欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (11): 2184-2198.doi: 10.3724/SP.J.1006.2021.04240

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

烟草非特异性脂质转移蛋白基因家族的鉴定与分析

李鹏1(), 刘彻1, 宋皓1, 姚盼盼1, 苏沛霖1, 魏跃伟1, 杨永霞1,*(), 李青常2,*()   

  1. 1河南农业大学烟草学院, 河南郑州 450002
    2中国烟草总公司郑州烟草研究院, 河南郑州 450001
  • 收稿日期:2020-11-05 接受日期:2021-04-26 出版日期:2021-11-12 网络出版日期:2021-05-13
  • 通讯作者: 杨永霞,李青常
  • 作者简介:E-mail: lpeng1995@126.com
  • 基金资助:
    河南省科技攻关计划(农业领域)项目(182102110315);河南省科技攻关计划(农业领域)项目(192102110002);河南省科技攻关计划(农业领域)项目(192102110121);河南省大学生创新创业训练计划项目(S202010466013);河南农业大学本科实验室开放创新项目(KF1908)

Identification and analysis of non-specific lipid transfer protein family in tobacco

LI Peng1(), LIU Che1, SONG Hao1, YAO Pan-Pan1, SU Pei-Lin1, WEI Yao-Wei1, YANG Yong-Xia1,*(), LI Qing-Chang2,*()   

  1. 1Tobacco College, Henan Agricultural University, Zhengzhou 450002, Henan, China
    2Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, Henan, China
  • Received:2020-11-05 Accepted:2021-04-26 Published:2021-11-12 Published online:2021-05-13
  • Contact: YANG Yong-Xia,LI Qing-Chang
  • Supported by:
    Henan Province Science and Technology Research Plan (Agricultural Field) Project(182102110315);Henan Province Science and Technology Research Plan (Agricultural Field) Project(192102110002);Henan Province Science and Technology Research Plan (Agricultural Field) Project(192102110121);Henan University Student Innovation and Entrepreneurship Training Program(S202010466013);Open Innovation Project of Undergraduate Laboratory of Henan Agricultural University(KF1908)

摘要:

植物非特异性脂质转移蛋白(non-specific lipid transfer proteins, nsLTPs)可以在体外转移脂质, 调节植物的生长发育以及对环境非生物和生物胁迫作出反应等。本研究从烟草栽培品种K326 (Nicotiana tabacum L.)基因组中鉴定出74个nsLTPs基因, 对其系统发育关系、基因结构、保守基序、染色体定位、基因重复、启动子顺式作用元件、3D结构和激素与非生物胁迫处理下的表达模式进行了分析。结果表明, 根据8个半胱氨酸之间的间隔和序列相似性将其分为I、II、III、IV、V、VII、VIII和XIII八种类型, 相同类型的NtLTPs具有相似的内含子-外显子基因结构和保守基序模式, motif 2和motif 3是NtLTPs基因家族的特征基序。在进化过程中, 片段重复是NtLTPs基因家族扩展的主要原因, 干旱处理后的RNA-seq分析发现, 在进化过程中, 不同基因重复事件发生后功能分化模式存在差异。启动子分析表明, 它们含有多种光反应、激素和非生物胁迫响应顺式作用元件。进一步采用qRT-PCR分析发现, NtLTPs家族基因在烟草植株的不同组织和器官中具有不同的表达模式, 可以响应干旱、盐等非生物胁迫以及IAA、GA、SA等激素处理。研究结果为深入分析NtLTPs家族基因的功能提供了理论参考, 并为进一步的分子育种提供了理论基础。

关键词: 烟草, nsLTPs, 基因家族, 生物信息学, 基因表达

Abstract:

