欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (5): 764-776.doi: 10.3724/SP.J.1006.2019.84014

• 耕作栽培·生理生化 • 上一篇    下一篇

减氮追施和增密对全膜覆盖垄上微沟马铃薯水分利用及生长的影响

于显枫1,张绪成1,*(),方彦杰1,陈光荣1,王红丽1,侯慧芝1,马一凡1,赵记军2   

  1. 1甘肃省农业科学院旱地农业研究所 / 甘肃省旱作区水资源高效利用重点实验室, 甘肃兰州730070
    2甘肃省农业生态环境保护管理站, 甘肃兰州730000
  • 收稿日期:2018-01-30 接受日期:2018-12-24 出版日期:2019-05-12 网络出版日期:2019-01-07
  • 通讯作者: 张绪成
  • 基金资助:
    本研究由国家科技支撑计划项目(2015BAD22B04);甘肃省农业科学院农业科技创新专项(2017GAAS27);甘肃省重点研发计划项目(18YF1WA092)

Effects of top dressing with reduced nitrogen fertilizer and density enhancement on water use efficiency and growth of potatoes planted in mini-ditch on ridges with plastic mulching

Xian-Feng YU1,Xu-Cheng ZHANG1,*(),Yan-Jie FANG1,Guang-Rong CHEN1,Hong-Li WANG1,Hui-Zhi HOU1,Yi-Fan MA1,Ji-Jun ZHAO2   

  1. 1 Institute of Dryland Farming, Gansu Academy of Agricultural Sciences / Key Laboratory of High Water Utilization on Dryland of Gansu Province, Lanzhou 730070, Gansu, China
    2 Gansu Agriculture Environment Protection Station, Lanzhou 730000, Gansu, China
  • Received:2018-01-30 Accepted:2018-12-24 Published:2019-05-12 Published online:2019-01-07
  • Contact: Xu-Cheng ZHANG
  • Supported by:
    The study was supported by the National Science and Technology Research Projects of China(2015BAD22B04);the Agricultural Science and Technology Innovation Plan of Gansu Academy of Agricultural Sciences(2017GAAS27);the Key R&D Projects in Gansu Province(18YF1WA092)

摘要:

优化垄沟配置方式、种植密度和施肥方式可显著提高降水利用效率、作物产量和水分利用效率。以西北半干旱区全膜覆盖垄上微沟种植马铃薯, 设置49,500株 hm -2(低密度)和64,500株 hm -2(高密度) 2个播种密度, 传统施肥(PM)、减量追施(PMN)、有机肥替代(PMO) 3个施肥模式, 随机区组设计。研究施肥和密度对马铃薯不同生育期土壤温度、阶段耗水量、产量及水分利用效率的影响。结果表明, 增密对土壤温度、叶绿素相对含量(SPAD)和产量无显著影响, 但降低了花前耗水量、单株地上生物量和水分利用效率, 提高了叶面积指数(LAI)和花后耗水量。在块茎膨大期, 高密度处理的LAI较低密度增加了3.64%~15.01%; 花后耗水量在2015—2016年较低密度增加了6.50%~ 48.52%。与PM 处理相比, PMN和PMO均能提高花前土壤温度、现蕾期-块茎膨大期的马铃薯叶片SPAD值和LAI, 其中LAI在花期增加了10.42%~44.26%。PMN和PMO降低了花前耗水量, 增加花后耗水量和地上生物量, 在块茎膨大期地上生物量较PM增加了6.95%~49.85%。PMN能提高低密度马铃薯的块茎产量和水分利用效率(WUE), 2015—2017年产量较PM和PMO分别提高了9.96%~20.87%和13.64%~17.61%, 水分利用效率提高了5.46%~20.81%和13.25%~45.24%。因此, 增加密度对产量和水分利用效率无显著影响, 但化肥减量追施或有机肥替代均可显著促进马铃薯花后耗水和提高LAI, 使马铃薯块茎产量和WUE显著增加, 是西北黄土高原半干旱区增产增效的养分管理模式。

关键词: 减氮追施, 增密, 全膜覆盖垄上微沟, 马铃薯, 产量, 水分利用效率

Abstract:

