欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (10): 2028-2035.doi: 10.3724/SP.J.1006.2021.02077

• 耕作栽培·生理生化 • 上一篇    下一篇

基于作物生长监测诊断仪的双季稻叶干重监测模型

李艳大1,*(), 曹中盛1, 舒时富1, 孙滨峰1, 叶春1, 黄俊宝1, 朱艳2, 田永超2   

  1. 1江西省农业科学院农业工程研究所 / 江西省智能农机装备工程研究中心 / 江西省农业信息化工程技术研究中心, 江西南昌 330200
    2南京农业大学 / 国家信息农业工程技术中心, 江苏南京 210095
  • 收稿日期:2020-11-16 接受日期:2021-01-13 出版日期:2021-10-12 网络出版日期:2021-02-19
  • 通讯作者: 李艳大
  • 基金资助:
    国家重点研发计划项目(2016YFD0300608);“万人计划”青年拔尖人才项目;国家自然科学基金项目(31260293);江西省科技计划项目(20182BCB22015);江西省科技计划项目(20202BBFL63044);江西省科技计划项目(20192BBF60052);江西省“双千计划”项目;江西省“远航工程”项目

Model for monitoring leaf dry weight of double cropping rice based on crop growth monitoring and diagnosis apparatus

LI Yan-Da1,*(), CAO Zhong-Sheng1, SHU Shi-Fu1, SUN Bin-Feng1, YE Chun1, HUANG Jun-Bao1, ZHU Yan2, TIAN Yong-Chao2   

  1. 1Institute of Agricultural Engineering, Jiangxi Academy of Agricultural Sciences / Jiangxi Province Engineering Research Center of Intelligent Agricultural Machinery Equipment / Jiangxi Province Engineering Research Center of Information Technology in Agriculture, Nanchang 330200, Jiangxi, China
    2Nanjing Agricultural University / National Engineering and Technology Center for Information Agriculture, Nanjing 210095, Jiangsu, China
  • Received:2020-11-16 Accepted:2021-01-13 Published:2021-10-12 Published online:2021-02-19
  • Contact: LI Yan-Da
  • Supported by:
    National Key Research and Development Program of China(2016YFD0300608);National Program for Support of Top-notch Young Professionals;National Natural Science Foundation of China(31260293);Jiangxi Science and Technology Program(20182BCB22015);Jiangxi Science and Technology Program(20202BBFL63044);Jiangxi Science and Technology Program(20192BBF60052);Jiangxi Province “Double Thousand Plan” Program;Jiangxi Voyage Project

摘要:

本文旨在验证作物生长监测诊断仪(crop growth monitoring and diagnosis apparatus, CGMD)监测双季稻长势指标的准确性, 建立基于CGMD的双季稻叶干重监测模型。通过实施8个不同早、晚稻品种和4个施氮水平的小区试验, 采用CGMD获取从分蘖期至灌浆期的冠层归一化植被指数(normalized difference vegetation index, NDVI)、差值植被指数(differential vegetation index, DVI)和比值植被指数(ratio vegetation index, RVI), 同步采用高光谱仪(analytical spectral devices field-spec handheld 2, ASD FH2)获取冠层光谱反射率计算NDVI、DVI和RVI; 分析2种光谱仪获取的植被指数间的相关关系, 验证CGMD的测量精度, 建立基于CGMD的叶干重监测模型, 并用独立试验数据对模型进行检验。结果表明: 早、晚稻叶干重随施氮水平的增加而增大, 随生育进程的推进呈“低—高—低”动态变化趋势; CGMD与ASD FH2获取的NDVI、DVI和RVI呈极显著相关, 相关系数(correlation coefficient, r)分别为0.9535~0.9972、0.9099~0.9948和0.9298~0.9926, 表明2种光谱仪获取的植被指数具有高度的一致性, CGMD可替代价格昂贵的ASD FH2获取NDVI、DVI和RVI。CGMD获取的3个植被指数相比, RVICGMD与叶干重的相关性最高; 基于RVICGMD的幂函数模型可准确地监测叶干重, 模型建立的决定系数(determination coefficient, R2)为0.8604~0.9216, 模型检验的均方根误差(root mean square error, RMSE)、相对均方根误差(relative root mean square error, RRMSE)和r分别为12.97~17.87 g m-2、4.88%~16.79%和0.9951~0.9992。与人工采样测定叶干重相比, 利用CGMD可实时准确地获取双季稻叶干重动态变化, 在双季稻长势精确诊断和丰产高效栽培中具有应用价值。