Plant non-specific lipid transfer proteins (nsLTPs) can transfer lipids in vitro, regulate plant growth and development, and respond to environmental abiotic and biotic stresses. In this study, 74 nsLTPs genes were identified from the genome of Nicotiana tabacum variety K326, and we analyzed multiple characteristics of these genes, including phylogeny, gene structures, conserved motifs, protein domains, chromosome locations, cis-elements in the promoter sequences, 3D structure, and the expression patterns under different hormones and abiotic stresses. The results revealed that nsLTPs in tobacco could be divided into eight types, including type I, II, III, IV, V, VII, VIII, and XIII, according to the interval and sequence similarity between the eight cysteines. The same types of NtLTPs had similar intron-exon patterns and conserved motifs, motif 2 and motif 3 were the characteristic motifs of NtLTPs family. In the process of evolution, fragment duplication dominated the expansion of the NtLTPs family. RNA-seq analysis after drought treatment revealed that the functional differentiation patterns of repeat gene pairs were diverse during evolution period. Promoter analysis showed that they contained a variety of cis-acting elements in response to light response, hormones, and abiotic stress. Furthermore, qRT-PCR demonstrated that NtLTPs family genes had different expression patterns in different tissues and organs of tobacco plants, which could respond to abiotic stresses such as drought, salt, and hormone treatments (IAA, GA, and SA etc.). These results provide a theoretical reference for the in-depth analysis of the functions of NtLTPs family genes and molecular breeding.

Key words: tobacco, nsLTPs, gene family, bioinformatics, gene expression

表1

引物列表"

引物名称Primer name 引物序列Primer sequence (5′-3′)
L25-F CCCCTCACCACAGAGTCTGC
L25-R AAGGGTGTTGTTGTCCTCAATCTT
Nitab4.5_0000125g0010-F CGGATCGCCGGAGTGTTTGC
Nitab4.5_0000125g0010-R GCCACATTTGCCAGGGAGGG
Nitab4.5_0004362g0040-F AAGCCGATTTGCGTTGTATG
Nitab4.5_0004362g0040-R CTTAGGCAGTTTCATAGCAG

表2

烟草nsLTPs八个半胱氨酸基序(ECM)的多样性"

类型
Type
数量
Number of members
ECM
I 38 C X9,24 C X12-16 CC X19,20,22 CXC X21-23 C X10-15,25 C
II 6 C X7 C X13 CC X8 CXC X23 C X6,10 C
III 1 C X9 C X14 CC X9 CXC X12 C X6 C
IV 10 C X9,10 C X14-16 CC X9,12 CXC X24 C X7-10 C
V 1 C X14 C X14 CC X11 CXC X24 C X10 C
VII 5 C X9 C X14,16 CC X12 CXC X25,27 C X9 C
VIII 7 C X6 C X12,14 CC X12 CXC X25,27 C X8 C
XIII 6 C X9 C X14 CC X12 CXC X26,30 C X8 C

图1

烟草nsLTPs蛋白的分子量和等电点的分布"

图2

烟草中nsLTPs家族的系统发育关系"

图3

烟草nsLTPs蛋白的保守基序(中间部分)和nsLTPs基因的基因结构(右侧部分)"

图4

烟草nsLTPs的保守半胱氨酸结构域"

图5

烟草nsLTPs基因在染色体上的分布"

图6

烟草中nsLTPs基因的基因重复"

图7

重复的NtLTPs基因之间的Ka和Ka/Ks值的频率分布"

图8

烟草中9个nsLTPs蛋白的3D结构"

图9

烟草nsLTPs启动子的顺式作用元件分析"

图10

干旱处理下烟草品种K326的差异基因热图 使用每个样本的FPKM数值log2标准化后绘制差异基因表达量热图。CK表示未进行干旱处理, D表示干旱处理, 均包含3个重复。红色和蓝色分别表示表达量高和低。"

图11

Nitab4.5_0000125g0010 (I型)和Nitab4.5_0004362g0040基因(IV型)在烟草不同组织中的表达水平 以根中的相对表达量作为对照, 红色和绿色表示相对表达量高和低。R: 根; ST: 茎; L: 下部叶; ML: 中部叶; UL: 上部叶; F: 花。"

图12

Nitab4.5_0000125g0010 (黑色)和Nitab4.5_ 0004362g0040基因(灰色)在不同处理下的表达模式 用2-Δ∆CT方法计算相对基因表达量。将0 h的相对表达量设置为1。误差线表示3个生物学重复的标准偏差。37℃: 高温处理; NaCl: 盐处理; Mannitol: 甘露醇处理; GA: 赤霉素处理; IAA: 生长素处理; MeJA: 茉莉酸甲酯处理; ABA: 脱落酸处理; SA: 水杨酸处理。*表示在0.05水平上差异显著。"

