欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (10): 1891-1902.doi: 10.3724/SP.J.1006.2021.01078

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦穗发芽性状的全基因组关联分析

谢磊1,2(), 任毅1,2, 张新忠1,3, 王继庆1,2, 张志辉1,2, 石书兵1,2, 耿洪伟1,2,*()   

  1. 1新疆农业大学农学院, 新疆乌鲁木齐 830052
    2新疆农业大学生物技术重点实验室, 新疆乌鲁木齐 830052
    3新疆农业科学院粮食作物研究所, 新疆乌鲁木齐 830091
  • 收稿日期:2020-10-04 接受日期:2021-01-13 出版日期:2021-10-12 网络出版日期:2021-02-24
  • 通讯作者: 耿洪伟
  • 作者简介:E-mail: 1784462634@qq.com
  • 基金资助:
    国家自然科学基金项目(31771786);新疆维吾尔自治区科技创新基地建设项目(PT1910)

Genome-wide association study of pre-harvest sprouting traits in wheat

XIE Lei1,2(), REN Yi1,2, ZHANG Xin-Zhong1,3, WANG Ji-Qing1,2, ZHANG Zhi-Hui1,2, SHI Shu-Bing1,2, GENG Hong-Wei1,2,*()   

  1. 1Agricultural College of Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
    2Key Laboratory of Biotechnology, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
    3Institute of Grain Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, Xinjiang, China
  • Received:2020-10-04 Accepted:2021-01-13 Published:2021-10-12 Published online:2021-02-24
  • Contact: GENG Hong-Wei
  • Supported by:
    National Natural Science Foundation of China(31771786);Technical Innovation Bases Construction Project of Xinjiang Uygur Autonomous Region(PT1910)

摘要:

为了解小麦穗发芽的遗传机制, 发掘与小麦穗发芽相关的候选基因, 采用整穗发芽法对来自全国的207份小麦品种(系)进行表型鉴定, 并结合小麦90K SNP基因芯片, 通过TASSLE软件的MLM (Q+K)模型对小麦的整穗发芽率进行全基因组关联分析(genome-wide association study, GWAS)。研究结果表明, 不同年份间小麦品种(系)的穗发芽表现出丰富的表型变异, 变异系数为0.34和0.25, 多态性信息含量(polymorphic information content, PIC)为0.01~0.38, 全基因组LD衰减距离为3 Mb。群体结构分析和主成分分析表明, 207份小麦品种(系)所构成的自然群体结构简单, 可分为3个亚群。GWAS检测结果显示, 在不同环境间共检测到34个与小麦穗发芽显著关联的SNP标记位点(P≤0.001), 分布在小麦3A、3B、4A、4B、5D、6A、6B、6D、7B和7D染色体上, 单个位点可解释5.55%~11.63%的表型变异, 16个标记位点在两个及以上环境下均被检测到, 其中6B染色体上的标记wsnp_Ex_c14101_22012676在E1、E2及平均环境下被共同检测到, 属稳定遗传的位点。通过对表型效应值大且稳定遗传的关联位点进行挖掘, 共筛选到13个与小麦穗发芽相关的候选基因。其中TraesCS3A01G589400LCTraesCS6B01G138600/ TraeCS6B01G516 700LC/TraesCS6B01G548900LC、TraesCS6D01G103600TraesCS7B01G200100等基因通过调控植物内源激素-脱落酸(abscisic acid, ABA)的灵敏性进而影响种子的休眠; TraesCS3B01G415900LC、TraesCS6A01G144700LCTraesCS6B01G294800等基因编码的F-box蛋白在植物激素的信号转导、光信号转导以及花器官发育等生理过程中起重要作用; TraesCS6A01G108800、TraesCS6B01G138200/TraesCS6B01G293700基因编码Myb转录因子家族蛋白能调控种子中类黄酮的生物合成, 对籽粒颜色有重要影响, 这些候选基因是与小麦穗发芽相关的重要基因。

