作物学报 ›› 2021, Vol. 47 ›› Issue (10): 1854-1862.doi: 10.3724/SP.J.1006.2021.04208
杨琴莉1(), 杨多凤1, 丁林云1, 赵汀2, 张军2, 梅欢2, 黄楚珺2, 高阳1, 叶莉1, 高梦涛1, 严孙艺2, 张天真1,2, 胡艳1,2,*()
YANG Qin-Li1(), YANG Duo-Feng1, DING Lin-Yun1, ZHANG Ting2, ZHANG Jun2, MEI Huan2, HUANG Chu-Jun2, GAO Yang1, YE Li1, GAO Meng-Tao1, YAN Sun-Yi2, ZHANG Tian-Zhen1,2, HU Yan1,2,*()
摘要:
棉花是世界性的重要经济作物, 是天然纤维的主要来源。棉花生殖生长过程现蕾、开花、结铃都直接影响棉花主要经济性状——棉纤维的产量和品质。本研究在转基因棉花材料中发现了1个花器官突变体, 命名为182-9, 其花器官呈现瓣化特征。PCR和Southern杂交证明突变体182-9中的外源基因已整合到基因组中, 且为单拷贝插入。通过基因组重测序进行序列比较发现, 突变体182-9基因组中外源T-DNA插入位点为染色体A11:59086840。PCR和Southern杂交对插入位点进行了进一步验证。根据棉花基因组注释结果, 在基因组插入位点附近有3个候选基因(GH_A11G2251、GH_A11G2252和GH_A11G2253)。其中GH_A11G2251为AP2类基因。已有研究证明, AP2类基因为花器官ABC模型中控制萼片和花瓣形成的A类功能基因。qRT-PCR结果显示, GH_A11G2251在转基因受体W0的花瓣、雌蕊和雄蕊3个组织中的表达与突变体182-9中存在显著性差异。本研究为进一步深入探究棉花花器官发育的分子机制研究提供了参考。
[1] |
Zhang J, Guo W Z, Zhang T Z. Molecular linkage map of allotetraploid cotton (Gossypium hirsutum L. × Gossypium barbadense L.) with a haploid population. Theor Appl Genet, 2002, 105:1166-1174.
pmid: 12582895 |
[2] | 陈良兵, 李永起. 棉花纤维发育的分子研究进展. 分子植物育种, 2004, 2:105-110. |
Chen L B, Li Y Q. The research progress on cotton fiber development at molecular level. Mol Plant Breed, 2004, 2:105-110 (in Chinese with English abstract). | |
[3] | Silva C S, Puranik S, Round A, Brennich M, Jourdain A, Parcy F, Hugouvieux V, Zubieta C. Evolution of the plant reproduction master regulators LFY and the MADS transcription factors: the role of protein structure in the evolutionary development of the flower. Front Plant Sci, 2016, 6:1193. |
[4] |
Kotilainen M, Elomaa P, Uimari A, Albert V A, Yu D Y, Teeri T H. GRCD1, an AGL2-like MADS box gene, participates in the C function during stamen development in Gerbera hybrida. Plant Cell, 2000, 12:1893-1902.
pmid: 11041884 |
[5] |
Theißen G. Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol, 2001, 4:75-85.
doi: 10.1016/S1369-5266(00)00139-4 |
[6] | 张云, 刘青林. 植物花发育的分子机理研究进展. 植物学通报, 2003, 20:589-601. |
Zhang Y, Liu Q Y. Proceedings on molecular mechanism of plant flower development. Chin Bull Bot, 2003, 20:589-601 (in Chinese with English abstract). | |
[7] |
Coen E S, Meyerowitz E M. The war of the whorls: genetic interactions controlling flower development. Nature, 1991, 353:31-37.
doi: 10.1038/353031a0 |
[8] |
Kaufmann K, Melzer R, Theißen G. MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene, 2005, 347:183-198.
pmid: 15777618 |
[9] | 王亚杰. 巴西橡胶树MADS-box基因家族的克隆、表达谱分析及功能验证. 海南大学硕士学位论文, 海南海口, 2017. |
Wang Y J. Molcular Cloning, Expression Profile and Functional Analysis of MADS-box Genes in Hevea brasiliensis. MS Thesis of Hainan University, Haikou, Hainan, China, 2017 (in Chinese with English abstract). | |
[10] |
Jiao Y, Wickett N J, Ayyampalayam S, Chanderbali A S, Landherr L, Ralph P E, Tomsho L P, Hu Y, Liang H, Soltis P S. Ancestral polyploidy in seed plants and angiosperms. Nature, 2011, 473:97-100.
doi: 10.1038/nature09916 |
[11] |
Ng M, Yanofsky M F. Function and evolution of the plant mads-box gene family. Nat Rev Genet, 2001, 2:186-195.
pmid: 11256070 |
[12] |
Elliott R C, Betzner A S, Huttner E, Oakes M P, Tucker W Q J, Gerentes D, Perez P, Smyth D R. AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell, 1996, 8:155-168.