[1] Carvalho A O, Gomes V M. Role of plant lipid transfer proteins in plant cell physiology-a concise review. Peptides, 2007, 28: 1144-1153.
doi: 10.1016/j.peptides.2007.03.004
[2] Liu F, Zhang X, Lu C, Zeng X, Li Y, Fu D, Wu G. Non-specific lipid transfer proteins in plants: presenting new advances and an integrated functional analysis. J Exp Bot, 2015, 66: 5663-5681.
doi: 10.1093/jxb/erv313
[3] Jose-Estanyol M, Gomis-Ruth F X, Puigdomenech P. The eight-cysteine motif, a versatile structure in plant proteins. Plant Physiol Biochem, 2004, 42: 355-365.
doi: 10.1016/j.plaphy.2004.03.009
[4] Kader J C. Lipid-transfer proteins in plants. Annu Rev Plant Biol, 1996, 47: 627-654.
[5] Boutrot F, Chantret N, Gautier M F. Genome-wide analysis of the rice and Arabidopsis non-specific lipid transfer protein (nsLtp) gene families and identification of wheat nsLtp genes by EST data mining. BMC Genomics, 2008, 9: 86-108.
doi: 10.1186/1471-2164-9-86 pmid: 18291034
[6] Liu W, Huang D, Liu K, Hu S, Yu J, Gao G, Song S. Discovery, Identification and comparative analysis of non-specific lipid transfer protein (nsLtp) family in Solanaceae. Genom Proteom Bioinf, 2010, 8: 229-237.
doi: 10.1016/S1672-0229(10)60024-1
[7] D’Agostino N, Buonanno M, Ayoub J, Barone A, Monti S M, Rigano M M. Identification of non-specific lipid transfer protein gene family members in Solanum lycopersicum and insights into the features of Sola l 3 protein. Sci Rep (UK), 2019, 9: 1607.
doi: 10.1038/s41598-018-38301-z
[8] Li G, Hou M, Liu Y, Pei Y, Ye M, Zhou Y, Huang C, Zhao Y, Ma H. Genome-wide identification, characterization and expression analysis of the non-specific lipid transfer proteins in potato. BMC Genomics, 2019, 20: 375.
doi: 10.1186/s12864-019-5698-x
[9] Edstam M M, Viitanen L, Salminen T A, Edqvist J. Evolutionary history of the non-specific lipid transfer proteins. Mol Plant, 2011, 4: 947-964.
doi: 10.1093/mp/ssr019
[10] Fang Z W, He Y Q, Liu Y K, Jiang W Q, Song J H, Wang S P, Ma D F, Yin J L. Bioinformatic identification and analyses of the non-specific lipid transfer proteins in wheat. J Integr Agric, 2019, 18: 2-17.
[11] Wei K F, Zhong X J. Non-specific lipid transfer proteins in maize. BMC Plant Biol, 2014, 14: 281.
doi: 10.1186/s12870-014-0281-8
[12] Zhang M Y, Kim Y J, Zong J, Lin H, Dievart A, Li H J, Zhang D B, Liang W Q. Genome-wide analysis of the barley non-specific lipid transfer protein gene family. Crop J, 2019, 7: 65-76.
doi: 10.1016/j.cj.2018.07.009
[13] Chae K, Gonong B J, Kim S C, Kieslich C A, Morikis D, Balasubramanian S, Lord E M. A multifaceted study of stigma/style cysteine-rich adhesin (SCA)-like Arabidopsis lipid transfer proteins (LTPs) suggests diversified roles for these LTPs in plant growth and reproduction. J Exp Bot, 2010, 61: 4277-4290.
doi: 10.1093/jxb/erq228
[14] Maldonado A M, Doerner P, Dixon R A, Lamb C J, Cameron R K. A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature, 2002, 419: 399-403.
doi: 10.1038/nature00962
[15] Yeats T H, Rose J K. The biochemistry and biology of extracellular plant lipid-transfer proteins (LTPs). Protein Sci, 2008, 17: 191-198.
doi: 10.1110/ps.073300108
[16] Wang H, Sun Y, Chang J, Zheng F, Pei H, Yi Y, Chang C, Dong C H. Regulatory function of Arabidopsis lipid transfer protein 1 (LTP1) in ethylene response and signaling. Plant Mol Biol, 2016, 91: 471-484.
doi: 10.1007/s11103-016-0482-7