关键词: 小麦, 穗发芽, 全基因组关联分析, SNP, 候选基因

Abstract:

To understand the genetic mechanism of wheat pre-harvest sprouting (PHS) in wheat breeding, it is significant to explore marker loci and candidate genes associated with PHS resistance using intact spikes. In this study, a total of 207 wheat varieties (lines) from China and 16,686 SNP markers were analyzed in wheat whole genome. The mixed liner model (Q + K) was used to analyze PHS phenotypic data in three environments. Genome-wide association study showed that there were abundant phenotypic variations in different environments and wheat varieties (lines). The coefficient of variation was 0.34 and 0.25, the polymorphic information content of value (PIC) was from 0.01 to 0.38, and the attenuation distance of whole genome LD was 3 Mb. The population structure and principal component analysis revealed that 207 wheat varieties (lines) could be divided into three subgroups. GWAS results indicated that 34 SNP markers were detected, which were significantly associated with pre-harvest sprouting at P < 0.001. They were located on chromosomes 3A, 3B, 4A, 4B, 5D, 6A, 6B, 6D, 7B, and 7D, and each explained 5.55%-11.63% of phenotypic variation. There were 16 markers loci detected in more than two environments, and the marker Np_Ex_c14101_22,012,676 on 6B chromosome detected in E1, E2, and average environment. Meanwhile, 13 candidate genes were screened out by mining association loci with large phenotypic effect value and stable inheritance. TraesCS3A01G589400LC, TraesCS6B01G138600/TraesCS6B01G516700LC/TraesCS6B01G548900LC, TraesCS6D01G103600, and TraesCS7B01G200100 could affect seed dormancy by regulating the sensitivity of endogenous ABA in plants. The F-box proteins were encoded by TraesCS3B01G415900LC, TraesCS6A01G144700LC, and TraesCS6B01G294800, which played major roles in plant hormone signal transduction, light signal transduction, and flower organ development. TraesCS6A01G108800, TraesCS6B01G138200/ TraesCS6B01G293700 encoded Myb transcription factor family. These candidate genes are important genes related to wheat sprouting.

Key words: wheat, pre-harvest sprouting, genome-wide association analysis, SNP, candidate gene

图1

部分供试材料的整穗发芽图 A: 京冬8号; B: 淮麦20号; C: 郑麦2号。"

图2

207份材料在2个环境下的整穗发芽率变异 SR: 整穗发芽率。"

表1

207份自然群体小麦穗发芽方差分析"

变异来源
Source of variance
自由度
DF
平方和
SS
均方
MS
F
F-value
P
P-value
遗传力
h2
基因型Genotype (G) 206 95,102,272.00 312,836.40 540.38 0.00001 0.60
环境Environment (E) 1 756,525,632.00 378,262,816.00 653,396.18 0.00001
基因型×环境G×E 443 94,041,216.00 212,282.65 366.68 0.00001
误差Error 747 432,451.71 578.91
总变异Total 1397 946,109,312.00

表2

标记的分布及多态性"

染色体
Chromosome
标记数目
No. of markers
染色体长度
Chromosome length (Mb)
标记密度
Density of marker
多态信息量 PIC
平均值Mean 变异范围Range
1A 1263 592.38 0.47 0.27 0.01-0.38
2A 1145 780.46 0.68 0.24 0.01-0.38
3A 891 749.46 0.84 0.25 0.01-0.38
4A 708 741.73 1.05 0.25 0.01-0.38
5A 960 709.43 0.74 0.28 0.01-0.38
6A 1006 617.40 0.61 0.27 0.03-0.38
7A 1172 736.44 0.63 0.25 0.01-0.38
1B 1292 688.60 0.53 0.27 0.01-0.38
2B 1291 799.62 0.62 0.26 0.01-0.38
3B 1087 829.32 0.76 0.27 0.01-0.38
4B 571 672.56 1.18 0.26 0.01-0.38
5B 1156 712.82 0.62 0.28 0.01-0.38
6B 1085 720.82 0.66 0.25 0.01-0.38
7B 861 750.49 0.87 0.26 0.02-0.38
1D 568 495.14 0.87 0.13 0.01-0.38
2D 482 650.94 1.35 0.25 0.02-0.38
3D 232 613.92 2.65 0.24 0.01-0.38
4D 99 508.58 5.14 0.25 0.08-0.38
5D 240 563.41 2.35 0.26 0.02-0.38
6D 319 472.61 1.48 0.25 0.03-0.38
7D 260 637.17 2.45 0.23 0.01-0.38
A染色体组 Total genome A 7145 4927.30 0.72 0.26 0.01-0.38
B染色体组 Total genome B 7343 5174.23 0.75 0.27 0.01-0.38
D染色体组 Total genome D 2198 3941.77 2.33 0.23 0.01-0.38
总计Total 16686 14043.30 1.27 0.25 0.01-0.38

