项目(31571713);本研究由国家自然科学基金项目(31801403);本研究由国家自然科学基金项目(31871666);农作物种质资源保护项目(2017NWB033);国家农作物种质资源共享服务平台项目(NICGR2017-36);国家现代农业产业技术体系建设专项(CARS-13-种质资源评价)资助

Stability of major fatty acids contents of peanut varieties grown in different ecological regions

Jian-Bin GUO,Bei WU,Wei-Gang CHEN,Li HUANG,Yu-Ning CHEN,Xiao-Jing ZHOU,Huai-Yong LUO,Nian LIU,Xiao-Ping REN,Hui-Fang JIANG()   

  1. Oil Crops Research Institute, China Academy of Agricultural Sciences / Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
  • Received:2018-10-21 Accepted:2019-01-12 Published:2019-05-12 Published online:2019-02-19
  • Contact: Hui-Fang JIANG
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31471534);This study was supported by the National Natural Science Foundation of China(31571713);This study was supported by the National Natural Science Foundation of China(31801403);This study was supported by the National Natural Science Foundation of China(31871666);the Crop Germplasm Resources Protection Project(2017NWB033);the Plant Germplasm Resources Sharing Platform(NICGR2017-36);the Agricultural Research System (CARS-13-Germplasm Resource Evaluation).

摘要:

花生是主要的油料作物, 脂肪酸组成受环境等的影响而不稳定。本研究选取60份黄淮及长江流域产区主推的花生品种, 连续2年在湖北武汉、河北石家庄、河南濮阳和河南周口4个环境下种植, 利用GB/T 5510-2011法检测种子脂肪酸含量。结果表明, 高油酸花生品种油酸含量比普通油酸品种稳定, 普通油酸品种棕榈酸和亚油酸含量比高油酸品种稳定; 武汉种植环境有利于花生油酸含量的提高, 2年60份品种的平均油酸含量均最高, 分别为52.93%和52.64%; 高油酸花生品种除油酸含量显著提高外, 花生烯酸含量也提高了54.1%; 而棕榈酸和亚油酸含量分别降低了45.20%和90.44%。结合前期SSR研究结果, 本研究涉及的6份高油酸品种属于不同的类群(G1、G2c和G2e), 其遗传背景差异较大。本研究结果为花生品种的合理布局和进一步的遗传改良提供了理论依据。

关键词: 花生, 脂肪酸, 油酸, 稳定性

Abstract:

Peanut is an important oil crop, and its fatty acids contents were not stable due to different environments grown. In this study, 60 peanut varieties including six accessions with high oleic acid and 54 accessions with normal oleic acid widely grown in Huanghuai and Yangtze river areas were planted in four ecological regions of Wuhan, Shijiazhuang, Puyang, and Zhoukou in 2016-2017. After harvesting, the dried mature seeds were tested for fatty acid content according to the method in GB/T 5510-2011. The content of oleic acid in peanut varieties with high oleic was more stable than that with normal oleic acid. However, the contents of palmitic and linoleic acids were more stable in normal oleic acid varieties than in high oleic acid cultivars. Regarding the effect of environment grown on the fatty acids, the content of oleic acid of cultivars grown in Wuhan was higher than that grown in other regions in the present study, with the average of 52.93% and 52.64% in the two years. Comparing the fatty acid composition between high oleic varieties and normal oleic varieties, the arachidonic acid content was significantly increased by 54.10%, besides the significant increase of oleic acid content in high oleic varieties. However, the palmitic and linoleic acids were much less in high oleic varieties than in normal oleic varieties, reduced by 45.20% and 90.44% respectively. Combined with the diversity of the 60 varieties by SSR technique previously, the six high oleic acid varieties should be in different groups (G1, G2c, and G2e), showing considerable large genetic variations. These results from the present study provide a basis for the reasonable planting layout and further genetic improvement of peanut varieties.

Key words: cultivated peanut, fatty acid, oleic acid, stability

表1

60份花生品种编号及名称"