关键词: 双季稻, 叶干重, 作物生长监测诊断仪, 植被指数, 监测模型

Abstract:

The quantitative, convenient and non-destructive monitoring of leaf dry weight (LDW) is critical for precise management in double cropping rice production. The objective of this study is to verify the accuracy of crop growth monitoring and diagnosis apparatus (CGMD, a passive multi-spectral sensor containing 810 nm and 720 nm wavelengths) in monitoring growth index of double cropping rice, and establish the model for monitoring LDW of double cropping rice based on CGMD. Plot experiments were conducted in Jiangxi province in 2016 and 2017, including eight early and late rice cultivars and four nitrogen application rates. The normalized difference vegetation index (NDVI), differential vegetation index (DVI), and ratio vegetation index (RVI) were measured at tillering, jointing, booting, heading and filling stages with two spectrometers, CGMD and analytical spectral devices field-spec handheld 2 (ASD FH2, a passive hyper-spectral sensor containing 325 nm to 1075 nm wavelengths). In order to verify the measurement precision of CGMD, the correlation relationship of vegetation indices between CGMD and ASD FH2 was analyzed. The LDW monitoring models of double cropping rice were established based on CGMD from an experimental dataset and then validated using an independent dataset involving different early and late rice cultivars and nitrogen application rates. The results indicated that the LDW of early and late rice were increased with the increase of nitrogen application rate at different growth stages, and exhibited “low-high-low” dynamic variation trend with early and late rice development progress. The NDVI, DVI, and RVI from CGMD and ASD FH2 were significantly correlation. The correlation coefficient (r) of NDVI, DVI, and RVI from CGMD and ASD FH2 were 0.9535-0.9972, 0.9099-0.9948, and 0.9298-0.9926, respectively. This result indicated that there was highly consistent of vegetation indices from CGMD and ASD FH2, and the CGMD could replace expensive ASD FH2 to measure NDVI, DVI and RVI. Compared with the three vegetation indices based on CGMD, the correlation between RVICGMD and LDW was the highest. The power function model based on RVICGMD could accurate monitoring LDW with a determination coefficient (R2) in the range of 0.8604-0.9216, the root mean square error (RMSE), relative root mean square error (RRMSE), and r of model validation in the range of 12.97-17.87 g m-2, 4.88%-16.79%, and 0.9951-0.9992, respectively. Compared with the manual sampling measure LDW, CGMD method can timely and accurately measure the LDW dynamic variation of double cropping rice, which had a potential to be widely applied for growth precision diagnosis and high yield and high efficiency cultivation in double cropping rice production.

Key words: double cropping rice, leaf dry weight, crop growth monitoring and diagnosis apparatus, vegetation index, monitoring model

图1

不同生育期、施氮水平下的早、晚稻叶干重变化特征 TS: 分蘖期; JS: 拔节期; BS: 孕穗期; HS: 抽穗期; FS: 灌浆期。C1: 中嘉早17; C2: 潭两优83; C3: 天优华占; C4: 岳优9113。N0: 0 kg hm-2; N1: 早稻75 kg hm-2, 晚稻90 kg hm-2; N2: 早稻150 kg hm-2, 晚稻180 kg hm-2; N3: 早稻225 kg hm-2, 晚稻270 kg hm-2。"

表1

不同生育期早、晚稻CGMD植被指数与ASD FH2植被指数间的差异显著性概率P和相关关系"