图3

207份小麦品种(系)群体结构分析"

图4

不同环境中穗发芽的曼哈顿图和Q-Q图 E1: 2017-2018年, 玛纳斯; E2: 2018-2019年, 玛纳斯; E3: 平均环境。"

表3

小麦穗发芽显著关联位点信息"

标记
Marker
染色体
Chr.
位置
Position (Mb)
MLM 环境
Environment
已报道的QTL/标记/基因Known QTL/marker/gene
P
P-value
贡献率
R2 (%)
Kukri_c8465_54 3A 684.04-685.36 2.35E-04-9.14E-04 5.55-8.75 E2/E3 TaVp-1[32]
Kukri_c9259_421 4A 673.07 5.95E-04 6.34 E2 IWB23723[23]
RAC875_rep_c107892_142 6A 77.78 2.56E-05-9.28E-05 8.04-9.25 E1/E3
Kukri_c5744_92 6A 483.90 2.78E-05-7.41E-04 8.34-9.25 E1/E3
RAC875_c43536_193 6A 490.50 3.03E-04 6.94 E1
IAAV8536 3B 422.52 6.78E-05 9.81 E1 TaDFR[33]
Tdurum_contig60051_838 4B 644.68 7.10E-04 9.42 E2 Xwmc349[34]
CAP11_c2542_147 6B 24.92 7.71E-05-3.83E-04 6.71-8.29 E1/E3 TaCYP707A1[35]
Kukri_c33668_877 6B 119.53 4.55E-04-5.32E-04 6.05-6.16 E2/E3 AX-108844376[24]
GENE-3171_203 6B 135.11-138.65 2.15E-05-5.50E-04 6.09-9.71 E1/E3
BS00069412_51 6B 143.20 9.03E-04 5.64 E1
Excalibur_c18382_760 6B 151.13 9.24E-04 5.60 E3
wsnp_Ku_c2614_4970880 6B 226.87 8.44E-04 5.59 E3
Tdurum_contig13698_141 6B 475.73 7.54E-04 5.70 E3
RFL_Contig6050_941 6B 481.47-481.86 3.10E-06-1.63E-04 8.83-11.63 E1/E3
wsnp_Ex_c3640_6644345 6B 485.54 2.36E-05-1.08E-04 8.21-11.04 E1/E3 IWB2831[24]
wsnp_Ex_c14101_22012676 6B 492.02 2.26E-06-6.77E-04 5.86-11.61 E1/E2/E3
wsnp_Ex_c6143_10747643 6B 516.08-519.15 1.30E-05-1.65E-04 8.30-10.65 E1/E3
Kukri_c16568_287 6B 522.49 4.81E-05-1.69E-04 7.21-8.45 E1/E3
Excalibur_c7785_123 6B 526.48-528.92 1.19E-056.21E-04 5.94-10.02 E1/E3
Excalibur_c11245_880 6B 530.57 2.79E-04-5.34E-04 6.06-6.83 E1/E3
wsnp_Ex_c3990_7223090 6B 577.48 1.67E-05-6.19E-05 8.45-9.95 E1/E3 Qphs.ahau-6B[36]
RAC875_c57261_265 6B 609.38 6.10E-04-6.34E-04 5.99-6.02 E1
标记
Marker
染色体
Chr.
位置
Position (Mb)
MLM 环境
Environment
已报道的QTL/标记/基因Known QTL/marker/gene
P
P-value
贡献率
R2 (%)
RAC875_rep_c117796_352 6B 632.97 5.23E-04-5.35E-04 6.19-6.21 E3
wsnp_CV776265A_Ta_2_1 6B 651.01-652.00 1.21E-04-7.21E-04 5.78-7.51 E1/E3
BS00023032_51 6B 664.38 8.28E-04 5.90 E3
IAE36519 6B 701.98-704.04 7.44E-04-9.92E-04 5.87-6.09 E2
wsnp_Ku_c18780_28136150 7B 223.61 8.12E-05 10.12 E2
Excalibur_c25719_238 7B 363.24 3.92E-05-3.24E-04 6.64-8.89 E2/E3
RAC875_c4834_694 7B 613.38 7.14E-04 5.87 E2 Dorm-1[37]
BobWhite_c8092_726 5D 246.30 4.94E-04 6.22 E3
wsnp_Ex_c1249_2399894 6D 67.39-68.10 8.81E-04-9.23E-04 5.72-5.78 E1
D_wsnpbe403818_Contig1_1 6D 389.70 6.71E-04 5.79 E3
D_contig10382_335 7D 23.50-55.42 7.24E-04-9.41E-04 5.70-6.15 E2 MST101[37]