The optimization of ridge-furrow construction, plant density and fertilizer application are three promising ways to increase rainwater use efficiency, crop yield and water use efficiency. A long-term field experiment was carried out in semi-arid area of northwestern China from 2015 to 2017, using potatoes planted in mini-ditch on ridges with plastic mulching, to explore the effects of fertilizer application and plant density on soil temperature, water consumption at different growth stages, yield and water use efficiency. Two plant densities (low density of 49,500 plants ha -1, and high density of 64,500 plants ha -1) and three fertilization methods (traditional fertilizer application, PM; reduced chemical fertilizer dressing, PMN; and organic fertilizer substitution, PMO) were set up as treatments, using randomized block design with three replications. The high density did not affect soil temperature, SPAD values and yield significantly, but lowered water consumption in pre-flowering stage, above-ground biomass per plant, and water use efficiency. However, LAI and water consumption were improved in post-flowering stage. Compared with low density treatments, LAI in high density increased by 3.64%-15.01%, and water consumption in tuber bulking period increased by 6.50%-48.52%. Both PMN and PMO increased soil temperature in pre-flowering stage, potato foliar SPAD and LAI from squaring to tuber bulking stage, compared with PM. For example, LAI increased by 10.42%-44.26% at flowering stage. PMN and PMO decreased water consumption during pre-flowering period, but increased it during post-flowering period, resulting in a 6.95%-49.85% increment in aboveground biomass at bulking stage. On average, PMN increased potato tuber yield and WUE under low density by 9.96%-20.87% and 13.64%-17.61%, 5.46%-20.81% and 13.25%-45.24%, respectively, compared with PM and PMO. Consequently, the increment of plant density did not affect potato tuber yield and WUE. However, PMN and PMO promoted potato water utilization in post-flowering period and increased LAI, resulting in significant increment of potato tuber yield and WUE, showing an efficient way for fertilization management of potato in semiarid loess plateau of northwestern China.

Key words: reduced chemical nitrogen fertilizer dressing, density enhancement, mini-ditch planting on ridges with plastic mulching, potato, yield, water use efficiency

图1

马铃薯全膜覆盖垄上微沟种植技术示意图"

表1

试验设置"

肥料
Fertilizer rate
代码
Code
密度
Density
(plant hm-2)
肥料种类及用量
Fertilizer type and dosage
肥料总用量
Total fertilizer quantity
传统施肥
Traditional fertilizer
传统施肥低密度
PML
49500 有机肥15000 kg hm-2; 化肥纯N: 180 kg hm-2, P2O5: 105 kg hm-2, 全部基施。
Organic manure 15000 kg hm-2; N: 180 kg hm-2, P2O5: 105 kg hm-2, applied before sowing.
N: 255 kg hm-2, P2O5: 157.5 kg hm-2, K2O: 60 kg hm-2
传统施肥高密度
PMH
64500
减量追施
Reduced chemical fertilizer dressing
减量追施低密度
PMNL
49500 有机肥15000 kg hm-2; 化肥纯N: 135 kg hm-2, P2O5: 73.5 kg hm-2, K2O: 30 kg hm-2。基:追=6:4, 花期追肥。
Organic manure 15000 kg hm-2; N: 135 kg hm-2, P2O5: 73.5 kg hm-2, the ratio between base and dressing fertilizer was 6:4, flowering fertilizer.
N: 210 kg hm-2, P2O5: 126 kg hm-2, K2O: 90 kg hm-2
减量追施高密度
PMNH
64500
有机肥替代
Organic manure substitution
有机肥替代低密度
PMOL
49500 有机肥30000 kg hm-2; 化肥纯N: 90 kg hm-2, P2O5: 52.5 kg hm-2, K2O: 22.5 kg hm-2。基:追=6:4, 花期追肥。
Organic manure 30000 kg hm-2; N: 90 kg hm-2, P2O5: 52.5 kg hm-2, K2O: 22.5 kg hm-2, the ratio between base and dressing fertilizer was 6:4, flowering fertilizer.
N: 240 kg hm-2, P2O5: 157.5 kg hm-2, K2O: 142.5 kg hm-2
有机肥替代高密度
PMOH
64500

图2

2015-2017年马铃薯生育期降水分布和平均气温变化"

表2

施肥方式和播种密度对土壤温度的影响"