作物
Crop
生育期
Growth stages
归一化植被指数 NDVI 差值植被指数 DVI 比值植被指数 RVI
差异显著性概率P 相关系数
r
差异显著性概率P 相关系数
r
差异显著性概率P 相关系数
r
早稻 分蘖期 Tillering stage 0.60 0.9675** 0.49 0.9099** 0.34 0.9298**
Early rice 拔节期 Jointing stage 0.55 0.9960** 0.61 0.9870** 0.42 0.9320**
孕穗期 Booting stage 0.46 0.9613** 0.87 0.9948** 0.54 0.9894**
抽穗期 Heading stage 0.54 0.9820** 0.69 0.9799** 0.38 0.9926**
灌浆期 Filling stage 0.48 0.9654** 0.50 0.9779** 0.58 0.9543**
晚稻 分蘖期 Tillering stage 0.91 0.9550** 0.30 0.9387** 0.93 0.9807**
Late rice 拔节期 Jointing stage 0.82 0.9972** 0.22 0.9750** 0.89 0.9703**
孕穗期 Booting stage 0.83 0.9535** 0.81 0.9772** 0.94 0.9899**
抽穗期 Heading stage 0.94 0.9711** 0.78 0.9751** 0.86 0.9438**
灌浆期 Filling stage 0.79 0.9880** 0.84 0.9732** 0.61 0.9823**

表2

基于CGMD植被指数的不同生育期早、晚稻叶干重监测模型"

植被指数
Vegetation index
生育期
Growth stages
早稻 Early rice 晚稻 Late rice
监测模型 Monitoring model 决定系数 R2 监测模型 Monitoring model 决定系数 R2
NDVICGMD 分蘖期 Tillering stage $\text{LDW}=\text{32}\text{.173}\times {{\text{e}}^{\text{5}\text{.8687}\times \text{NDV}{{\text{I}}_{\text{CGMD}}}}}$ 0.8304 $\text{LDW}=\text{54}\text{.595}\times {{\text{e}}^{\text{4}\text{.3443}\times \text{NDV}{{\text{I}}_{\text{CGMD}}}}}$ 0.8932
拔节期 Jointing stage $\text{LDW}=\text{46}\text{.779}\times {{\text{e}}^{\text{4}\text{.9717}\times \text{NDV}{{\text{I}}_{\text{CGMD}}}}}$ 0.8413 $\text{LDW}=\text{71}\text{.407}\times {{\text{e}}^{\text{4}\text{.4888}\times \text{NDV}{{\text{I}}_{\text{CGMD}}}}}$ 0.8451
孕穗期 Booting stage $\text{LDW}=\text{68}\text{.835}\times {{\text{e}}^{\text{3}\text{.9738}\times \text{NDV}{{\text{I}}_{\text{CGMD}}}}}$ 0.8291 $\text{LDW}=\text{69}\text{.912}\times {{\text{e}}^{\text{5}\text{.0304}\times \text{NDV}{{\text{I}}_{\text{CGMD}}}}}$ 0.8782
抽穗期 Heading stage $\text{LDW}=\text{65}\text{.956}\times {{\text{e}}^{\text{3}\text{.0992}\times \text{NDV}{{\text{I}}_{\text{CGMD}}}}}$ 0.8235 $\text{LDW}=\text{56}\text{.463}\times {{\text{e}}^{\text{5}\text{.7332}\times \text{NDV}{{\text{I}}_{\text{CGMD}}}}}$ 0.8775
灌浆期 Filling stage $\text{LDW}=\text{47}\text{.316}\times {{\text{e}}^{\text{4}\text{.5720}\times \text{NDV}{{\text{I}}_{\text{CGMD}}}}}$ 0.8465 $\text{LDW}=\text{61}\text{.509}\times {{\text{e}}^{\text{5}\text{.0302}\times \text{NDV}{{\text{I}}_{\text{CGMD}}}}}$ 0.8303
DVICGMD 分蘖期 Tillering stage LDW=1512.80×DVICGMD +38.511 0.8312 LDW=785.22×DVICGMD +61.521 0.8197
拔节期 Jointing stage LDW=867.63×DVICGMD +54.730 0.8178 LDW=912.36×DVICGMD +91.027 0.8162
孕穗期 Booting stage LDW=712.08×DVICGMD +94.664 0.8267 LDW=717.89×DVICGMD +114.750 0.8379
抽穗期 Heading stage LDW=546.71×DVICGMD +74.901 0.8190 LDW=755.20×DVICGMD +92.275 0.8230
灌浆期 Filling stage LDW=956.46×DVICGMD +37.730 0.8445 LDW=770.92×DVICGMD +77.178 0.8244
RVICGMD 分蘖期 Tillering stage LDW =39.217×RVICGMD1.9585 0.8697 LDW =50.006×RVICGMD2.1792 0.9216
拔节期 Jointing stage LDW =52.865×RVICGMD1.8850 0.8892 LDW =64.510×RVICGMD2.3807 0.9045
孕穗期 Booting stage LDW =70.446×RVICGMD1.4743 0.8758 LDW =66.149×RVICGMD2.2845 0.9118
抽穗期 Heading stage LDW =51.792×RVICGMD1.6805 0.8604 LDW =59.700×RVICGMD2.3213 0.8851
灌浆期 Filling stage LDW =41.993×RVICGMD2.4764 0.8793 LDW =56.741×RVICGMD2.6011 0.8854