编号
No.
品种
Variety
编号
No.
品种
Variety
编号
No.
品种
Variety
编号
No.
品种
Variety
1 山花7号Shanhua 7 16 开农60 Kainong 60 31 豫花9717 Yuhua 9717 46 开农33 Kainong 33
2 潍花10号Weihua 10 17 花育19号Huayu 19 32 豫花9840 Yuhua 9840 47 濮花20号Puhua 20
3 潍花8号Weihua 8 18 花育20号Huayu 20 33 豫花9327 Yuhua 9327 48 濮花22号Puhua 22
4 冀花6号Jihua 6 19 花育22号Huayu 22 34 豫花15号 Yuhua 15 49 冀花3号Jihua 3
5 冀花7号Jihua 7 20 豫花10号Yuhua 10 35 中花10号Zhonghua 10 50 冀花5号Jihua 5
6 潍花6号Weihua 6 21 开农8598 Kainong 8598 36 中花5号Zhonghua 5 51 冀花2号Jihua 2
7 豫花9号Yuhua 9 22 鲁花9号Luhua 9 37 中花8号Zhonghua 8 52 冀花12号Jihua 12
8 皖花6号Wanhua 6 23 中花16号Zhonghua 16 38 远杂9307 Yuanza 9307 53 冀花11号Jihua 11
9 皖花7号Wanhua 7 24 中花12号Zhonghua 12 39 豫花7号Yuhua 7 54 冀花9号Jihua 9
10 皖花8号Wanhua 8 25 中花15号Zhonghua 15 40 濮花17号Puhua 17 55 冀花10号Jihua 10
11 山花8号Shanhua 8 26 中花6号Zhonghua 6 41 冀花4号Jihua 4 56 冀花13号Jihua 13
12 徐州68-4 Xuzhou 68-4 27 豫花9331 Yuhua 9331 42 濮科花15号Pukehua 15 57 冀花15号Jihua 15
13 开农H03-3 Kainong H03-3 28 远杂9102 Yuanza 9102 43 濮花16号Puhua 16 58 开农61 Kainong 61
14 开农49 Kainong 49 29 豫花9326 Yuhua 9326 44 徐花13号Xuhua 13 59 开农176 Kainong 176
15 开农53 Kainong 53 30 豫花9620 Yuhua 9620 45 潍花9号Weihua 9 60 开农1715 Kainong 1715

表2

花生品种不同环境脂肪酸组分含量及变异系数"

棕榈酸
Palmitic
acid
硬脂酸
Stearic
acid
油酸
Oleic
acid
亚油酸
Linoleic
acid
花生酸
Arachidic
acid
花生烯酸
Arachidonic
acid
山嵛酸
Behenic
acid
二十四碳烷酸
Tetracosanoic
acid
变异范围Variance range (%) 5.62-13.06 3.04-6.08 38.48-81.13 1.45-39.41 1.37-2.20 0.67-1.55 1.98-3.38 1.12-1.74
平均值±标准差Mean ± SD 10.56±1.72 4.15±0.64 48.8±11.23 29.88±9.80 1.78±0.20 0.90±0.18 2.53±0.25 1.40±0.15
平均变异系数CV (%) 4.91 11.59 6.85 13.30 7.37 14.96 9.08 9.52

图 1

60份花生品种脂肪酸组分在不同环境下的变异系数 a: 棕榈酸; b: 硬脂酸; c: 油酸; d: 亚油酸; e: 花生酸; f: 花生烯酸; g: 山嵛酸; h: 二十四碳烷酸。"

表3

脂肪酸组分间相关系数"

脂肪酸
Fatty acid
棕榈酸
Palmitic
acid
硬脂酸
Stearic
acid
油酸
Oleic
acid
亚油酸
Linoleic
acid
花生酸
Arachidic
acid
花生烯酸
Arachidonic
acid
山嵛酸
Behenic
acid
二十四碳烷酸
Tetracosanoic
acid
棕榈酸 Palmitic acid 1
硬脂酸 Stearic acid -0.134 1
油酸 Oleic acid -0.961** 0.011 1
亚油酸 Linoleic acid 0.960** -0.071 -0.997** 1
花生酸 Arachidic acid -0.221 0.933** 0.054 -0.113 1
花生烯酸 Arachidonic acid -0.767** -0.384** 0.808** -0.793** -0.240 1
山嵛酸 Behenic acid -0.091 0.379** -0.016 -0.038 0.591** 0.177 1
二十四碳烷酸 Tetracosanoic acid -0.310* -0.374** 0.250 -0.242 -0.139 0.653** 0.421** 1

表4

高油酸和普通油酸花生品种脂肪酸含量"

品种类型
Variety type
棕榈酸
Palmitic
acid
硬脂酸
Stearic
acid
油酸
Oleic
acid
亚油酸
Linoleic
acid
花生酸
Arachidic
acid
花生烯酸
Arachidonic
acid
山嵛酸
Behenic
acid
二十四碳烷酸
Tetracosanoic
acid
普通油酸品种Normal oleic acid (%) 11.06 4.13 45.43 32.85 1.78 0.85 2.52 1.39
高油酸品种 High oleic acid (%) 6.06 4.37 79.13 3.14 1.87 1.31 2.62 1.51