[17] Zaidi M A, O'Leary S J B, Gagnon C, Chabot D, Wu S, Hubbard K, Tran F, Sprott D, Hassan D, Vucurevich T. A triticale tapetal non-specific lipid transfer protein (nsLTP) is translocated to the pollen cell wall. Plant Cell Rep, 2020, 39: 1185-1197.
doi: 10.1007/s00299-020-02556-6
[18] Deng T, Yao H, Wang J, Wang J, Xue H, Zuo K. GhLTPG1, a cotton GPI-anchored lipid transfer protein, regulates the transport of phosphatidylinositol monophosphates and cotton fiber elongation. Sci Rep (UK), 2016, 6: 26829.
doi: 10.1038/srep26829
[19] Potocka I, Baldwin T C, Kurczynska E U. Distribution of lipid transfer protein 1 (LTP1) epitopes associated with morphogenic events during somatic embryogenesis of Arabidopsis thaliana. Plant Cell Rep, 2012, 31: 2031-2045.
doi: 10.1007/s00299-012-1314-0
[20] Finkina E I, Melnikova D N, Bogdanov I V, Ovchinnikova T V. Lipid transfer proteins as components of the plant innate immune system: structure, functions, and applications. Acta Nat, 2016, 8: 47-61.
[21] Gebhardt C, Vieths S, Gubesch M, Averbeck M, Simon J C, Treudler R. 10 kDa lipid transfer protein: the main allergenic structure in a German patient with anaphylaxis to blueberry. Allergy, 2009, 64: 498-499.
doi: 10.1111/j.1398-9995.2008.01923.x pmid: 19220224
[22] Guo L, Yang H, Zhang X, Yang S. Lipid transfer protein 3 as a target of MYB96 mediates freezing and drought stress in Arabidopsis. J Exp Bot, 2013, 64: 1755-1767.
doi: 10.1093/jxb/ert040
[23] McLaughlin J E, Bin-Umer M A, Widiez T, Finn D, McCormick S, Tumer N E. A lipid transfer protein increases the glutathione content and enhances Arabidopsis resistance to a trichothecene mycotoxin. PLoS One, 2015, 10: e0130204.
doi: 10.1371/journal.pone.0130204
[24] Patkar R N, Chattoo B B. Transgenic indica rice expressing ns-LTP-like protein shows enhanced resistance to both fungal and bacterial pathogens. Mol Breed, 2006, 17: 159-171.
doi: 10.1007/s11032-005-4736-3
[25] Wang X, Li Q, Cheng C, Zhang K, Lou Q, Li J, Chen J. Genome-wide analysis of a putative lipid transfer protein LTP_2 gene family reveals CsLTP_2 genes involved in response of cucumber against root-knot nematode (Meloidogyne incognita). Genome, 2020, 63: 225-238.
doi: 10.1139/gen-2019-0157
[26] Zhu X, Li Z, Xu H, Zhou M, Du L, Zhang Z. Overexpression of wheat lipid transfer protein gene TaLTP5 increases resistances to Cochliobolus sativus and Fusarium graminearum in transgenic wheat. Funct Integr Genom, 2012, 12: 481-488.
doi: 10.1007/s10142-012-0286-z
[27] Gaier S, Marsh J, Oberhuber C, Rigby N M, Shewry P R. Purification and structural stability of the peach allergens Pru p 1 and Pru p 3. Mol Nutr Food Res, 2008, 52: S220-229.
[28] Palacin A, Varela J, Quirce S, Pozo V D, Tordesillas L, Barranco P, Fernandez-Nieto M, Sastre J, Diaz-Perales A, Salcedo G. Recombinant lipid transfer protein Tri a 14: a novel heat and proteolytic resistant tool for the diagnosis of baker's asthma. Clin Exp Allergy, 2009, 39: 1267-1276.
doi: 10.1111/j.1365-2222.2009.03280.x pmid: 19486028
[29] Choi Y E, Lim S, Kim H J, Han J Y, Lee M H, Yang Y, Kim J A, Kim Y S. Tobacco NtLTP1, a glandular-specific lipid transfer protein, is required for lipid secretion from glandular trichomes. Plant J, 2012, 70: 480-491.
doi: 10.1111/tpj.2012.70.issue-3
[30] 徐扬. 非特异性脂转移蛋白NtLTP4作为正调控因子参与烟草对非生物和生物胁迫的响应. 山东农业大学博士学位论文, 山东泰安, 2018.