图2

基于RVICGMD的早、晚稻叶干重观测值与预测值的比较 ER: 早稻; LR: 晚稻; 缩略词同图1。"

[1] 李艳大, 舒时富, 陈立才, 叶春, 黄俊宝, 孙滨峰, 王康军, 曹中盛. 基于便携式作物生长监测诊断仪的江西双季稻氮肥调控研究. 农业工程学报, 2019, 35(2):100-106.
Li Y D, Shu S F, Chen L C, Ye C, Huang J B, Sun B F, Wang K J, Cao Z S. Regulation of nitrogen fertilizer based on portable apparatus for crop growth monitoring and diagnosis in Jiangxi double cropping rice. Trans CSAE, 2019, 35(2):100-106 (in Chinese with English abstract).
[2] 黄庆海, 李大明, 柳开楼, 丁小满, 叶会财, 胡志华, 余喜初, 胡秋萍, 胡惠文, 徐小林. 江西水稻清洁生产理论与技术实践. 江西农业学报, 2020, 32(1):7-12.
Huang Q H, Li D M, Liu K L, Ding X M, Ye H C, Hu Z H, Yu X C, Hu Q P, Hu H W, Xu X L. Theory and technical practice of clean production in double-cropping rice in Jiangxi province. Acta Agric Jiangxi, 2020, 32(1):7-12 (in Chinese with English abstract).
[3] 吴芳, 李映雪, 张缘园, 张雪红, 邹晓晨. 基于机器学习算法的冬小麦不同生育时期生物量高光谱估算. 麦类作物学报, 2019, 39:217-224.
Wu F, Li Y X, Zhang Y Y, Zhang X H, Zou X C. Hyperspectral estimation of biomass of winter wheat at different growth stages based on machine learning algorithms. J Triticeae Crops, 2019, 39:217-224 (in Chinese with English abstract).
[4] 冯伟, 朱艳, 姚霞, 田永超, 曹卫星. 基于高光谱遥感的小麦叶干重和叶面积指数监测. 植物生态学报, 2009, 33:34-44.
doi: 10.3773/j.issn.1005-264x.2009.01.004
Feng W, Zhu Y, Yao X, Tian Y C, Cao W X. Monitoring leaf dry weight and leaf area index in wheat with hyperspectral remote sensing. J Plant Ecol, 2009, 33:34-44 (in Chinese with English abstract).
[5] 付元元, 王纪华, 杨贵军, 宋晓宇, 徐新刚, 冯海宽. 应用波段深度分析和偏最小二乘回归的冬小麦生物量高光谱估算. 光谱学与光谱分析, 2013, 33:1315-1319.
Fu Y Y, Wang J H, Yang G J, Song X Y, Xu X G, Feng H K. Band depth analysis and partial least square regression based winter wheat biomass estimation using hyperspectral measurements. Spect Spect Anal, 2013, 33:1315-1319 (in Chinese with English abstract).
[6] Walter J, Edwards J, McDonald G, Kuchel H. Photogrammetry for the estimation of wheat biomass and harvest index. Field Crops Res, 2018, 216:165-174.
doi: 10.1016/j.fcr.2017.11.024
[7] 马浚诚, 刘红杰, 郑飞翔, 杜克明, 张领先, 胡新, 孙忠富. 基于可见光图像和卷积神经网络的冬小麦苗期长势参数估算. 农业工程学报, 2019, 35(5):183-189.
Ma J C, Liu H J, Zheng F X, Du K M, Zhang L X, Hu X, Sun Z F. Estimating growth related traits of winter wheat at seedling stages based on RGB images and convolutional neural network. Trans CSAE, 2019, 35(5):183-189 (in Chinese with English abstract).