表4

候选基因信息"

位点
Marker
染色体
Chr.
物理位置
Position (Mb)
基因
Gene
基因注释或编码蛋白
Gene annotation or coding protein
Kukri_c8465_54 3A 684.76 TraesCS3A01G589400LC Zinc finger MYM-type-like protein
IAAV8536 3B 421.53 TraesCS3B01G415900LC F-box protein
RAC875_rep_c107892_142 6A 77.61 TraesCS6A01G144700LC F-box family protein
6A 77.54 TraesCS6A01G108800 Myb-like transcription factor family protein
GENE-3171_203 6B 135.71 TraesCS6B01G138200 Myb family transcription factor-like
6B 135.94 TraesCS6B01G138600 RING/U-box superfamily protein
RFL_Contig6050_941 6B 481.79 TraesCS6B01G511400LC Anaerobic nitric oxide reductase transcription regulator NorR
wsnp_Ex_c14101_22012676 6B 491.55 TraesCS6B01G516700LC Zinc finger (C3HC4-type RING finger) family protein
Excalibur_c7785_123 6B 528.92 TraesCS6B01G294800 F-box protein
6B 527.93 TraesCS6B01G293700 Myb family transcription factor-like
6B 526.49 TraesCS6B01G548900LC Zinc finger MYM-type-like protein
Excalibur_c25719_238 7B 363.00 TraesCS7B01G200100 Zinc finger C-x8-C-x5-C-x3-H type family protein
wsnp_Ex_c1249_2399894 6D 67.39 TraesCS6D01G103600 Zinc finger BED domain-containing protein DAYSLEEPER
[1] Zhou Y, He Z H, Chen X M, Wang D S, Yan J, Xia X C. Genetic improvement of wheat yield potential in north China. In: Wheat Production in Stressed Environments. Berlin: Springer Netherlands, 2007. pp 583-589.
[2] Zheng T C, Zhang X K, Yin G H, Wang L N, Han Y L, Chen L. Genetic gains in grain yield, net photosynthesis and stomatal conductance achieved in Henan province of China between 1981 and 2008. Field Crops Res, 2011, 122:225-233.
doi: 10.1016/j.fcr.2011.03.015
[3] Xiao S H, Zhang X Y, Yan C S. Germplasm improvement for pre-harvest sprouting resistance in Chinese white-grained wheat: an overview of the current strategy. Euphytica, 2002, 126:35-38.
doi: 10.1023/A:1019679924173
[4] 于立河, 刘德福, 郭伟, 薛盈文, 曾玲玲, 张健, 侯海鹏. 收获期降雨对春小麦品质的影响. 麦类作物学报, 2007, 27:658-660.
Yu L H, Liu D F, Guo W, Xue Y W, Zeng L L, Zhang J, Hou H P. Effects of raining during harvest season on quality of spring wheat. J Triticeae Crops, 2007, 27:658-660 (in Chinese with English abstract).
[5] 苏东民, 魏雪芹. 发芽对小麦及面粉品质的影响. 粮食科技与经济, 2005, (6):39-41.
Su D M, Wei X Q. Effect of germination on quality of wheat and flour. Grain Sci Technol Econ, 2005, (6):39-41 (in Chinese with English abstract).
[6] Humphreys D G, Noll J. Methods for characterization of pre-harvest Sprouting resistance in a wheat breeding program. Euphytica, 2002, 126:61-65.
doi: 10.1023/A:1019671622356
[7] 王黎明, 李永霞, 高华利, 王春平, 王洪刚, 李兴锋. 小麦穗发芽基因等位变异及其区域分布研究. 西北植物学报, 2019, 39(1):52-58.
Wang L M, Li Y X, Gao H L, Wang C P, Wang H G, Li X L. Molecular identification and distribution of pre-harvest sprouting (PHS) genes in different common wheat regions of China. Acta Bot Boreali-Occident Sin, 2019, 39:52-58 (in Chinese with English abstract).
