欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (6): 932-940.doi: 10.3724/SP.J.1006.2019.84112

• 耕作栽培·生理生化 • 上一篇    下一篇

基于生命周期法的中国2004—2015年油菜生产氮足迹分析

陈中督,徐春春,纪龙,方福平()   

  1. 中国水稻研究所, 浙江杭州 311300
  • 收稿日期:2018-08-23 接受日期:2019-01-12 出版日期:2019-06-12 网络出版日期:2019-06-12
  • 通讯作者: 方福平
  • 作者简介:E-mail: chenzhongdu@caas.cn
  • 基金资助:
    本研究由国家重点研发计划项目(2016YFD0300210);浙江省自然科学基金青年基金项目(LQ18G030013)

Assessment of the nitrogen footprint in oilseed rape production of China during 2004 to 2015 base on life cycle assessment method

Zhong-Du CHEN,Chun-Chun XU,Long JI,Fu-Ping FANG()   

  1. China National Rice Research Institute, Hangzhou 311300, Zhejiang, China
  • Received:2018-08-23 Accepted:2019-01-12 Published:2019-06-12 Published online:2019-06-12
  • Contact: Fu-Ping FANG
  • Supported by:
    This work was supported by the Project of National Key Research and Development Program of China(2016YFD0300210);the Project of National Natural Science Foundation of Zhejiang(LQ18G030013)

摘要:

农业领域的活性氮排放日趋严重, 系统分析农业生产过程中活性氮排放有利于促进我国农业绿色健康发展。本文基于2004—2015年我国油菜产量、农资投入产出等统计资料数据, 运用氮足迹理论和生命周期法系统评价我国油菜生产氮足迹时空分布状况及其构成。结果表明, 我国油菜生产单位面积氮足迹为7572.0 g N-eq hm -2, 呈现逐年下降的趋势。氮肥投入和NH3挥发是我国油菜生产活性氮排放主要来源, 分别占油菜生产氮足迹的20%和54%。内蒙古、上海、江苏3个省、区、市的单位面积氮足迹和单位产量氮足迹显著高于低产省市, 其中氮肥、磷肥、复合肥产生的氮足迹值分别高80.6%、76.9%和57.8% (P < 0.05)。我国油菜单位面积氮足迹随着油菜产量的增加呈增加的趋势, 但不存在显著相关性。研究结论表明, 发展油菜生产节肥技术是我国油菜绿色健康发展的重要举措。

关键词: 氮足迹, 油菜, 生命周期, 时空分布, 中国

Abstract:

The loss of reactive nitrogen in agriculture has increasingly become serious, systematic analysis of reactive nitrogen emissions from agricultural production is conducive to promoting the green and healthy development of agriculture in China. Based on the statistical data of crop yield and farmland investment in the oilseed rape production of China, the spatiotemporal dynamic change of nitrogen footprint (NF) and its composition of oilseed rape during 2004-2015 in China was estimated using the theory of NF and life cycle assessment method in the agricultural sector. The NF of oilseed rape was 7572.0 g N-eq ha -1 during 2004-2015, and decreasing year by year, with an average annual decline of 1.0%. The main components of the NF were from fertilizer application (20%) and NH3 emission (54%) in the oilseed rape production. Obvious differences also were observed among mainly agricultural provinces in China, that is, the higher nitrogen footprint per area (NFa) and nitrogen footprint per yield (NFy) in Inner Mongolia, Shanghai, and Jiangsu region. The NFa and NFy in high yield region were significantly higher than those in low yield region. Among them, the NF of nitrogenous fertilizer, phosphate fertilizer and compound fertilizer increased by 80.6%, 76.9%, and 57.8%, respectively (P < 0.05). The NFa of rapeseed in China showed a trend of increase with the increase of rapeseed yield, but there was no significant correlation. The results suggest that improving crop management practices that limit fertilizer consumption is an important measure for the green and healthy development of rapeseed in China.