年份
Year
处理
Treatment
苗期
Seedling
现蕾期
Squaring
花期
Blooming
块茎膨大期Bulking 淀粉积累期Accumulating 收获期Maturing
2015 传统施肥低密度PML 15.5 ab 19.6 b 19.9 a 18.2 a 22.5 a 15.8 ab
减量追施低密度PMNL 15.8 a 20.5 ab 20.7 a 19.1 a 21.7 a 15.4 b
有机肥替代低密度PMOL 15.5 ab 20.4 ab 20.5 a 18.5 a 21.8 a 16.5 ab
传统施肥高密度PMH 15.0 c 19.6 b 19.9 a 18.8 a 22.2 a 16.7 ab
减量追施高密度PMNH 15.6 a 21.0 a 20.3 a 18.6 a 22.9 a 17.2 a
有机肥替代高密度PMOH 15.1 bc 19.9 b 20.1 a 18.4 a 20.9 a 16.0 ab
年份
Year
处理
Treatment
苗期
Seedling
现蕾期
Squaring
花期
Blooming
块茎膨大期Bulking 淀粉积累期Accumulating 收获期Maturing
2016 传统施肥低密度PML 19.8 c 23.5 c 21.6 d 25.0 e 24.1 c 13.2 ab
减量追施低密度PMNL 20.9 d 23.0 d 22.4 cd 26.5 c 24.8 b 12.4 b
有机肥替代低密度PMOL 21.4 b 24.1 b 23.3 b 28.0 a 25.9 a 13.7 a
传统施肥高密度PMH 22.1 a 25.7 a 24.9 a 27.5 b 25.7 a 13.8 a
减量追施高密度PMNH 20.2 b 24.1 b 22.6 bc 25.8 d 24.6 b 12.7 b
有机肥替代高密度PMOH 20.9 b 24.1 b 22.4 cd 25.9 d 24.6 b 13.7 a
2017 传统施肥低密度PML 20.1 c 21.3 a 25.2 ab 25.3 a 23.0 a 17.0 a
减量追施低密度PMNL 20.8 abc 22.6 a 26.0 a 25.6 a 25.0 a 17.5 a
有机肥替代低密度PMOL 21.2 ab 22.0 a 26.0 a 25.7 a 24.0 a 17.8 a
传统施肥高密度PMH 20.3 abc 22.5 a 25.4 ab 25.3 a 23.8 a 17.4 a
减量追施高密度PMNH 21.6 a 23.0 a 25.6 ab 25.4 a 23.6 a 17.2 a
有机肥替代高密度PMOH 20.7 bc 21.8 a 24.3 b 24.1 a 22.9 a 17.5 a

表3

施肥方式和播种密度对叶片SPAD的影响"

年份
Year
处理
Treatment
苗期
Seedling
现蕾期
Squaring
花期
Blooming
块茎膨大期
Bulking
淀粉积累期
Accumulating
2015 传统施肥低密度PML 38.4 a 45.2 a 72.0 b 78.1 c 52.6 a
减量追施低密度PMNL 34.6 a 42.6 a 57.6 c 85.9 b 50.2 a
有机肥替代低密度PMOL 32.2 a 45.4 a 86.2 a 96.3 a 46.2 a
传统施肥高密度PMH 35.6 a 40.4 a 77.1 b 76.7 c 51.5 a
减量追施高密度PMNH 34.2 a 42.4 a 87.0 a 72.6 c 50.8 a
有机肥替代高密度PMOH 33.5 a 41.0 a 87.9 a 85.0 b 52.1 a
2016 传统施肥低密度PML 51.0 a 75.0 ab 52.0 a 55.2 a 57.3 a
减量追施低密度PMNL 50.6 a 74.5 ab 51.4 a 54.1 a 54.6 a
有机肥替代低密度PMOL 49.2 a 79.7 ab 52.3 a 55.3 a 54.9 a
传统施肥高密度PMH 47.6 a 69.4 b 51.2 a 55.1 a 58.4 a
减量追施高密度PMNH 51.2 a 85.9 a 50.9 a 55.6 a 56.4 a
有机肥替代高密度PMOH 48.8 a 85.9 a 52.5 a 55.3 a 58.4 a
2017 传统施肥低密度PML 53.9 a 54.6 a 56.3 a 55.9 a 52.7 a
减量追施低密度PMNL 54.5 a 56.0 a 53.5 a 57.9 a 54.2 a
有机肥替代低密度PMOL 54.7 a 54.8 a 57.6 a 57.5 a 54.2 a
传统施肥高密度PMH 53.8 a 55.6 a 55.1 a 59.4 a 51.9 a
减量追施高密度PMNH 56.5 a 53.7 a 55.1 a 54.2 a 50.2 a
有机肥替代高密度PMOH 56.1 a 54.4 a 54.1 a 60.0 a 50.2 a