[8] Cheng T, Yang Z W, Inoue Y, Zhu Y, Cao W X. Preface: recent advances in remote sensing for crop growth monitoring. Remote Sens, 2016, 8:116.
doi: 10.3390/rs8020116
[9] Prey L, Schmidhalter U. Sensitivity of vegetation indices for estimating vegetative N status in winter wheat. Sensors, 2019, 19:3712.
doi: 10.3390/s19173712
[10] Zhang L Y, Zhang H H, Niu Y X, Han W T. Mapping maize water stress based on UAV multispectral remote sensing. Remote Sens, 2019, 11:605.
doi: 10.3390/rs11060605
[11] Shi Y, Huang W J, Luo J H, Huang L S, Zhou X F. Detection and discrimination of pests and diseases in winter wheat based on spectral indices and kernel discriminant analysis. Comput Electron Agric, 2017, 141:171-180.
doi: 10.1016/j.compag.2017.07.019
[12] Zhang K, Ge X K, Shen P C, Li W Y, Liu X J, Cao Q, Zhu Y, Cao W X, Tian Y C. Predicting rice grain yield based on dynamic changes in vegetation indexes during early to mid-growth stages. Remote Sens, 2019, 11:387.
doi: 10.3390/rs11040387
[13] 贺佳, 刘冰峰, 郭燕, 王来刚, 郑国清, 李军. 冬小麦生物量高光谱遥感监测模型研究. 植物营养与肥料学报, 2017, 23:313-323.
He J, Liu B F, Guo Y, Wang L G, Zheng G Q, Li J. Biomass estimation model of winter wheat (Triticum aestivum L.) using hyperspectral reflectances. J Plant Nutr Fert, 2017, 23:313-323 (in Chinese with English abstract).
[14] 韩康, 于静, 石晓华, 崔石新, 樊明寿. 不同光谱指数反演马铃薯叶片氮累积量的研究. 作物学报, 2020, 46:1979-1990.
Han K, Yu J, Shi X H, Cui S X, Fan M S. Inversion of nitrogen accumulation in potato leaf with different spectral indices. Acta Agron Sin, 2020, 46:1979-1990 (in Chinese with English abstract).
[15] Zou X B, Shi J Y, Hao L M, Zhao J W, Mao H P, Chen Z W, Li Y X, Holmes M. In vivo noninvasive detection of chlorophyll distribution in cucumber(Cucumis sativus) leaves by indices based on hyperspectral imaging. Anal Chim Acta, 2011, 706:105-112.
doi: 10.1016/j.aca.2011.08.026
[16] 高林, 杨贵军, 李长春, 冯海宽, 徐波, 王磊, 董锦绘, 付奎. 基于光谱特征与PLSR结合的叶面积指数拟合方法的无人机画幅高光谱遥感应用. 作物学报, 2017, 43:549-557.