Key words: nitrogen footprint, oilseed rape, life cycle assessment, spatiotemporal distribution, China

图1

活性氮排放计算边界"

表1

农业投入资料的活性氮排放系数"

项目
Item
N2O排放系数
N2O emission coefficient
(g N-eq kg-1)
NOx排放系数
NOx emission coefficient
(g N-eq kg-1)
柴油Diesel 0.06 0.5
柴油燃烧Combustion 0.14 3.83
氮肥N 0.09 13.47
磷肥P2O5 0.013 2.16
钾肥K2O 0.017 2.90
杀虫剂 Insecticides 0.1661 13.18
除草剂 Herbicides 0.1015 8.06
杀菌剂 Fungicides 0.1057 8.41

图2

2004-2015年我国油菜生产单位面积氮足迹(a)、单位产量氮足迹(b)变化情况"

表2

2004-2015年我国油菜生产单位面积氮足迹大小及组成"

种类
Item
年份 Year
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
农资投入 Farm inputs (g N-eq hm-2)
氮肥 N 1659.7 1509.2 1574.3 1525.5 1454.3 1511.3 1470.6 1448.2 1346.5 1275.3 1303.8 1271.3
磷肥 P 59.3 76.3 79.5 73.7 56.7 63.2 54.4 55.7 49.9 45.3 38.8 38.5
钾肥 K 12.3 16.6 10.1 9.6 10.9 6.1 7.4 6.1 7.9 6.6 5.7 6.6
复混肥 CF 124.6 164.5 178.3 206.9 223.2 225.3 251.4 251.8 263.1 305.1 329.8 347.9
除草剂 H 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6
杀虫剂 In 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
杀菌剂 Fu 59.4 59.4 59.4 59.4 59.4 59.4 59.4 59.4 59.4 59.4 59.4 59.4
柴油 D 31.1 29.8 27.6 35.8 38.4 46.4 49.9 52.1 63.5 71.2 91.2 101.3
直接活性氮损失 Direct reactive nitrogen loss
Nr-NH3 4413.2 4106.8 4296.2 4225.5 4076.0 4223.4 4168.5 4112.9 3877.3 3774.7 3891.9 3842.9
Nr-NO3- 353.7 329.2 344.4 338.7 326.7 338.5 334.1 329.7 310.8 302.6 312.0 308.0
Nr-NH4+ 1108.8 1031.8 1079.4 1061.6 1024.1 1061.1 1047.3 1033.4 974.2 948.4 977.8 965.5
Nr-N2O 289.7 269.6 282.0 277.3 267.5 277.2 273.6 270.0 254.5 247.8 255.5 252.3
NFa (g N-eq hm-2) 8114.0 7595.2 7933.4 7816.2 7539.5 7814.1 7718.9 7621.4 7209.1 7038.4 7267.9 7195.7
NFy (g N-eq kg-1) 4.02 3.97 4.03 3.57 3.73 3.92 4.11 3.90 3.69 3.37 3.62 3.45

图3

我国各省份2004-2015年油菜生产单位面积氮足迹、单位产量氮足迹及其变化率分布 a: 单位面积氮足迹分布; b: 2004-2015年单位面积氮足迹变化率分布; c: 单位产量氮足迹分布; d: 2004-2015年单位产量氮足迹变化率分布。"

表3

我国典型省份冬油菜氮足迹、投入及产业构成"

项目
Item
氮足迹、投入及构成Nitrogen footprint, input and composition
高产High yield 低产 Low yield
省市 Province or municipality 上海 Shanghai 安徽 Anhui
江苏 Jiangsu 江西 Jiangxi
浙江 Zhejiang 湖南 Hunan
农资投入 氮肥N 2110.9±455.4 1168.9±211.1
Farm input (g N-eq hm-2) 磷肥P 68.1±21.1 38.5±10.2
钾肥K 3.9±1.2 12.1±6.5
复混肥CF 308.9±91.2 195.8±62.5
除草剂 H 1.6 1.6
杀虫剂 In 0.57 0.57
杀菌剂 Fu 59.35 59.35
柴油 D 49.8±11.3 30.47±8.7
项目
Item
氮足迹、投入及构成Nitrogen footprint , input and composition
高产High yield 低产 Low yield
田间直接氮损失 Nr-NH3 5888.6±1231.1 3306.1±721.5
Indirect emission in field Nr-NO3- 472.0±101.3 265.0±92.2
(g N-eq hm-2) Nr-NH4+ 1479.5±311.4 830.6±111.2
Nr-N2O 386.5±101.7 217.0±91.2
单位面积氮足迹 NFa (g N-eq hm-2) 10829.8±2221.1 6126.0±1101.6
产量 Yield (kg hm-2) 2328.0±913.4 1708.8±771.3
单位产量氮足迹 NFy (g N-eq kg-1) 4.74±1.14 3.61±1.01

图4

中国油菜产量与单位面积氮足迹(a)和单位产量氮足迹(b)的关系"