[8] King R W, Richards R A. Water uptake in relation to pre-harvest sprouting damage in wheat: ear characteristics. Aust J Agric Res, 1984, 2:55-63.
[9] Detje H. Effects of varying nitrogen rates on pre-harvest sprouting and α-amylase activity in cereals. J Agron Crop Sci, 1992, 169:38-45.
doi: 10.1111/j.1439-037X.1992.tb01183.x
[10] 杨燕, 张春利, 何中虎, 夏兰芹. 小麦抗穗发芽研究进展. 植物遗传资源学报, 2007, 8:503-509.
Yang Y, Zhang C L, He Z H, Xia L X. Advances on resistance to pre-harvest sprouting in wheat. J Plant Genet Resour, 2007, 8:503-509 (in Chinese with English abstract).
[11] 王志龙, 于亚雄, 王志伟, 程加省, 乔祥梅, 杨金华. 小麦穗发芽抗性鉴定及机制分析. 西南农业学报, 2016, 29:2513-2519.
Wang Z L, Yu Y X, Wang Z W, Cheng J S, Qiao X M, Yang J H. Resistance and mechanism of pre-harvest sprouting in wheat. Southwest China J Agric Sci, 2016, 29:2513-2519 (in Chinese with English abstract).
[12] 李玉营, 马东方, 王晓玲, 方正武. 小麦穗发芽鉴定方法的比较与分析. 广西植物, 2016, 36:245-248.
Li Y Y, Ma D F, Wang X L, Wang X L, Fang Z W. Comparison and analysis of wheat pre-harvest sprouting screening methods. Guihaia, 2016, 36:245-248 (in Chinese with English abstract).
[13] 朱玉磊, 王升星, 赵良侠, 张德新, 胡建帮, 曹雪连, 杨亚杰, 常成, 马传喜, 张海萍. 以关联分析发掘小麦整穗发芽抗性基因分子标记. 作物学报, 2014, 40:1725-1732.
Zhu Y L, Wang S X, Zhao L X, Zhang D X, Hu J B, Cao X L, Yang Y J, Chang C, Ma C X, Zhang H P. Exploring molecular markers of pre-harvest sprouting resistance gene using wheat intact spikes by association analysis. Acta Agron Sin, 2014, 40:1725-1732(in Chinese with English abstract).
[14] Munkvold J D, J, Tanaka J, Benscher D, Sorrells M E. Mapping quantitative trait loci for preharvest sprouting resistance in white wheat. Theor Appl Genet, 2009, 119:1223-1235.
doi: 10.1007/s00122-009-1123-1 pmid: 19669633
[15] Osa M, Kato K, Mori M, Shindo C, Torada A, Miura H. Mapping QTLs for seed dormancy and Vp1 homologue on chromosome 3A of wheat. Theor Appl Genet, 2003, 169:1491-1496.
[16] Somyong S, Ishikawa G, Munkvold J D, Tanaka J, Benscher D, Cho Y G. Fine mapping of a preharvest sprouting QTL interval on chromosome 2B in white wheat. Theor Appl Genet, 2014, 127:1843-1855.
doi: 10.1007/s00122-014-2345-4
[17] Tyagi S, Gupta P K. Meta-analysis of QTLs involved in pre-harvest sprouting tolerance and dormancy in bread wheat. TGG, 2012, 3:9-24.
[18] Lin M, Cai S, Wang S, Liu S, Zhang G, Bai G. Genotyping-by-sequencing (GBS) identified SNP tightly linked to QTL for pre-harvest sprouting resistance. Theor Appl Genet, 2015, 128:1385-1395.
doi: 10.1007/s00122-015-2513-1
[19] Liu S B, Cai S B, Robert G. Quantitative trait loci for resistance to pre-harvest sprouting in US hard white winter wheat. Theor Appl Genet, 2008, 117:691-699.