表4

施肥方式和播种密度对马铃薯LAI的影响"

年份
Year
处理
Treatment
现蕾期
Squaring
花期
Blooming
块茎膨大期
Bulking
淀粉积累期
Accumulating
2015 传统施肥低密度PML 3.15 c 3.86 c 4.39 b 3.29 c
减量追施低密度PMNL 4.03 ab 4.60 b 5.03 ab 4.53 ab
有机肥替代低密度PMOL 3.58 bc 4.64 b 4.67 b 4.30 b
传统施肥高密度PMH 3.60 bc 3.93 c 4.88 ab 3.58 c
减量追施高密度PMNH 4.30 a 5.64 a 5.79 a 4.79 a
有机肥替代高密度PMOH 3.92 ab 4.75 b 5.26 ab 4.26 b
2016 传统施肥低密度PML 0.80 d 1.20 b 3.28 a 2.45 b
减量追施低密度PMNL 0.91 d 1.33 b 3.54 a 2.79 ab
有机肥替代低密度PMOL 1.13 c 1.52 b 3.84 a 2.49 b
传统施肥高密度PMH 1.43 b 1.67 b 3.35 a 2.09 b
减量追施高密度PMNH 1.77 a 2.32 a 3.70 a 2.36 b
有机肥替代高密度PMOH 1.88 a 2.24 a 3.83 a 3.41 a
2017 传统施肥低密度PML 1.61 d 2.44 c 4.28 a 3.45 b
减量追施低密度PMNL 1.81 c 3.33 b 4.54 a 3.84 ab
有机肥替代低密度PMOL 2.13 b 3.52 ab 4.59 a 3.49 b
传统施肥高密度PMH 1.93 c 2.37 c 4.35 a 3.19 b
减量追施高密度PMNH 2.82 a 3.32 b 4.70 a 3.36 b
有机肥替代高密度PMOH 2.88 a 3.69 a 4.83 a 4.41 a

图3

施肥模式和播种密度对干物质积累量的影响 PM: 传统施肥; PMN: 减量追施; PMO: 有机肥替代。"

表5

年份、密度和施肥对耗水量的方差分析"

变异来源
Source of variation
平方和
Sum of squares
自由度
df
均方
Mean square
F
F-value
P
P-value
年份Year (A) 10334.39 2 5167.20 84.4341 0.0001
密度Density (B) 494.95 1 494.95 8.0878 0.0075
施肥Fertilization (C) 6078.17 2 2039.08 49.6599 0.0001
A×B 299.21 2 149.60 2.4445 0.1019
A×C 12043.23 4 3010.81 49.1978 0.0001
B×C 2245.68 2 1122.84 18.3477 0.0001
A×B×C 2398.56 4 599.65 9.7984 0.0001

图4

施肥方式和播种密度对阶段耗水量的影响 PML: 传统施肥低密度; PMNL: 减量追施低密度; PMOL: 有机肥替代低密度; PMH: 传统施肥高密度; PMNH减量追施高密度; PMOH:有机肥替代高密度。"

表6

施肥方式和播种密度对总耗水量的影响"

年份
Year
传统施肥低密度PML 减量追施低密度PMNL 有机肥替代低密度PMOL 传统施肥高密度PMH 减量追施高密度PMNH 有机肥替代高密度PMOH
2015 289.7 b 310.6 ab 304.5 ab 311.1 ab 320.2 a 283.0 b
2016 332.7 abc 329.7 bc 348.7 ab 318.7 c 344.3 ab 351.1 a
2017 284.9 e 284.9 e 368.2 a 322.4 c 303.4 d 349.7 b

表7

年份、密度和施肥对产量及WUE的方差分析"

