欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (11): 1703-1710.doi: 10.3724/SP.J.1006.2020.02002

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

基因组测序技术解析耐除草剂转基因水稻G2-7的分子特征

马硕1(), 焦悦2(), 杨江涛1, 王旭静1,*(), 王志兴1,*()   

  1. 1 中国农业科学院生物技术研究所 / 农业农村部农业转基因生物安全评价(分子)重点实验室, 北京100081
    2 农业农村部科技发展中心, 北京 100122
  • 收稿日期:2020-01-14 接受日期:2020-06-02 出版日期:2020-11-12 网络出版日期:2020-06-22
  • 通讯作者: 王旭静,王志兴
  • 作者简介:马硕, E-mail:mashuo0801@163.com|焦悦, E-mail:jiaoyue@agri.gov.cn
  • 基金资助:
    本研究由国家转基因新品种培育重大专项(2016ZX08010-003)

Molecular characterization identification by genome sequencing of transgenic glyphosate-tolerant rice G2-7

MA Shuo1(), JIAO Yue2(), YANG Jiang-Tao1, WANG Xu-Jing1,*(), WANG Zhi-Xing1,*()   

  1. 1 Biotechnology Research Institute, Chinese Academy of Agricultural Sciences / MARA Key Laboratory on Safety Assessment Molecular of Agri-GMO, Beijing 100081, China
    2 Development Center for Science and Technology / MARA, Beijing 100122, China
  • Received:2020-01-14 Accepted:2020-06-02 Published:2020-11-12 Published online:2020-06-22
  • Contact: Xu-Jing WANG,Zhi-Xing WANG
  • Supported by:
    This study was supported by the National Major Project for Developing New GM Crops(2016ZX08010-003)

摘要:

外源DNA片段的拷贝数及插入位点的侧翼序列等分子特征信息是转基因植物安全评价过程中必需要提供的信息。本研究利用基因组测序结合生物信息学对耐除草剂转基因水稻G2-7的T-DNA插入位点、拷贝数和侧翼序列进行鉴定。利用Illumina NovaSeq 6000平台对G2-7进行全基因组测序, 共获得47.13 Gb的测序数据, 通过与转基因载体和参考基因组序列的比较, 确定了G2-7中T-DNA在受体基因组中的插入位点。结果显示, 外源DNA片段以单位点单拷贝形式插入到水稻1号染色体的36,189,491~36,189,507位置, 造成水稻基因组16 bp DNA缺失, 无载体骨架的插入。同时我们获得外源基因插入位点5′侧翼序列375 bp和3′端侧翼序列353 bp, 并通过PCR扩增和Sanger测序进一步证明获得的侧翼序列是正确的。研究结果为转基因水稻G2-7的安全评价及转化体特异性检测提供了有效的数据支撑, 同时也证明全基因组测序(WGS)是解析转基因植物分子特征的有效方法。

关键词: 基因组测序, 转基因水稻, 分子特征, 拷贝数, 侧翼序列

Abstract:

Molecular characterization, such as copy number and flanking sequence of foreign DNA fragment insertion site, is the important identity information, provided during safety assessment of genetic modified crop. In this study, the T-DNA insertion site, copy number and flanking sequences were identified in transgenic glyphosate-tolerant rice G2-7 based on whole genome sequencing in combination bioinformatics analysis method. 47.13 Gb clean sequence data for G2-7 was generated on Illumina NovaSeq 6000 platform. The junction reads mapped to boundaries of T-DNA and flanking sequences in G2-7 were identified by comparing with sequence of transformation vector and rice reference genome. The results showed that exogenous T-DNA fragments was integrated in the position of Chr. 1 36,189,491-36,189,507 with a single copy, 16 bp rice genome sequence was deleted at the insertion site and no insertion of vector backbone. 375 bp and 353 bp flanking host DNA sequence of 5′-end and 3′-end of the insertion DNA fragment were also obtained, respectively. The putative insertion location and flanking sequences were further confirmed by PCR amplification and Sanger sequencing. The results not only provided data support for safety assessment and event specific detection, but also demonstrated that WGS was an effective technique for identifying molecular characterization in rice.