Xu Y. Non-specific Lipid Transfer Protein NtLTP4 as a Positive Regulator Involved in Abiotic and Biotic Stress in Nicotiana tabacum. PhD Dissertation of Shandong Agricultural University, Tai’an, Shandong, China, 2018 (in Chinese with English abstract).
[31] Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: 10.1016/j.molp.2020.06.009
[32] Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res, 2002, 30: 325-327.
doi: 10.1093/nar/30.1.325
[33] Cannon S B, Mitra A, Baumgarten A, Young N D, May G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol, 2004, 4: 10.
doi: 10.1186/1471-2229-4-10
[34] Wang L, Guo K, Li Y, Tu Y, Hu H, Wang B, Cui X, Peng L. Expression profiling and integrative analysis of the CESA/CSL superfamily in rice. BMC Plant Biol, 2010, 10: 282.
doi: 10.1186/1471-2229-10-282
[35] Yang Z, Bielawski J P. Statistical methods for detecting molecular. Trends Ecol Evol, 2000, 15: 496-203.
pmid: 11114436
[36] Douliez J P, Michon T, Elmorjani K, Marion D. Mini review: structure, biological and technological functions of lipid transfer proteins and indolines, the major lipid binding proteins from cereal kernels. J Cereal Sci, 2000, 32: 1-20.
doi: 10.1006/jcrs.2000.0315
[37] Deng W, Li R, Xu Y, Mao R, Chen S, Chen L, Chen L, Liu Y G, Chen Y. A lipid transfer protein variant with a mutant eight-cysteine motif causes photoperiod-and thermo-sensitive dwarfism in rice. J Exp Bot, 2020, 71: 1294-1305.
doi: 10.1093/jxb/erz500
[38] Li F, Fan K, Ma F, Yue E, Bibi N, Wang M, Shen H, Hasan M M, Wang X. Genomic identification and comparative expansion analysis of the non-specific lipid transfer protein gene family in Gossypium. Sci Rep(UK)), 2016, 6: 38948.
doi: 10.1038/srep38948
[39] Lynch M. Intron evolution as a population-genetic process. Proc Natl Acad Sci USA, 2002, 99: 6118-6123.
doi: 10.1073/pnas.092595699
[40] Mattick J S, Gagen M J. The evolution of controlled multitasked gene networks: the role of introns and other noncoding RNAs in the development of complex organisms. Mol Biol Evol, 2001, 18: 1611-1630.
pmid: 11504843
[41] Li J, Gao G, Xu K, Chen B, Yan G, Li F, Qiao J, Zhang T, Wu X. Genome-wide survey and expression analysis of the putative non-specific lipid transfer proteins in Brassica rapa L. PLoS One, 2014, 9: e84556.
doi: 10.1371/journal.pone.0084556
[42] Moore R C, Purugganan M D. The evolutionary dynamics of plant duplicate genes. Curr Opin Plant Biol, 2005, 8: 122-128.
doi: 10.1016/j.pbi.2004.12.001
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[3] 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190.
[4] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[5] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[6] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[7] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[8] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[9] 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258.
[10] 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98.
[11] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
[12] 宋天晓, 刘意, 饶莉萍, Soviguidi Deka Reine Judesse, 朱国鹏, 杨新笋. 甘薯细胞壁蔗糖转化酶基因IbCWIN家族成员鉴定及表达分析[J]. 作物学报, 2021, 47(7): 1297-1308.
[13] 黄宁, 惠乾龙, 方振名, 李姗姗, 凌辉, 阙友雄, 袁照年. 甘蔗β-胡萝卜素异构酶基因家族的鉴定、定位和表达分析[J]. 作物学报, 2021, 47(5): 882-893.
[14] 秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析[J]. 作物学报, 2021, 47(4): 780-786.
[15] 解盼, 刘蔚, 康郁, 华玮, 钱论文, 官春云, 何昕. 甘蓝型油菜CBF基因家族的鉴定和表达分析[J]. 作物学报, 2021, 47(12): 2394-2406.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!