Gao L, Yang G J, Li C C, Feng H K, Xu B, Wang L, Dong J H, Fu K. Application of an improved method in retrieving leaf area index combined spectral index with PLSR in hyperspectral data generated by unmanned aerial vehicle snapshot camera. Acta Agron Sin, 2017, 43:549-557 (in Chinese with English abstract).
[17] 郑文刚, 孙刚, 申长军, 黄文江, 周建军. 可见-近红外作物氮素光电测量仪开发. 农业工程学报, 2010, 26(3):178-182.
Zheng W G, Sun G, Shen C J, Huang W J, Zhou J J. Development of a visible-infrared photoelectric instrument for measuring crop nitrogen. Trans CSAE, 2010, 26(3):178-182 (in Chinese with English abstract).
[18] 李修华, 李民赞, 崔笛, 苗宇新. 基于双波段作物长势分析仪的东北水稻长势监测. 农业工程学报, 2011, 27(8):206-210.
Li X H, Li M Z, Cui D, Miao Y X. Monitoring of rice plant growth in Northeast China using dual-wavebands crop growth analyzer. Trans CSAE, 2011, 27(8):206-210 (in Chinese with English abstract).
[19] Klaus E, Bodo M, Urs S. Comparison of active and passive spectral sensors in discriminating biomass parameters and nitrogen status in wheat cultivars. Field Crops Res, 2011, 124:74-84.
doi: 10.1016/j.fcr.2011.06.007
[20] 倪军, 姚霞, 田永超, 曹卫星, 朱艳. 便携式作物生长监测诊断仪的设计与试验. 农业工程学报, 2013, 29(6):150-156.
Ni J, Yao X, Tian Y C, Cao W X, Zhu Y. Design and experiments of portable apparatus for plant growth monitoring and diagnosis. Trans CSAE, 2013, 29(6):150-156 (in Chinese with English abstract).
[21] Kipp S, Mistele B, Schmidhalter U. The performance of active spectral reflectance sensors as influenced by measuring distance, device temperature and light intensity. Comput Electron Agric, 2014, 100:24-33.
doi: 10.1016/j.compag.2013.10.007
[22] Chen Q C, Zhang Z L, Liu P F, Wang X M, Jiang F. Monitoring of growth parameters of sweet corn using CGMD302 spectrometer. Agric Sci Technol, 2015, 16:364-368.
[23] 贺佳, 郭燕, 王利军, 张彦, 赵犇, 王来刚. 基于作物生长监测诊断仪的玉米LAI监测模型研究. 农业机械学报, 2019, 50(12):187-194.
He J, Guo Y, Wang L J, Zhang Y, Zhao B, Wang L G. Monitor model of corn leaf area index based on CGMD-402. Trans CSAM, 2019, 50(12):187-194 (in Chinese with English abstract).
[24] 周晓楠, 黄正来, 张文静, 马尚宇. 基于双波段光谱仪CGMD-302 的小麦叶面积指数和叶干重监测. 中国农业大学学报, 2017, 22(1):102-111.
Zhou X N, Huang Z L, Zhang W J, Ma S Y. Monitoring leaf area index and leaf dry weight of winter wheat with dual-wavebands spectrometer CGMD-302. J China Agric Univ, 2017, 22(1):102-111 (in Chinese with English abstract).