项目
Item
变异来源
Source of variation
自由度
df
平方和
Sum of squares
均方
Mean square
F
F-value
P
P-value
产量 年份Year (A) 2 1716451184 858225592 235.0364 0.0001
Yield 密度Density (B) 1 10842711 10842711 2.9694 0.0939
施肥Fertilization (C) 2 51563415 25781707 7.0607 0.0027
A×B 2 214486100 107243050 29.3699 0.0001
A×C 4 29927497 7481874 2.0490 0.1095
B×C 2 18801364 9400682 2.5745 0.0910
A×B×C 4 221833261 8703072 2.3835 0.0707
水分利用效率 年份Year (A) 2 23650 11825 576.1169 0.0001
WUE 密度Density (B) 1 209 209 10.1753 0.0031
施肥Fertilization (C) 2 664 332 16.1653 0.00001
A×B 2 1844 922 44.9266 0.0001
A×C 4 284 71 3.4612 0.0178
B×C 2 576 288 14.0378 0.00004
A×B×C 4 409 102 4.9848 0.0029

图5

施肥方式和播种密度对产量和水分利用效率的影响 PM: 传统施肥; PMN: 减量追施; PMO: 有机肥替代。"

[1] 侯慧芝, 王娟, 张绪成, 方彦杰, 于显枫, 王红丽, 马一凡 . 半干旱区全膜覆盖垄上微沟种植对土壤水热及马铃薯产量的影响. 作物学报, 2015,41:1582-1590.
Hou H Z, Wang J, Zhang X C, Fang Y J, Yu X F, Wang H L, Ma Y F . Effects of mini-ditch planting with plastic mulching in ridges on soil water content, temperature and potato yield in rain-fed semiarid region. Acta Agron Sin, 2015,41:1582-1590 (in Chinese with English abstract).
[2] 秦舒浩, 张俊莲, 王蒂, 蒲育林, 杜全中 . 覆膜与沟垄种植模式对旱作马铃薯产量形成及水分运移的影响. 应用生态学报, 2011,22:389-394.
Qin S H, Zhang J L, Wang D, Pu Y L, Du Q Z . Effects of different film mulch and ridge-furrow cropping patterns on yield formation and water translocation of rainfed potato. Chin J Appl Ecol, 2011,22:389-394 (in Chinese with English abstract).
[3] 侯慧芝, 方彦杰, 张绪成, 王红丽, 于显枫, 马一凡 . 半干旱区旱地马铃薯全膜覆盖起垄微沟种植技术. 中国马铃薯, 2015, ( 1):18-20.
Hou H Z, Fang Y J, Zhang X C, Wang H L, Yu X F, Ma Y F . Potato planting technology of ridge with mini-ditch and whole field plastic mulch in semiarid region. Chin Potato J, 2015, ( 1):18-20 (in Chinese with English abstract).
[4] 张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风 . 中国主要粮食作物肥料利用现状与提高途径. 土壤学报, 2008,45:915-924.
Zhang F S, Wang J Q, Zhang W F, Cui Z L, Ma W Q, Chen X P, Jiang R F . Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedol Sin, 2008,45:915-924 (in Chinese with English abstract).
[5] 陈亚兰, 张健, 韩儆仁, 王会蓉 . 陇中干旱半干旱地区马铃薯养分资源投入的调查与分析. 中国马铃薯, 2013,27:208-211.
Chen Y L, Zhang J, Han J R, Wang H R . Investigation and analysis of potato nutrient resource inputting in longzhong arid and semiarid area. Chin Potato J, 2013,27:208-211 (in Chinese with English abstract).
[6] 张福锁, 崔振岭, 王激清, 李春俭, 陈新平 . 中国土壤和植物养分管理现状与改进策略. 植物学通报, 2007,24:687-694.
Zhang F S, Cui Z L, Wang J Q, Li C J, Chen X P . Current status of soil and plant nutrient management in china and improvement strategies. Chin Bull Bot, 2007,24:687-694 (in Chinese with English abstract).
[7] 张绪成, 于显枫, 王红丽, 侯慧芝, 方彦杰, 马一凡 . 半干旱区减氮增钾、有机肥替代对全膜覆盖垄沟种植马铃薯水肥利用和生物量积累的调控. 中国农业科学, 2016,49:852-864.
Zhang X C, Yu X F, Wang H L, Hou H Z, Fang Y J, Ma Y F . Regulations of reduced chemical nitrogen, potassium fertilizer application and organic manure substitution on potato water- fertilizer utilization and biomass assimilation under whole field plastics mulching and ridge-furrow planting system on semi-arid area. Sci Agric Sin, 2016,49:852-864 (in Chinese with English abstract).