Key words: genome sequencing, transgenic rice, molecular characterization, copy number, flanking sequence

表1

高通量测序数据质量控制统计"

样品名称
Sample
原始数据量
Raw bases
原始读序量
Raw reads
有效数据量
Clean bases
有效读序量Clean reads Q20
(%)
Q30
(%)
GC含量
GC content (%)
ZH11 41,196,003,900 274,646,422 41,155,766,400 274,371,776 96.22 90.36 43.04
ZH11-p 41,266,820,400 275,112,136 41,228,215,500 274,854,770 97.73 93.69 42.93
G2-7 47,246,859,300 314,990,174 47,125,680,000 314,171,200 96.58 91.15 44.27

图1

G2-7中外源插入片段与受体基因组结合位点分析(部分结合区序列的比对结果)"

图2

测序数据与质粒DNA比对结果的可视化"

图3

载体骨架匹配读序的PCR验证 1: G2-7; 2: ZH11; 3: p13UG2."

图4

外源DNA片段在受体基因组中的整合位点及侧翼序列分析 A: G2-7转化体侧翼序列和整合位点分析; B: G2-7转化体插入序列整合情况示意图。"

图5

PCR电泳图及序列比对 A: 水稻G2-7转化体侧翼序列扩增; 1: G2-7-5F/5R; 2: ZH11-5F/5R; 3: G2-7-3F/3R; 4: ZH11-3F/3R。B: G2-7 5′端序列比对验证。C: G2-7 3′端序列比对验证。"