表5

不同花生品种主要脂肪酸含量的均值及变异系数"

油酸含量
Oleic acid content
组别
Group
份数
Number of varieties
油酸
Oleic acid
亚油酸
Linoleic acid
棕榈酸
Palmitic acid
花生烯酸
Arachidonic acid
平均值
Mean
变异系数 CV (%) 平均值
Mean
变异系数
CV (%)
平均值 Mean 变异系数 CV (%) 平均值 Mean 变异系数 CV (%)
<40% A 6 39.07 6.82 37.48 6.74 12.29 4.13 0.83 17.54
40%-50% B 34 43.52 7.60 34.50 9.41 11.24 4.74 0.81 15.37
50%-60% C 14 52.79 6.94 26.84 13.50 10.11 5.33 0.95 13.52
>70% D 6 79.13 2.42 3.14 27.01 6.06 5.68 1.31 14.89

表6

亚油酸、棕榈酸和花生烯酸含量较为稳定的材料"

亚油酸 Linoleic acid 棕榈酸 Palmitic acid 花生烯酸 Arachidonic acid
品种
Variety
均值
Mean
变异系数
CV (%)
品种
Variety
均值
Mean
变异系数
CV (%)
品种
Variety
均值
Mean
变异系数
CV (%)
濮花17号 Puhua 17 37.92 4.84 潍花9号 Weihua 9 10.36 2.05 冀花4号 Jihua 4 1.02 10.27
中花6号 Zhonghua 6 38.78 5.30 花育22号 Huayu 22 9.86 2.29 开农49 Kainong 49 0.98 11.01
豫花9840 Yuhua 9840 35.37 5.32 濮花16号 Puhua 16 12.34 2.35 开农H03-3 Kainong H03-3 1.55 11.13
濮花20号 Puhua 20 36.85 5.80 潍花6号 Puhua 6 10.88 2.36 开农60 Kainong 60 0.90 11.20
濮花16号 Puhua 16 37.30 5.86 濮花20号 Puhua 20 12.37 2.42 中花12号 Zhonghua 12 1.03 11.28
中花8号 Zhonghua 8 36.78 5.88 豫花9840 Yuhua 9840 11.83 2.88 濮科花15号 Pukehua 15 0.89 11.35
冀花2号 Jihua 2 36.11 6.20 濮花17号 Puhua 17 13.00 2.90 豫花7号 Yuhua 7 0.83 11.42
冀花7号 Jihua 7 36.08 6.28 鲁花9号 Luhua 9 10.44 2.94 鲁花9号 Luhua 9 1.08 11.46
中花12号 Zhonghua 12 39.41 6.65 濮花22号 Weihua 22 10.88 3.05 豫花9327 Yuhua 9327 0.75 11.63
豫花9号 Yuhua 9 37.24 6.75 中花6号 Zhonghua 6 12.12 3.22 豫花10号 Yuhua 10 0.91 11.69

表7

6份高油酸花生品种其他性状的表现"