doi: 10.1007/s00122-008-0810-7
[20] Chen G F, Zhang H, Deng Z Y, Wu R G, Li D M, Wang M Y. Genome-wide association study for kernel weight-related traits using SNPs in a Chinese winter wheat population. Euphytica, 2016, 212:173-185.
doi: 10.1007/s10681-016-1750-y
[21] Kulwal P, Ishikawa G, Benscher D, Feng Z, Yu L X, Jadhav A. Association mapping for pre-harvest sprouting resistance in white winter wheat. Theor Appl Genet, 2012, 125:793-805.
doi: 10.1007/s00122-012-1872-0 pmid: 22547141
[22] Jaiswal V, Mir R R, Mohan A, Balyan H S, Gupta P K. Association mapping for pre-harvest sprouting tolerance in common wheat (Triticum aestivum L.). Euphytica, 2012, 188:89-102.
doi: 10.1007/s10681-012-0713-1
[23] Lin M, Zhang D, Liu S, Zhang G, Yu J, Fritz A K. Genome-wide association analysis on pre-harvest sprouting resistance and grain color in U.S. winter wheat. BMC Genome, 2016, 17:794-801.
doi: 10.1186/s12864-016-3148-6
[24] Zhu Y L, Wang S, Wei W, Xie H, Liu K, Zhang C, Wu Z, Jiang H, Cao J, Zhao L, Lu J, Zhang H, Chang C, Xia X, Xiao S, Ma C. Genome-wide association study of pre-harvest sprouting tolerance using a 90K SNP array in common wheat (Triticum aestivum L.). Theor Appl Genet, 2019, 132:2947-2963.
doi: 10.1007/s00122-019-03398-x
[25] Zuo J H, Lin C T, Cao H, Chen F Y, Liu Y X, Liu J D. Genome-wide association study and quantitative trait loci mapping of seed dormancy in common wheat (Triticum aestivum L.). Planta, 2019, 250:187-198.
doi: 10.1007/s00425-019-03164-9
[26] Groos C, Gay G, Perretant R M. Study of the relationship between pre-harvest sprouting and grain color by quantitative trait loci analysis in a white red grain bread-wheat cross. Theor Appl Genet, 2002, 104:39-47.
pmid: 12579426
[27] Meng L, Li H, Zhang L, Wang J. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 3:269-283.
doi: 10.1016/j.cj.2015.01.001
[28] Wang S X, Zhu Y L, Zhang D X. Genome-wide association study for grain yield and related traits in elite wheat varieties and advanced lines using SNP markers. PLoS One, 2017, 12:1-14.
[29] Zhu C S, Gore M, Buckler E S, Yu J M. Status and prospects of association mapping in plants. Plant Genome, 2008, 1:5-20.
[30] Yu J M, Pressoir G, Briggs W H, Irie V, Yamasaki M, Doebley J F, McMullen M D, Gaut B S, Nielsen D M. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet, 2006, 38:203-208.
doi: 10.1038/ng1702
[31] Marco M, Walid E F, Ghasemali N, Silvio S, Canè M A, Chiara C M. Prioritizing quantitative trait loci for root system architecture in tetraploid wheat. J Exp Bot, 2016, 67:1161-1178.
doi: 10.1093/jxb/erw039
[32] Yang Y, Zhao X L, Xia L Q, Chen X M, Xia X C, He Z H. Development and validation of a viviparous-1, STS marker for pre-harvest sprouting tolerance in Chinese wheats. Theoret Appl Genet, 2007, 115:971-980.