[1] Southern E M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol, 1975,98:503-517.
doi: 10.1016/s0022-2836(75)80083-0 pmid: 1195397
[2] Yang L T, Ding J Y, Zhang C M, Jia J W, Weng H B, Liu W X, Zhang D B. Estimating the copy number of transgenes in transformed rice by real-time quantitative PCR. Plant Cell Rep, 2005,23:759-763.
pmid: 15459795
[3] 姜羽, 胡佳莹, 杨立桃. 利用微滴数字PCR分析转基因生物外源基因拷贝数. 农业生物技术学报, 2014,22:1298-1305.
Jiang Y, Hu J Y, Yang L T. Estimating the exogenous genes copy number of genetically modified organisms by droplet digital PCR. J Agric Biotech, 2014,22:1298-1305 (in Chinese with English abstract)
[4] Liu Y G, Whittier R F. Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics, 1995,25:674-681.
pmid: 7759102
[5] Singer T, Burke E. High-throughput TAIL-PCR as a tool to identify DNA flanking insertions. Method Mol Biol, 2003,236:241-272.
[6] Yan Y X, An C C, Li L, Gu J Y, Tan G H, Chen Z L. T-linker-specific ligation PCR (T-linker PCR): an advanced PCR technique for chromosome walking or for isolation of tagged DNA ends. Nucleic Acids Res, 2003,31:1-7.
pmid: 12519937
[7] Rosenthal A, Jones D S. Genomic walking and sequencing by oligo cassette mediated polymerase chain reaction. Nucl Acids Res, 1990,18:3095-3096.
pmid: 2349129
[8] Ji J B, Braam J. Restriction site extension PCR: a novel method for high-throughput characterization of tagged DNA fragments and genome walking. PLoS One, 2010,5:e10577.
pmid: 20485508
[9] O’Malley R C, Ecker J R. Linking genotype to phenotype using the Arabidopsis unimutant collection. Plant J, 2010,61:928-940.
doi: 10.1111/j.1365-313X.2010.04119.x pmid: 20409268
[10] Yang L, Xu S, Pan A, Yin C, Zhang K, Wang Z. Event specific qualitative and quantitative polymerase chain reaction detection of genetically modified MON863 maize based on the 50-transgene integration sequence. J Agric Food Chem, 2005,53, 9312-9318.
pmid: 16302741
[11] Windels P, Taverniers I, Depicker A, Van Bockstaele E, De Loose M. Characterization of the roundup ready soybean insert. Eur Food Res Technol, 2011,213:107-112.
[12] Akritidis P, Pasentsis K, Tsaftaris A S, Mylona P V, Polidoros A N. Identification of unknown genetically modified material admixed in conventional cotton seed and development of an event-specific detection method. Electron J Biotechnol, 2008,11:76-83.
[13] Wang X B, Jiang L X, Wei L, Liu L, Lu W, Li W X. Integration and insertion site of EPSPs gene on the soybean genome in genetically modified glyphosate-resistant soybean. Acta Agron Sin, 2010,36:365-375.
[14] Marie-Alice F, Philippe H, Isabel T, Marc D L, Dieter D, Roosens N H. Current and new approaches in GMO detection: challenges and solutions. Biomed Res Int, 2015,392872.
[15] Zastrow-Hayes G M, Lin H N, Sigmund A L, Hoffman J L, Alarcon C M, Hayes K R. Southern-by-sequencing: a robust screening approach for molecular characterization of genetically modified crops. Plant Genome, 2015,8:1-15.
[16] Inagaki S, Henry I M, Lieberman M C, Comai L. High-through put analysis of T-DNA location and structure using sequence capture. PLoS One, 2015,10:e0139672.
pmid: 26445462
[17] Kovalic D, Garnaat C, Guo L, Yan Y P, Groat J, Silvanovich A. The use of next generation sequencing and junction sequence analysis bioinformatics to achieve molecular characterization of crops improved through modern biotechnology. Plant Genome, 2012,5:3.
[18] Lepage E, Zampini E, Boyle B, Brisson N. Time and cost- efficient identification of T-DNA insertion sites through targeted genomic sequencing. PLoS One, 2013,8:e70912.
pmid: 23951038
[19] Rosalind W C, Nicholas S, Susan B, Tiffany K, David B S, Rita A M. Use of Illumina sequencing to identify transposon insertion underlying mutant phenotypes in high-copy Mutator lines of maize. Plant J, 2010,63:167-177.