[25] 陶惠林, 徐良骥, 冯海宽, 杨贵军, 苗梦珂, 林博文. 基于无人机高光谱长势指标的冬小麦长势监测. 农业机械学报, 2020, 51(2):180-191.
Tao H L, Xu L J, Feng H K, Yang G J, Miao M K, Lin B W. Monitoring of winter wheat growth based on UAV hyperspectral growth index. Trans CSAM, 2020, 51(2):180-191 (in Chinese with English abstract).
[26] He J Y, Zhang X B, Guo W T, Pan Y Y, Yao Y, Cheng T, Zhu Y, Cao W X, Tian Y C. Estimation of vertical leaf nitrogen distribution within a rice canopy based on hyperspectral data. Front Plant Sci, 2020, 10:1-15.
doi: 10.3389/fpls.2019.00001
[27] Guo B B, Zhu Y J, Feng W, He L, Wu Y P, Zhou Y, Ren X X, Ma Y. Remotely estimating aerial N uptake in winter wheat using red-edge area index from multi-angular hyperspectral data. Front Plant Sci, 2018, 9:1-14.
doi: 10.3389/fpls.2018.00001
[1] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[2] 刘磊, 廖萍, 邵华, 刘劲松, 杨星莲, 王静, 王海媛, 张俊, 曾勇军, 黄山. 施石灰和秸秆还田对双季稻田土壤钾素表观平衡的互作效应[J]. 作物学报, 2022, 48(1): 226-237.
[3] 田昌, 靳拓, 周旋, 黄思怡, 王英姿, 徐泽, 彭建伟, 荣湘民, 谢桂先. 控释尿素对环洞庭湖区双季稻吸氮特征和产量的影响[J]. 作物学报, 2021, 47(4): 691-700.
[4] 张帆, 杨茜. 大麦-双季稻轮作体系有机物料与化肥配施对大麦资源利用效率及产量的影响[J]. 作物学报, 2021, 47(12): 2522-2531.
[5] 吾木提·艾山江,买买提·沙吾提,陈水森,李丹. 基于GF-1/2卫星数据的冬小麦叶面积指数反演[J]. 作物学报, 2020, 46(5): 787-797.
[6] 李宗飞,苏继霞,费聪,李阳阳,刘宁宁,戴宇祥,张开祥,王开勇,樊华,陈兵. 基于高光谱数据的滴灌甜菜叶片全氮含量估算[J]. 作物学报, 2020, 46(4): 557-570.
[7] 韩康, 于静, 石晓华, 崔石新, 樊明寿. 不同光谱指数反演马铃薯叶片氮累积量的研究[J]. 作物学报, 2020, 46(12): 1979-1990.
[8] 廖萍,刘磊,何宇轩,唐刚,张俊,曾勇军,吴自明,黄山. 施石灰和秸秆还田对双季稻产量和氮素吸收的互作效应[J]. 作物学报, 2020, 46(01): 84-92.
[9] 李艳大,黄俊宝,叶春,舒时富,孙滨峰,陈立才,王康军,曹中盛. 不同氮素水平下双季稻株型与冠层内光截获特征研究[J]. 作物学报, 2019, 45(9): 1375-1385.
[10] 吴亚鹏,贺利,王洋洋,刘北城,王永华,郭天财,冯伟. 冬小麦生物量及氮积累量的植被指数动态模型研究[J]. 作物学报, 2019, 45(8): 1238-1249.
[11] 王利民,杨玲波,刘佳,杨福刚,姚保民. GF-1和MODIS影像冬小麦长势监测指标NDVI的对比[J]. 作物学报, 2018, 44(7): 1043-1054.
[12] 吕伟生,曾勇军,石庆华,潘晓华,黄山,商庆银,谭雪明,李木英,胡水秀,曾研华. 双季机插稻叶龄模式参数及高产品种特征[J]. 作物学报, 2018, 44(12): 1844-1857.
[13] 陈波,李军,花劲,霍中洋,张洪程,程飞虎,黄大山,陈忠平,陈恒,郭保卫,周年兵,舒鹏. 双季晚稻不同类型品种产量与主要品质性状的差异[J]. 作物学报, 2017, 43(08): 1216-1225.
[14] 高林,杨贵军,李长春,冯海宽,徐波,王磊,董锦绘,付奎. 基于光谱特征与PLSR结合的叶面积指数拟合方法的无人机画幅高光谱遥感应用[J]. 作物学报, 2017, 43(04): 549-557.
[15] 陈佳娜,曹放波,谢小兵,单双吕,高伟,李志斌,黄敏,邹应斌*. 机插条件下低氮密植栽培对“早晚兼用”双季稻产量和氮素吸收利用的影响[J]. 作物学报, 2016, 42(08): 1176-1187.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!