[1] Sutton M A, Oenema O, Erisman J W, Leip A . Too much of a good thing. Nature, 2011,472:159-161.
[2] Erisman J W, Sutton M A, Galloway J, Klimont Z, Winiwarter W . How a century of ammonia synthesis changed the world. Nat Geosci, 2008,1:636-639.
doi: 10.1038/ngeo325
[3] 秦树平, 胡春胜, 张玉铭, 王玉英, 董文旭, 李晓欣 . 氮足迹研究进展. 中国生态农业学报, 2011,19:462-467.
Qin S P, Hu C S, Zhang Y M, Wang Y Y, Dong W X, Li X X . Advances in nitrogen footprint research. Chin J Eco-Agric, 2011,19:462-467 (in Chinese with English abstract).
[4] Xue X B, Landis A E . Eutrophication potential of food consumption patterns. Environ Sci Technol, 2010, 44:6450-6456.
doi: 10.1021/es9034478 pmid: 20704246
[5] Pierer M, Winiwarter W, Leach A M, Galloway J N , The nitrogen footprint of food products and general consumption patterns in Austria. Food Policy, 2014,49:128-136.
doi: 10.1016/j.foodpol.2014.07.004
[6] 傅廷栋 . 中国油菜生产与品种改良. 华中农业大学学报, 1999,18:501-504.
Fu T D . Rapeseed production and variety improvement in China. J Huazhong Agric Univ, 1999,18:501-504 (in Chinese with English abstract).
[7] 涂金星, 张冬晓, 张毅 . 我国油菜育种目标及品种审定问题的商榷. 中国油料作物学报, 2007,29:350-352.
Tu J X, Zhang D X, Zhang Y . Discussion on some standards of variety registration and breeding goals of Brassica napus in China. Chin J Oil Crop Sci, 2007,29:350-352 (in Chinese with English abstract).
[8] 徐华丽 . 长江流域油菜施肥状况调查及配方施肥效果研究. 华中农业大学硕士学位论文, 湖北武汉, 2012.
Xu H L . Investigation of Rapeseed Fertilization in Yangtze River Basin and Study on the Effect of Formula Fertilization. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei,China, 2012 (in Chinese with English abstract).
[9] Moldanová J, Grennfelt P, Jonsson Å. Nitrogen as a Threat to European Air Quality. New York: Cambridge University Press, 2011. pp 405-433.
[10] 陈中督 . 农作措施对双季稻田固碳减排效应与农户低碳技术采纳行为研究. 中国农业大学博士学位论文, 北京, 2017.
Chen Z D . Impacts of Farming Practices on Carbon Sequestration and Emission Mitigation in Double Rice Field and Farmers’ Adoption Behavior of Low Carbon Technology. PhD Dissertation of China Agricultural University, Beijing,China, 2017 (in Chinese with English abstract).
[11] Ibáñez-Forés V, Bovea M D, Simó A . Life cycle assessment of ceramic tiles. environmental and statistical analysis. Int J Life Cycle Assess, 2011,16:916-928.
doi: 10.1007/s11367-011-0322-6
[12] 梁龙 . 基于LCA的循环农业环境影响评价方法探讨及实证研究. 中国农业大学博士学位论文, 北京, 2009.
Liang L . Environmental Impact Assessment of Circular Agriculture Based on Life Cycle Assessment: Methods and Case Studies. PhD Dissertation of China Agricultural University, Beijing,China, 2009 (in Chinese with English abstract).
[13] 傅廷栋, 梁华东, 周广生 . 油菜绿肥在现代农业中的优势及发展建议. 中国农技推广, 2012,28(8):37-49.
Fu T D, Liang H D, Zhou G S . The advantages and development suggestions of rapeseed green manure in modern agriculture. China Agric Technol Extension, 2012,28(8):37-49 (in Chinese with English abstract).
[14] 邹娟, 鲁剑巍, 陈防, 李银水 . 长江流域油菜氮磷钾肥料利用率现状研究. 作物学报, 2011,37:729-734.
Zou J, Lu J W, Chen F, Li Y S . Status of nutrient use efficiencies of rapeseed in the Yangtze River basin. Acta Agron Sin, 2011,37:729-734 (in Chinese with English abstract).
[15] Gan Y, Liang C, Campbell C A, Zentner R P, Lemke R L, Wang H, Yang C . Carbon footprint of spring wheat in response to fallow frequency and soil carbon changes over 25 years on the semiarid Canadian prairie. Eur J Agron, 2012,43:175-184.
