欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (12): 2299-2313.doi: 10.3724/SP.J.1006.2021.14022

• 综述 •    下一篇

大豆种子颜色遗传调控机制研究进展

邱红梅1(), 陈亮1, 侯云龙1, 王新风1, 陈健1, 马晓萍1, 崔正果1, 张玲1, 胡金海1, 王跃强1,*(), 邱丽娟2,*()   

  1. 1吉林省农业科学院 / 大豆国家工程研究中心, 吉林长春 130033
    2中国农业科学院作物科学研究所 / 农作物基因资源与遗传改良国家重大科学工程, 北京 100081
  • 收稿日期:2021-01-24 接受日期:2021-05-17 出版日期:2021-12-12 网络出版日期:2021-05-26
  • 通讯作者: 王跃强,邱丽娟
  • 作者简介:E-mail: qhm2001-2005@163.com
  • 基金资助:
    “十三五”国家重点研发计划“七大农作物育种”重点专项(2016YFD01100201)

Research progress on genetic regulatory mechanism of seed color in soybean (Glycine max)

QIU Hong-Mei1(), CHEN Liang1, HOU Yun-Long1, WANG Xin-Feng1, CHEN Jian1, MA Xiao-Ping1, CUI Zheng-Guo1, ZHANG Ling1, HU Jin-Hai1, WANG Yue-Qiang1,*(), QIU Li-Juan2,*()   

  1. 1Jilin Academy of Agricultural Sciences / National Engineering Research Center for Soybean, Changchun 130033, Jilin, China
    2National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2021-01-24 Accepted:2021-05-17 Published:2021-12-12 Published online:2021-05-26
  • Contact: WANG Yue-Qiang,QIU Li-Juan
  • Supported by:
    National Key R&D Program for Crop Breeding(2016YFD01100201)

摘要:

大豆种子颜色是重要的形态标记和进化性状, 在驯化过程中种皮从黑色逐渐演变成黄、绿、褐及双色, 子叶从绿色进化出黄色。深色种子中含有较多的天然色素——花色素, 具有药用和营养价值。因此, 种子颜色的遗传调控机制研究对进化理论和实际应用均具有重要意义。种子中色素含量及组分构成导致多样的种皮颜色, 其分子调控机制复杂。本文主要阐述了控制大豆种子颜色的遗传位点、相关基因与调控机制、类黄酮生物合成途径三方面的研究进展。具体介绍了9个经典遗传位点IRTOW1K1GD1D2和相关分子标记, 以及位点间的相互作用; 23个调控种子颜色的相关基因, 与部分基因等位变异的调控机制; 相关基因参与的类黄酮生物合成途径和主要代谢产物的生理功能。通过综述归纳了大豆种皮、种脐、子叶颜色的遗传调控研究进展, 利用遗传位点、基因、等位基因调控机制及类黄酮代谢途径绘制出调控网路, 以期为种子外观品质及花色苷组分遗传改良等研究提供参考。

关键词: 大豆, 种子颜色, 遗传调控, 相关基因, 类黄酮生物合成途径

Abstract:

The color of soybean seeds is an important morphological marker and evolutionary trait. During the process of domestication, seed coat has gradually evolved from black to yellow, green, black, brown, and bicolor, and cotyledons has evolved from green to yellow. The dark seed coat contains anthocyanins, which are natural pigments with medicinal and nutritional values. Therefore, it is of great importance to study the genetic regulation mechanism of seed color for evolutionary theory, variety breeding, and practical application. The pigment content and composition of seeds result in diverse seed coat colors through complex molecular regulatory mechanisms. In this paper, we described the research progress on genetic loci, related genes, regulatory mechanisms, and flavonoid biosynthesis pathways that controlling the color of soybean seeds. Specifically, we introduced the 9 classical genetic loci I, R, T, O, W1, K1, G, D1, D2, and related molecular markers, as well as the interactions between the loci; 22 related genes that controlling seed color, and the regulatory mechanisms of some allelic variants; as well as the physiological functions of the flavonoid biosynthesis pathways and major metabolites involved in the related genes. The progress of researches on genetic regulation of the color of seed coat, seed hilum, and cotyledon in soybean was reviewed, in addition the regulatory network was mapped with genetic loci, genes, allelic regulatory mechanisms, and flavonoid metabolic pathways, in order to provide references for the quality of seed appearance and genetic improvement of anthocyanin components.