pmid: 20409008
[20] Wahler D, Schauser L, Bendiek J, Grohmann L. Next-generation sequencing as a tool for detailed molecular characterization of genomic insertions and flanking regions in genetically modified plants: a pilot study using a rice event unauthorized in the EU. Food Anal Method, 2013,6:1718-1727.
[21] Park D, Kim D G, Jang G, Lim J S, Shin Y J, Kin J. Efficiency to discovery transgenic loci in GM rice using next generation sequencing whole genome-sequencing. Genome Inform, 2015,13:81-85.
[22] Park D, Park S H, Ban Y W, Kim Y S, Park K C, Kim N S. A bioinformatics approach for identifying transgene insertion sites using whole genome sequencing data. BMC Biotech, 2017,17:67.
[23] Guo B F, Guo Y, Hong H L, Qiu L J. Identification of genomic insertion and flanking sequence of G2-EPSPS and GAT transgenes in soybean using whole genome sequencing method. Front Plant Sci, 2016,7:1009.
pmid: 27462336
[24] Yang L, Wang C, Holst-Jensen A, Morisset D, Lin Y, Zhang D. Characterization of GM events by insert knowledge adapted re-sequencing approaches. Sci Rep, 2013,3:1-9.
[25] Siddique K, Wei J, Li R, Zhang D, Shi J. Identification of T-DNA insertion site and flanking sequence of a genetically modified maize event IE09S034 using next-generation sequencing technology. Mol Biotech, 2019,61:694-702.
[26] Dong Y, Jin X, Tang Q, Zhang X, Yang J, Liu X, Cai J, Zhang X, Wang X, Wang Z. Development and event-specific detection of transgenic glyphosate-resistant rice expressing theG2-EPSPS gene. Front Plant Sci, 2017,8:885.
doi: 10.3389/fpls.2017.00885 pmid: 28611804
[27] 董玉凤. 转G2-aroA基因抗草甘膦水稻的获得及G2-EPSPS蛋白拆分重组后的草甘膦抗性分析. 中国农业科学院博士学位论文, 北京, 2016.
Dong Y F. Development of Glyphosate-resistance Rice with G2-aroA and the Assessment of Reassembled G2-EPSPS after Splitted. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2016.
[28] Cade R, Burgin K, Schilling K, Lee T J, Ngam P, Devitt N, Fajardo D. Evaluation of whole genome sequencing and an insertion site characterization method for molecular characterization of GM maize. J Reg Sci, 2018,6:1-14.
[29] Lusk R W. Diverse and widespread contamination evident in the unmapped depths of high throughput sequencing data. PLoS One, 2014,9:e110808.
doi: 10.1371/journal.pone.0110808 pmid: 25354084
[1] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
[2] 董玉凤 王旭静 宋亚亚 靳 茜 王志兴. 利用基因拆分技术培育耐草甘膦转基因水稻的研究 [J]. 作物学报, 2019, 45(3): 344-353.
[3] 周露, 沈贝贝, 白苏阳, 刘喜, 江玲, 翟虎渠, 万建民. 以RNA干扰γ-氨基丁酸转氨酶1基因(OsGABA-T1)表达提高稻米γ-氨基丁酸(GABA)含量[J]. 作物学报, 2015, 41(09): 1305-1312.
[4] 王红梅,张昌泉,李钱峰,辛世文,刘巧泉,徐明良. 以谷蛋白GluA-2 信号肽增强外源蛋白在转基因水稻胚乳中的表达与积累[J]. 作物学报, 2015, 41(04): 524-530.
[5] 王光,吴智丹,张磊,刘凤权,邵敏. 水稻稻瘟病菌诱导表达启动子OsQ16p的克隆与功能分析[J]. 作物学报, 2012, 38(06): 980-987.
[6] 杨宙,陈浩,唐微,林拥军. 连续回交对消除农杆菌介导转化引起水稻体细胞变异的影响[J]. 作物学报, 2012, 38(05): 814-819.
[7] 张长伟, 凌英华, 桑贤春, 李平, 赵芳明, 杨正林, 李云峰, 方立魁, 何光华. 转苦瓜几丁质酶基因McCHIT1水稻及其稻瘟病抗性[J]. 作物学报, 2011, 37(11): 1991-2000.
[8] 冯静, 傅学乾, 王婷婷, 陶勇生, 高友军, 郑用琏. 全基因组分析玉米MuDR转座因子插入突变体库[J]. 作物学报, 2011, 37(05): 772-777.
[9] 张艳敏, 张红梅, 相金英, 郭秀林, 刘子会, 李国良, 陈受宜. BADH基因苜蓿T-DNA侧翼序列分析及转化事件特异性分析[J]. 作物学报, 2011, 37(03): 397-404.
[10] 周宝元, 丁在松, 赵明. PEPC过表达可以减轻干旱胁迫对水稻光合的抑制作用[J]. 作物学报, 2011, 37(01): 112-118.
[11] 王晓波,蒋凌雪,魏利,刘林,陆伟,李文欣,王俊,陶波,常汝镇,邱丽娟. 外源抗草膦EPSPs基因在大豆基因组中的整合与定位[J]. 作物学报, 2010, 36(3): 365-375.
[12] 于恒秀,刘巧泉,徐丽,陆美芳,蔡秀玲,龚志云,裔传灯,王宗阳,顾铭洪. 无抗性选择标记转基因软米和糯稻新品系的选育及中间试验[J]. 作物学报, 2009, 35(6): 967-973.
[13] 张小红;王春连;李桂芬;张晓科;梁云涛;孙亮庆;赵开军. Xa23基因水稻的白叶枯病抗性及其遗传分析[J]. 作物学报, 2008, 34(10): 1679-1687.
[14] 肖钢;张宏军;彭琪;官春云. 甘蓝型油菜油酸脱氢酶基因(fad2)多个拷贝的发现及分析[J]. 作物学报, 2008, 34(09): 1563-1568.
[15] 高方远;王宗阳;李浩杰;陆贤军;任光俊. 导入反义Wx基因改良杂交籼稻保持系直链淀粉含量[J]. 作物学报, 2005, 31(07): 876-881.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!