品种
Variety
油酸
Oleic acid
(%)
百果重
Hundred pod weight
(g)
含油量
Oil content
(%)
荚果长
Pod length
(cm)
荚果宽
Pod width
(cm)
出仁率
Shelling percentage
(%)
开农H03-3 Kainong H03-3 76.14 158.13 54.83 3.02 1.50 73.02
开农176 Kainong 176 77.14 220.75 54.40 3.52 1.71 64.86
冀花13号Jihua 13 79.57 194.56 54.96 3.18 1.57 73.94
开农1715 Kainong 1715 80.40 208.42 54.26 3.52 1.66 63.31
开农61 Kainong 61 80.41 212.17 54.76 3.47 1.67 65.51
冀花11号 Jihua 11 81.13 144.42 57.24 3.03 1.32 77.44
[1] 陈静 . 高油酸花生遗传育种研究进展. 植物遗传资源学报, 2011,12:190-196.
Chen J . Advances in genetics and breeding of high oleic acid peanut. J Plant Genet Resour, 2011,12:190-196 (in Chinese with English abstract).
[2] 田永全 . 脂肪酸的营养功能. 中国食物与营养, 2007, ( 8):51-52.
Tian Y Q . Nutritional function of fatty acids. Food Nutr China, 2007, ( 8):51-52 (in Chinese with English abstract).
[3] 姚云游 . 花生油与橄榄油营养价值的比较. 中国油脂, 2005,30(4):66-68.
Yao Y Y . Comparison of peanut oil and olive oil in nutritional value. China Oil, 2005,30(4):66-68 (in Chinese with English abstract).
[4] Wang M L, Khera P, Pandey M K, Wang H, Qiao L, Feng S, Tonnis B, Barkley N A, Pinnow D, Holbrook C C, Clubreath A K, Varshney R K, Guo B . Genetic mapping of QTLs controlling fatty acids provided insights into the genetic control of fatty acid synthesis pathway in peanut ( Arachis hypogaea L.). PLoS One, 2015,10:e0119454.
[5] 李红艳, 邓泽元, 李静, 范亚苇, 刘蓉, 熊华, 谢明勇 . 不同脂肪酸组成的植物油氧化稳定性的研究. 食品工业科技, 2010, ( 1):173-175.
Li H Y, Deng Z Y, Li J, Fan Y W, Liu R, Xiong H, Xie M Y . Study on oxidative stability of plant oils with different fatty acid composition. Sci Technol Food Ind, 2010, ( 1):173-175 (in Chinese with English abstract).
[6] 张建书, 王强, 刘红芝, 刘丽 . 脂肪酸、VE、甾醇与植物油脂稳定性的关系研究进展. 中国油脂, 2011,36(10):38-41.
Zhang J S, Wang Q, Liu H Z, Liu L . Research progress on relationship between fatty acid, VE, sterol and vegetable oil stability. China Oil, 2011,36(10):38-41 (in Chinese with English abstract).
[7] 郑畅, 杨湄, 周琦, 黄凤洪, 邓乾春, 郭萍梅, 刘昌盛 . 高油酸花生油与普通油酸花生油的脂肪酸、微量成分含量和氧化稳定性. 中国油脂, 2014,39(11):40-43.
Zheng C, Yang M, Zhou Q, Huang F H, Deng Q C, Guo P M, Liu C S . Contents of fatty acid and minor component and oxidative stability of high oleic peanut oil and normal oleic peanut oil. China Oil, 2014,39(11):40-43 (in Chinese with English abstract).
[8] Mercer L C, Wynne J C, Young C T . Inheritance of fatty acid content in peanut oil. Peanut Sci, 1990,17:17-21.
doi: 10.3146/i0095-3679-17-1-7
[9] Norden A J, Gorbet D W, Knauft D A, Young C T . Variability in oil quality among peanut genotypes in Florida breeding program. Peanut Sci, 1987,14:7-11.
doi: 10.3146/i0095-3679-14-1-3
[10] 王才斌, 刘云峰, 吴正锋, 郑亚萍, 万书波, 孙奎香, 孙学武, 冯昊 . 山东省不同生态区花生品质差异及稳定性研究. 中国生态农业学报, 2008,16:1138-1142.
Wang C B, Liu Y F, Wu Z F, Zheng Y P, Wan S B, Sun K X, Sun X W, Feng H . Diversity and stability of peanut kernel quality in different ecological regions of Shandong province. Chin J Eco-Agric, 2008,16:1138-1142 (in Chinese with English abstract).
[11] 郭洪海, 杨丽萍, 李新华, 杨萍, 万书波 . 黄淮海区域花生生产与品质特征的研究. 中国生态农业学报, 2010,18:1233-1238.
Guo H H, Yang L P, Li X H, Yang P, Wan S B . Characteristics of production and quality of peanut in Huang-Huai-Hai region. Chin J Eco-Agric, 2010,18:1233-1238 (in Chinese with English abstract).
[12] 郭峰, 阮建, 王莹莹, 万书波, 彭振英 . 利用变异系数分析花生品质性状应对环境变化的遗传稳定性研究. 山东农业科学, 2017,49(9):25-31.
Guo F, Ruan J, Wang Y Y, Wan S B, Peng Z Y . Study on genetic stability of peanut quality characters in response to environmental changes using coefficient of variation. Shandong Agric Sci, 2017,49(9):25-31 (in Chinese with English abstract).
[13] Worthington R E, Hammons R O, Allison J R . Varietal differences and seasonal effects on fatty acid composition and stability of oil from 82 peanut genotypes. J Agric Food Chem, 1972,20:727-730.