Key words: soybean, seed color, genetic regulation, related gene, flavonoid biosynthesis pathway

表1

控制种子颜色经典遗传位点信息"

遗传位点
Genetic locus
连锁群
Linkage group
染色体
Chromosome
控制性状
Character
等位
基因
Allele
表型
Phenotype
参考文献
Reference
I A2 8 种皮、种脐是否含有花色素
The seed coat and hilum were controlled to contain anthocyanins.
I 黄种皮黄脐
Fully yellow seed coat and hilum
Terao[9], Todd et al.[26]
ii 黄种皮黑脐
Yellow seed coat with black hilum
Terao[9], Tuteja et al.[27]
ik 鞍挂Black saddle Terao[9], Tuteja et al.[27]
i 黑种皮或褐种皮
Black or brown seed coat
Terao[9], Clough et al.[28]
R K 9 种皮为黑色或褐色
The seed coat was black or brown.
R 黑种皮Black seed coat Owen[10], Song et al.[29]
R* 黑种皮Black seed coat Zabala et al.[57]
r 褐种皮Brown seed coat Zabala et al.[57]
rm 虎斑Black spots or concentric rings of black pigment superimposed on an otherwise brown seed coat Zabala et al.[57]
T C2 6 种皮的着色程度及茸毛颜色
Control the pigmentation degree of seed coat and the color of trichomes.
T 深褐种皮、棕色茸毛
Dark brown seed coat, tawny trichomes
Owen[10], Zabala et al.[29,30]
t 褐种皮、灰色茸毛
Brown seed coat, gray trichomes
Owen[10], Zabala et al.[29,30]
tm 深褐和褐色种皮、棕和灰色茸毛
Dark brown and brown seed coat, tawny and gray trichomes
Zabala et al.[29,30]
O A2 8 种皮的褐色程度
Control the brown degree of seed coat.
O 褐种皮Brown seed coat Owen[10], Yang et al.[32]
o 红褐种皮Red-brown seed coat Owen[10], Yang et al.[32]
W1 G 13 种皮着色程度及花的颜色
Control the pigmentation degree of seed coat and the color of flowers.
W1 黑种皮、紫花
Black seed coat and purple flowers
Owen[10], Zabala et al.[33]
w1 浅褐种皮、白花
Buff seed coat and white flowers
Owen[10], Zabala et al.[33]
K1 B1 11 控制色素在鞍区的分布
Control the distribution of pigment in saddle region.
K1 黄种皮Yellow seed coat Cho et al.[34]
k1 鞍挂Black saddle Cho et al.[34]
G D1a 1 种皮、子叶是否含有叶绿素
The seed coat and cotyledon were controlled to contain chlorophyll.
G 绿种皮、绿子叶
Green seed coat and cotyledon
Owen[10], Song et al.[21]
g 黄种皮、黄子叶
Yellow seed coat and cotyledon
Owen[10], Song et al.[21]
D1 D1a 1 种皮、子叶是否含有叶绿素
The seed coat and cotyledon were controlled to contain chlorophyll.
D1 黄种皮、黄子叶
Yellow seed coat and cotyledon
Fang et al.[35], Song J [12]
d1 绿种皮、绿子叶
Green seed coat and cotyledon
Fang et al.[35], Song J [12]
D2 B1 11 种皮、子叶是否含有叶绿素
The seed coat and cotyledon were controlled to contain chlorophyll.
D2 黄种皮、黄子叶
Yellow seed coat and cotyledon
Fang et al.[35], Song J [12]
d2 绿种皮、绿子叶
Green seed coat and cotyledon
Fang et al.[35], Song J [12]
CytG 种皮、子叶是否含有叶绿素
The seed coat and cotyledon were controlled to contain chlorophyll.
CytG 黄种皮、黄子叶
Yellow seed coat and cotyledon
Guiamét et al.[39]
cytG 绿种皮、绿子叶
Green seed coat and cotyledon
Guiamét et al.[39]

图1

不同基因型种子颜色 a: 黄种皮黄脐; b: 黄种皮黑脐; c: 鞍挂; d: 黑种皮; e: 褐种皮; f: 虎斑; g: 深褐种皮; h: 红褐种皮; i: 淡褐种皮; j: 绿种皮; k: 黄色子叶; l: 绿色子叶。"

图2

控制种子颜色遗传位点和相关分子标记 本图是在Song等[29]发表的遗传图谱基础上进行了修改。"

表2

调控种子颜色的相关基因信息"