doi: 10.1007/s00122-007-0624-z
[33] Bi H H, Sun Y W, Xiao Y G, Xia L Q. Characterization of DFR allelic variations and their associations with pre-harvest sprouting resistance in a set of red-grained Chinese wheat germplasm. Euphytica, 2014, 195:197-207.
doi: 10.1007/s10681-013-0986-z
[34] Rasul G, Humphreys D G, Brûlé-Babel A, McCartney C A, Knox R E, Depauw R M. Mapping QTLs for pre-harvest sprouting traits in the spring wheat cross ‘RL4452/AC Domain’. Euphytica, 2009, 168:363-378.
doi: 10.1007/s10681-009-9934-3
[35] Zhang C L, He X Y, He Z H, Wang L H, Xia X C. Cloning of Ta CYP707A1 gene that encodes ABA 8’-hydroxylase in common wheat(Triticum aestivum L.). Agric Sci China, 2009, 8:902-909.
doi: 10.1016/S1671-2927(08)60294-1
[36] Hucl P, Singh R, Matus-Cádiz M A, Bga M, Ravindra N. Identification of genomic regions associated with seed dormancy in white-grained wheat. Euphytica, 2010, 174:391-408.
doi: 10.1007/s10681-010-0137-8
[37] Roy J K, Prasad M, Varshney R K, Balyan H S, Blake T K, Dhaliwal H S. Identifification of a microsatellite on chromosomes 6B and a STS on 7D of bread wheat showing an association with preharvest sprouting tolerance. Theor Appl Genet, 1999, 99:336-340.
doi: 10.1007/s001220051241
[38] Gao F, Ayele B T. Functional genomics of seed dormancy in wheat: advances and prospects. Front Plant Sci, 2014, 5:458-463.
[39] 刘莉, 王海庆, 陈志国. 小麦抗穗发芽研究进展. 作物杂志, 2013, (4):6-11.
Liu L, Wang H Q, Chen Z G. Advances on resistance to pre-harvest sprouting in wheat. Crops, 2013, (4):6-11 (in Chinese with English abstract).
[40] 朱冬梅, 张晓祥, 王玲, 方正武, 江伟, 张晓. 长江中下游麦区主要小麦品种穗发芽抗性及鉴定方法比较. 麦类作物学报, 2014, 34:944-949.
Zhu D M, Zhang X X, Wang L, Fang Z W, Jiang W, Zhang X. Resistance of pre-harvest sprouting of wheat cultivars planted in the valley of middle and lower reach of Yangtze River and comparison of the identification methods. J Triticeae Crops, 2014, 34:944-949 (in Chinese with English abstract).
[41] 苗西磊, 王德森, 夏兰芹, 张运宏, 王忠伟, 何中虎, 陈新民. 白粒小麦品种(系)穗发芽抗性机制分析. 麦类作物学报, 2011, 31:741-746.
Miao X L, Wang D S, Xia L X, Zhang H Y, Wang Z W, He Z H, Chen X M. Analysis on the mechanism of pre-harvest sprouting resistance in white-grain wheat. J Triticeae Crops, 2011, 31:741-746 (in Chinese with English abstract).
[42] Warner R L, Kudrna D A, Spaeth S C, Jones S S. Dormancy in white-grain mutants of Chinese spring wheat (Triticum aestivum L.). Seed Sci Res, 2000, 10:51-60.
doi: 10.1017/S0960258500000064
[43] Nielsen M T, McCrate A J, Heyne E G, Paulsen G M. Effect of weather variables during maturation on pre-harvest sprouting of hard white wheat. Crop Sci, 1984, 24:779-782.
doi: 10.2135/cropsci1984.0011183X002400040035x