doi: 10.1016/j.eja.2012.07.004
[16] Breiling M, Hoshino T, Matsuhashi R. Contributions of Rice Production to Japanese Greenhouse Gas Emissions Applying Life Cycle Assessment as a Methodology. Laboratory for Land Resource Sciences, Department of Biological and Environmental Engineering, Graduate School for Agriculture and Life Sciences, Tokyo, and the University of Tokyo, 1999, p 32. .
[17] 王淳, 周卫, 李祖章 . 不同施氮量下双季稻连作体系土壤氨挥发损失研究. 植物营养与肥料学报, 2012,18:349-358.
Wang C, Zhou W, Li Z Z . Effects of different nitrogen application rates on ammonia volatilization from paddy fields under double-harvest rice system. Plant Nutr Fert Sci, 2012,18:349-358 (in Chinese with English abstract).
[18] 崔晓晨, 李安宁, 王国占 . 三大粮食作物农机作业成本及效益分析: 基于全国26个省的农机户问卷调查. 农机化研究, 2011,33(2):15-18.
Cui X C, Li A N, Wang G Z . Research on machinery cost of grain-production in China: based on a nationwide questionnaire survey. J Agric Mechanization Res, 2011,33(2):15-18 (in Chinese with English abstract).
[19] 董彦彬 . 2006年国内油菜籽产量与价格分析. 农业展望, 2006,2(7):26.
Dong Y B . Analysis of domestic rapeseed production and price in 2006. Agric Outlook. 2006,2(7):26 (in Chinese with English abstract).
[20] 伊然 . 大豆等6种农产品实行进口备案制. 中国油脂, 2008, ( 7):12.
Yi R . Soybean and other six agricultural products to implement the import record system. China Oils Fats, 2008, ( 7):12 (in Chinese).
[21] 陈魏涛, 曹宏鑫, 张保军, 张文宇 . 氮素营养诊断技术及其在油菜上的应用研究进展. 江苏农业学报, 2016,32:953-960.
Chen W T, Cao H X, Zhang B J, Zhang W Y . Research progresses in nitrogen diagnosis technology and its application in rapeseed. Jiangsu J Agric Sci, 2016,32:953-960 (in Chinese with English abstract).
[22] 张筱蕾, 刘飞, 聂鹏程 . 高光谱成像技术的油菜叶片氮含量及分布快速检测. 光谱学与光谱分析, 2014,34:2514-2518.
Zhang X L, Liu F, Nie P C . Rapid detection of nitrogen content and distribution in oilseed rape leaves based on hyperspectral imaging. Spectroscopy Spectral Anal, 2014,34:2514-2518 (in Chinese with English abstract).
[23] 任涛, 鲁剑巍 . 中国冬油菜氮素养分管理策略. 中国农业科学, 2016,49:3506-3521.
Ren T, Lu J W . Integrated nitrogen management strategy for winter oilseed rape (Brassica napus L.) in China. Sci Agric Sin, 2016,49:3506-3521 (in Chinese with English abstract).
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[3] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[4] 黄伟, 高国应, 吴金锋, 刘丽莉, 张大为, 周定港, 成洪涛, 张凯旋, 周美亮, 李莓, 严明理. 芥菜型油菜BjA09.TT8BjB08.TT8基因调节类黄酮的合成[J]. 作物学报, 2022, 48(5): 1169-1180.
[5] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[6] 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811.
[7] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[8] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[9] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[10] 赵改会, 李书宇, 詹杰鹏, 李晏斌, 师家勤, 王新发, 王汉中. 甘蓝型油菜角果数突变体基因的定位及候选基因分析[J]. 作物学报, 2022, 48(1): 27-39.
[11] 娄洪祥, 姬建利, 蒯婕, 汪波, 徐亮, 李真, 刘芳, 黄威, 刘暑艳, 尹羽丰, 王晶, 周广生. 种植密度对油菜正反交组合产量与倒伏相关性状的影响[J]. 作物学报, 2021, 47(9): 1724-1740.
[12] 张建, 谢田晋, 尉晓楠, 王宗铠, 刘崇涛, 周广生, 汪波. 无人机多角度成像方式的饲料油菜生物量估算研究[J]. 作物学报, 2021, 47(9): 1816-1823.
[13] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[14] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
[15] 姚佳瑜, 于吉祥, 王志琴, 刘立军, 周娟, 张伟杨, 杨建昌. 水稻内源油菜素甾醇对施氮量的响应及其对颖花退化的调控作用[J]. 作物学报, 2021, 47(5): 894-903.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!