pmid: 8742707 |
[13] |
Klucher K M, Chow H, Reiser L, Fischer R L. The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. Plant Cell, 1996, 8:137-153.
pmid: 8742706 |
[14] |
Schmid M, Uhlenhaut N H, Godard F, Demar M, Bressan R, Weigel D, Lohmann J U. Dissection of floral induction pathways using global expression analysis. Development, 2003, 130:6001-6012.
doi: 10.1242/dev.00842 |
[15] |
Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, Galinha C, Nussaume L, Noh Y S, Amasino R, Scheres B. The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell, 2004, 119:109-120.
doi: 10.1016/j.cell.2004.09.018 |
[16] | Zhao Q, Wang T, Wei X D. Function of AP2 gene during floral organs development in higher plant: review. Chin J Trop Agric, 2005, 259:50-56. |
[17] |
Wang X Y, Fan S L, Song M Z, Pang C Y, Wei H L, Yu J W, Ma Q F, Yu S X, Fang D D. Upland cotton gene GhFPF1 confers promotion of flowering time and shade-avoidance responses in Arabidopsis thaliana. PLoS One, 2014, 9:e91869.
doi: 10.1371/journal.pone.0091869 |
[18] |
Zhang X H, Dou L L, Pang C Y, Song M Z, Yu S X. Genomic organization, differential expression, and functional analysis of the SPL gene family in Gossypium hirsutum. Mol Genet Genomics, 2015, 290:115-126.
doi: 10.1007/s00438-014-0901-x |
[19] |
Zhang X H, Wei J H, Fan S L, Song M Z, Pang C Y, Wei H L, Wang C S, Yu S Y. Functional characterization of GhSOC1 and GhMADS42 homologs from upland cotton(Gossypium hirsutum L.). Plant Sci, 2016, 242:178-186.
doi: 10.1016/j.plantsci.2015.05.001 |
[20] | 王力娜. 棉花MADS-box基因家族的克隆、表达谱分析及功能验证. 中国农业科学院硕士学位论文, 北京, 2010. |
Wang L N. Molecular Cloning, Expression Profile and Functional Analysis of MADS-Box Genes in Cotton. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2010 (in Chinese with English abstract). | |
[21] | 闻可心, 刘雪梅. AP2功能基因在植物花发育中的重要作用. 生物技术通报, 2010, (2):1-7. |
Wen K X, Liu X M. The important role of AP2 functional genes in plant floral developmen. Biotechnol Bull, 2010, (2):1-7 (in Chinese with English abstract). | |
[22] |
Irish V F. Floral development in Arabidopsis. Plant Physiol Biochem, 1998, 36:61-68.
doi: 10.1016/S0981-9428(98)80091-0 |
[23] |
Bomblies K, Dagenais N, Weigel D. Redundant enhancers mediate transcriptional repression of AGAMOUS by APETALA2. Dev Biol, 1999, 216:260-264.
pmid: 10588876 |
[24] |
Altschul S F, Madden T L, Schffer A A, Zhang J H, Zhang Z, Miller W, Lipman D J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 1997, 25:3389-3402.
pmid: 9254694 |
[25] |
Pertea M, Kim D, Pertea G M, Leek J T, Salzberg S L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc, 2016, 11:1650.
doi: 10.1038/nprot.2016.095 |
[26] |
Lin D, Hong P, Zhang S H, Xu W Z, Jamal M, Yan K J, Lei Y Y, Li L, Ruan Y J, Fu Z F, Li G L, Cao G. Digestion-ligation-only Hi-C is an efficient and cost-effective method for chromosome conformation capture. Nat Genet, 2018, 50:754-763.
doi: 10.1038/s41588-018-0111-2 pmid: 29700467 |
[27] |
Huang C, Sun H Y, Xu D Y, Chen Q Y, Tian F. ZmCCT9 enhances maize adaptation to higher latitudes. Proc Natl Acad Sci USA, 2018, 115:E334-E341.
doi: 10.1073/pnas.1718058115 |
[1] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[2] | 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058. |
[3] | 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070. |
[4] | 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090. |
[5] | 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247. |
[6] | 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026. |
[7] | 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800. |
[8] | 杜晓芬, 王智兰, 韩康妮, 连世超, 李禹欣, 张林义, 王军. 谷子叶绿体基因RNA编辑位点的鉴定与分析[J]. 作物学报, 2022, 48(4): 873-885. |
[9] | 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552. |
[10] | 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395. |
[11] | 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409. |
[12] | 赵改会, 李书宇, 詹杰鹏, 李晏斌, 师家勤, 王新发, 王汉中. 甘蓝型油菜角果数突变体基因的定位及候选基因分析[J]. 作物学报, 2022, 48(1): 27-39. |
[13] | 王渭霞, 赖凤香, 胡海燕, 何佳春, 魏琪, 万品俊, 傅强. 超低温11年保存期对转基因作物基体标准样品核酸检测的影响[J]. 作物学报, 2022, 48(1): 238-248. |
[14] | 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62. |
[15] | 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120. |
|