[44] Osanai S I, Amano Y, Mares D. Development of highly sprouting tolerant wheat germplasm with reduced germination at low temperature. Euphytica, 2005, 143:301-307.
doi: 10.1007/s10681-005-7887-8
[45] Mares D J. Temperature dependence of germinability of wheat grain in relation to pre-harvest sprouting. Aust J Agric Res, 1984, 35:115-128.
doi: 10.1071/AR9840115
[46] Bailey P C, McKibbin R S, Lenton J R, Holdsworth M J, Flintham J E, Gale M D. Genetic map locations for orthologous Vp1 genes in wheat and rice. Theor Appl Genet, 1999, 98:281-284.
doi: 10.1007/s001220051069
[47] 王焕雪. 小麦穗发芽抗性基因的全基因组关联分析及等位变异发掘. 北京农学院硕士学位论文, 北京, 2019.
Wang H X. Genome Wide Association Analysis and Allelic Variation of Wheat Pre-Harvest Sprouting Resistance Genes. MS Thesis of Beijing University of Agriculture, Beijing, China, 2019 (in Chinese with English abstract).
[48] 张海萍, 常成, 肖世和. 小麦胚休眠中ABA信号转导的蛋白质组分析. 作物学报, 2006, 5:690-697.
Zhang H P, Chang C, Xiao S H. Proteomic analysis on abscisic acid signal transduction in embryo dormancy of wheat (Triticum aestivum L.). Acta Agron Sin, 2006, 5:690-697 (in Chinese with English abstract).
[49] 吴丹, 唐冬英, 李新梅, 李丽, 赵小英, 刘选明. F-box蛋白在植物生长发育中的功能研究进展. 生命科学研究, 2015, 19:362-367.
Wu D, Tang D Y, Li X M, Li L, Zhao X L, Liu X M. Research progress on the function of F-box protein in plant growth and development. Life Sci Res, 2015, 19:362-367 (in Chinese with English abstract).
[50] 张华. 外源一氧化氮促进小麦种子萌发及其信号作用机制研究. 南京农业大学硕士学位论文, 江苏南京, 2005.
Zhang H. Exogenous Nitric Oxide Promotes Wheat Seed Germination and Its Signaling Mechanism. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2005 (in Chinese with English abstract).
[51] Himi E, Maekawa M, Miura H, Noda K. Development of PCR markers for Tamyb10 related to R-1, red grain color gene in wheat. Theor Appl Genet, 2012, 122:1561-1576.
doi: 10.1007/s00122-011-1555-2
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[3] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[4] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[5] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[6] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[7] 刘丹, 周彩娥, 王晓婷, 吴启蒙, 张旭, 王琪琳, 曾庆东, 康振生, 韩德俊, 吴建辉. 利用集群分离分析结合高密度芯片快速定位小麦成株期抗条锈病基因YrC271[J]. 作物学报, 2022, 48(3): 553-564.
[8] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[9] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[10] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[11] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[12] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[13] 郑向华, 叶俊华, 程朝平, 魏兴华, 叶新福, 杨窑龙. 利用SNP标记进行水稻品种籼粳鉴定[J]. 作物学报, 2022, 48(2): 342-352.
[14] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[15] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!