[8] 于显枫, 张绪成, 王红丽, 马一凡, 侯慧芝, 方彦杰 . 施肥对旱地全膜覆盖垄沟种植马铃薯耗水特征及产量的影响. 应用生态学报, 2016,27:883-890.
Yu X F, Zhang X C, Wang H L, Ma Y F, Hou H Z, Fang Y J . Effects of fertilizer application on water consumption characteristics and yield of potato cultured under ridge-furrow and whole field plastic mulching in rain-fed area. Chin J Appl Ecol, 2016,27:883-890 (in Chinese with English abstract).
[9] 何华, 赵世伟, 陈国良 . 不同水氮条件对马铃薯肥料利用率的影响. 应用生态学报, 2000,11:235-239.
He H, Zhao S W, Chen G L . Effect of different watering and fertilization on N utilization efficiency. Chin J Appl Ecol, 2000,11:235-239 (in Chinese with English abstract).
[10] 段玉, 妥德宝, 赵沛义, 李焕春 . 马铃薯施肥肥效及养分利用率的研究. 中国马铃薯, 2008,22:197-200.
Duan Y, Tuo D B, Zhao P Y, Li H C . Effect of fertilizer and nutrient use efficiency on potato in inner mondolia. Chin Potato J, 2008,22:197-200 (in Chinese with English abstract).
[11] 田丰, 张永成, 张凤军, 石小红, 马福荣 . 不同肥料和密度对马铃薯光合特性和产量的影响. 西北农业学报, 2010,19(6):95-98.
Tian F, Zhang Y C, Zhang F J, Shi X H, Ma F R . Effects of fertilizer and density on photosynthetic characteristics and yield of potato. Acta Agric Boreali-occident Sin, 2010,19(6):95-98 (in chinese with English abstract).
[12] 马文奇, 张福锁, 陈新平 . 中国养分资源综合管理研究的意义与重点. 科技导报, 2006,24(10):64-67.
Ma W Q, Zhang F S, Chen X P . Significance and keystone of research of integrated nutrient resource management in china. Sci Technol Rev, 2006,24(10):64-67 (in Chinese with English abstract).
[13] 易琼, 张秀芝, 何萍, 杨利, 熊桂云 . 氮肥减施对稻-麦轮作体系作物氮素吸收、利用和土壤氮素平衡的影响. 植物营养与肥料学报, 2010,16:1069-1077.
Yi Q, Zhang X Z, He P, Yang L, Xiong G Y . Effects of reducing N application on crop N uptake, utilization, and soil N balance in rice-wheat rotation system. Plant Nutr Fert Sci, 2010,16:1069-1077 (in Chinese with English abstract).
[14] 陈光荣, 王立明, 杨如萍, 董博, 杨桂芳, 张国宏, 杨文钰 . 平衡施肥对马铃薯-大豆间作系统中作物产量的影响. 作物学报, 2017,43:596-607.
Chen G R, Wang L M, Yang R P, Dong B, Yang G F, Zhang G H, Yang W Y . Effect of balanced fertilizer application on crop yield in potato-soybean relay-cropping system. Acta Agron Sin, 2017,43:596-607 (in Chinese with English abstract).
[15] 陈建国, 何文寿, 代晓华, 王耀科, 马俭 . 施肥对旱作马铃薯干物质及养分吸收的影响. 中国马铃薯, 2016,30:282-288.
Chen J G, He W S, Dai X H, Wang Y K, Ma J . Effect of fertilization on dry matter and nutrient uptake of potato under dry farming system. Chin Potato J, 2016, 30:282-288 (in Chinese with English abstract).
[16] 崔学开, 陈建林, 王明义, 杨国苍, 郑红英 . 不同施肥和密度对马铃薯产量的影响. 中国马铃薯, 2010,24:360-363.
Cui X K, Chen J L, Wang M Y, Yang G C, Zheng H Y . Effect of fertilization and plant density on potato yield. Chin Potato J, 2010, 24:360-363 (in Chinese with English abstract).
[17] 李玲玲 . 有机肥氮素有效性和替代化肥氮比例研究. 中国农业科学院硕士学位论文, 北京, 2011.
Li L L . Manure Nitrogen Availability and Its Substitution Ratio for Chemical Fertilizer Nitrogen. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2011 (in Chinese with English abstract).
[18] 何万春, 何昌福, 邱慧珍, 张文明, 王亚飞, 张春红, 王蒂 . 不同氮水平对旱地覆膜马铃薯干物质积累与分配的影响. 干旱地区农业研究, 2016,34(4):175-182.
He W C, He C F, Qiu H Z, Zhang W M, Wang Y F, Zhang C H, Wang D . Effect of nitrogen rates on dry matter accumulation and distribution of potato plants under film mulching in dry land. Agric Res Arid Areas, 2016,34(4):175-182 (in Chinese with English abstract).