[14] 王传堂, 唐月异, 王秀贞, 吴琪, 孙全喜, 朱立贵, 王志伟 . 7个高油酸花生新品种的丰产性和脂肪酸成分评价. 山东农业科学, 2016,48(5):31-34.
Wang C T, Tang Y Y, Wang X Z, Wu Q, Sun Q X, Zhu L G, Wang Z W . Appraisal of productivity and fatty acid profiles of seven new high oleic peanut cultivars. Shandong Agric Sci, 2016,48(5):31-34 (in Chinese with English abstract).
[15] 郭建斌, 吴贝, 陈伟刚, 贾朝阳, 荆建国, 陈四龙, 刘念, 陈玉宁, 周小静, 罗怀勇, 任小平, 姜慧芳, 黄莉 . 基于核磁共振法的花生品种含油量遗传变异分析. 中国油料作物学报, 2017,39:326-333.
Guo J B, Wu B, Chen W G, Jia C Y, Jing J G, Chen S L, Liu N, Chen Y N, Zhou X J, Luo H Y, Ren X P, Jiang H F, Huang L . Variation of oil content in peanut varieties based on nuclear magnetic resonance technology. Chin J Oil Crop Sci, 2017,39:326-333 (in Chinese with English abstract).
[16] 殷冬梅, 张幸果, 王允, 崔党群 . 花生主要品质性状的主成分分析与综合评价. 植物遗传资源学报, 2011,12:507-512.
Yin D M, Zhang X G, Wang Y, Cui D Q , Principal component analysis and comprehensive evaluation on quality traits of peanut parents. J Plant Genet Resour, 2011,12:507-512 (in Chinese with English abstract).
[17] Wang M L, Chen C Y, Davis J, Guo B, Stalker H T, Pittman R N . Assessment of oil content and fatty acid composition variability in different peanut subspecies and botanical varieties. Plant Genetic Resour, 2009,8:71-73.
[18] 迟晓元, 陈明娜, 潘丽娟, 陈娜, 王通, 王冕, 杨珍, 禹山林 . 花生高油酸育种研究进展. 花生学报, 2014,43(4):32-38.
Chi X Y, Chen M N, Pan L J, Chen N, Wang T, Wang M, Yang Z, Yu S L . Research progress on high oleic acid peanut breeding. J Peanut Sci, 2014,43(4):32-38 (in Chinese with English abstract).
[19] O'keefeS F, Wiley V A, Knauft D A . Comparison of oxidative stability of high- and normal-oleic peanut oils. J Am Oil Chem Soc, 1993,70:489-492.
doi: 10.1007/BF02542581
[20] Isleib T G, Pattee H E, Sanders T H, Hendrix K W, Dean L O . Compositional and sensory comparisons between normal- and high-oleic peanuts. J Agric Food Chem, 2006,54:1759-1763.
doi: 10.1021/jf052353t
[21] 李新华, 郭洪海, 杨丽萍, 杨萍, 万书波 . 气象因子对花生品质的影响. 中国农学通报, 2010,26(16):90-94.
Li X H, Guo H H, Yang L P, Yang P, Wan S B . The effect of climatic factors on peanut quality. Chin Agric Bull, 2010,26(16):90-94 (in Chinese with English abstract).
[22] 姜慧芳, 任小平, 黄家权, 雷永, 廖伯寿 . 野生花生脂肪酸组成的遗传变异及远缘杂交创造高油酸低棕榈酸花生新种质. 作物学报, 2009,35:25-32.
Jiang H F, Ren X P, Huang J Q, Lei Y, Liao B S . Genetic variation of fatty acid components in Arachis species and development of interspecific hybrids with high oleic and low palmitic acids. Acta Agron Sin, 2009,35:25-32 (in Chinese with English abstract).
[23] 姜慧芳, 任小平, 黄家权, 廖伯寿, 雷永 . 中国花生小核心种质的建立及高油酸基因源的发掘. 中国油料作物学报, 2008,30:294-299.
Jiang H F, Ren X P, Huang J Q, Liao B S, Lei Y . Establishment of peanut mini core collection in China and exploration of new resource with high oleat. Chin J Oil Crop Sci, 2008,30:294-299 (in Chinese with English abstract).
[1] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[2] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[3] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[4] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[5] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[6] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[7] 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653.
[8] 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679.
[9] 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711.
[10] 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723.
[11] 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767.
[12] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778.
[13] 郝西, 崔亚男, 张俊, 刘娟, 臧秀旺, 高伟, 刘兵, 董文召, 汤丰收. 过氧化氢浸种对花生种子发芽及生理代谢的影响[J]. 作物学报, 2021, 47(9): 1834-1840.
[14] 张旺, 冼俊霖, 孙超, 王春明, 石丽, 于为常. CRISPR/Cas9编辑花生FAD2基因研究[J]. 作物学报, 2021, 47(8): 1481-1490.
[15] 戴良香, 徐扬, 张冠初, 史晓龙, 秦斐斐, 丁红, 张智猛. 花生根际土壤细菌群落多样性对盐胁迫的响应[J]. 作物学报, 2021, 47(8): 1581-1592.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!