[19] 刘向梅, 孙磊, 李功义, 石立航, 王弘, 徐姗姗 . 氮磷钾肥施用量及施用时期对马铃薯养分转运分配的影响. 中国土壤与肥料, 2013, ( 4):59-65.
Liu X M, Sun L, Li G Y, Shi L H, Wang H, Xu S S . Effect of N, P, K fertilizers application rate and time on translocation and distribution of nutrients in potato plant. Soil Ferti Sci, 2013, ( 4):59-65 (in Chinese with English abstract).
[20] 薛俊武, 任稳江, 严昌荣 . 覆膜和垄作对黄土高原马铃薯产量及水分利用效率的影响. 中国农业气象, 2014,35:74-79.
Xue J W, Ren W J, Yan C R . Effects of plastic film mulching and ridge planting on yield and water use efficiency of potato in loess plateau. Chin J Agrometeorol, 2014,35:74-79 (in Chinese with English abstract).
[21] 张永成, 张凤军 . 马铃薯产量与栽培密度及氮磷钾施肥用量的关系研究. 中国种业, 2010, ( 9):68-70.
Zhang Y C, Zhang F J . Study on the relationship between potato yield and cultivation density and N, P, K fertilizer application. Chin Seed Ind, 2010, ( 9):68-70 (in Chinese with English abstract).
[22] 郑顺林, 王良俊, 万年鑫, 胡建军, 何卫, 袁继超 . 密度对不同生态区马铃薯产量及块茎空间分布的影响. 西北农林科技大学学报(自然科学版), 2017,45(7):15-23.
Zheng S L, Wang L J, Wan N X, Hu J J, He W, Yuan J C . Effect of plant density on tuber yield and spatial distribution response of potato from different ecological regions in Sichuan. J Northwest A&F Univ( Nat Sci Edn), 2017,45(7):15-23 (in Chinese with English abstract).
[23] 齐爽, 廉华, 马光恕, 李忠魁 . 不同栽培密度对马铃薯生长特性的影响. 安徽农学通报, 2009,15(24):71-73.
Qi S, Lian H, Ma G S, Li Z K . Effects of different planting densities on growth characteristics of potato. Anhui Agric Sci Bull, 2009,15(24):71-73 (in Chinese with English abstract).
[24] 岳云, 朱永永, 赵贵宾, 熊春荣, 赵小文, 边彩燕, 罗磊 . “一膜两年用”不同播种密度对马铃薯生长及产量的影响. 西北农业学报, 2017,26:384-389.
Yue Y, Zhu Y Y, Zhao G B, Xiong C R, Zhao X W, Bian C Y, Luo L . Effect of different planting densities on potato growth and yield in two-year plastic film mulching. Acta Agric Boreali-occident Sin, 2017,26:384-389 (in Chinese with English abstract).
[25] Subrahmaniyan K, Mathieu N . Polyethylene and biodegradable mulches for agricultural applications: a review. Agron Sus Dev, 2012,32:501-529.
doi: 10.1007/s13593-011-0068-3
[26] Li X Y . Gravel-sand mulch for soil and water conservation in the semiarid loess region of northwest China. CATENA, 2003,2:105-127.
[27] 刘明霞, 王一航, 陆立银, 谢奎忠, 陈年来 . 氮磷肥及栽培密度对‘陇薯8号’产量的影响. 甘肃农业大学学报, 2011,46(4):80-84.
Liu M X, Wang Y H, Lu L Y, Xie K Z, Chen N L . Effect of nitrogen phosphorus and planting density on yield of ‘Longshu 8’ potato. J Gansu Agrci Univ, 2011,46(4):80-84 (in Chinese with English abstract).
[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 王海波, 应静文, 何礼, 叶文宣, 涂卫, 蔡兴奎, 宋波涛, 柳俊. rDNA和端粒重复序列鉴定马铃薯和茄子体细胞杂种染色体丢失和融合[J]. 作物学报, 2022, 48(5): 1273-1278.
[8] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[9] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[10] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[11] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[12] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[13] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[14] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[15] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!