序号
No.
基因编号(v2.1)
Gene ID (v2.1)
基因名称
Gene name
英文缩写
Abbreviation
遗传位点
Genetic locus
编码产物注释
Annotation of coding products
参考文献
Reference
1 Glyma.08G109500 查尔酮合成酶1
Chalcone synthase 1
CHS1 I 类黄酮合成途径酶:合成柚皮苷查尔酮
Flavonoid biosynthesis pathway enzyme: synthesis of naringin chalcone
Akada et al.[51]
2 Glyma.08G110300 查尔酮合成酶3
Chalcone synthase 3
CHS3 I 类黄酮合成途径酶:合成柚皮苷查尔酮
Flavonoid biosynthesis pathway enzyme: synthesis of naringin chalcone
Senda et al.[52]
Cho et al.[53]
3 Glyma.08G109200 查尔酮合成酶4
Chalcone synthase 4
CHS4 I 类黄酮合成途径酶:合成柚皮苷查尔酮
Flavonoid biosynthesis pathway enzyme: synthesis of naringin chalcone
Liu et al.[54]
Tuteja et al.[55]
4 Glyma.11G190900 Argonaute 5蛋白
Argonaute 5 protein
AGO5 K1 调控CHS siRNAs在种皮的分布
Regulation of CHS siRNAs distribution in seed coat
Rogers et al.[58]
Song et al.[59]
5 Glyma.09G025300 内啡肽酶同源物2a
Endorphinase homolog 2a
DCL2a 切割含长LIR的转录本,生成22nt siRNA
LIR-derived transcripts are predominately processed by GmDCL2 into 22-nt siRNAs
Jia et al.[60]
6 Glyma.09G025400 内啡肽酶同源物2b
Endorphinase homolog 2a
DCL2b 切割含长LIR的转录本,生成22nt siRNA
LIR-derived transcripts are predominately processed by GmDCL2 into 22-nt siRNAs
Jia et al.[60]
7 Glyma.06G202300 黄烷酮3’-羟化酶
Flavanone 3’-hydroxylase
F3’H T 类黄酮合成途径酶:催化黄烷酮羟基化
Flavonoid biosynthesis pathway enzymes: catalyzing the hydroxylation of flavanones
Toda et al.[61]
Guo et al.[62]
8 Glyma.13G072100 黄烷酮3’,5’-羟化酶
Flavanone 3’,5’-hydroxylase
F3’5’H W1 类黄酮合成途径酶:催化黄烷酮羟基化
Flavonoid biosynthesis pathway enzymes: catalyzing the hydroxylation of flavanones
Zabala et al.[33]
9 Glyma.08G062000 花青素还原酶
Anthocyanidin reductase
ANR1 O 类黄酮合成途径酶:形成原花青素
Flavonoid biosynthesis pathway enzymes: procyanidins production
Yang et al.[32]
10 Glyma.08G062100 花青素还原酶
Anthocyanidin reductase
ANR2 O 类黄酮合成途径酶:形成原花青素
Flavonoid biosynthesis pathway enzymes: procyanidins production
Yang et al.[32]
11 Glyma.09G235100 R2R3 MYB转录因子
Transcripion foctor R2R3 MYB
R2R3 MYB R 转录因子:调控ANS基因的表达
Transcription factors: regulation of ANS gene expression
Yan et al.[63]
Zabala et al.[64]
12 Glyma.01G198500 CAAX自身免疫蛋白酶
CAAX protease self-immunity
CPSI G 防止叶绿素降解使成熟种皮保持绿色
Prevent chlorophyll degradation to keep the mature seed coat green
Xie et al.[65]
Wang et al.[66]
13 Glyma.01g214600 保持绿色蛋白1
Protein stay-green 1
SGR1 D1 使成熟种子保持绿色
Mature seeds stay-green
Fang et al.[34]
宋健[12]
Fang et al.[34]
Song J[12]
14 Glyma.11g027400 保持绿色蛋白2
Protein stay-green 2
SGR2 D2 使成熟种子保持绿色
Mature seeds stay-green
Fang et al.[34]
宋健[12]
Fang et al.[34]
Song J[12]
15 Glyma.20G241500 查尔酮异构酶1A
Chalcone isomerase 1A
CHI1A 类黄酮合成途径酶:催化分子内环化反应
Flavonoid synthesis pathway enzymes: catalyzing intramolecular cyclization
Kovinich et al.[63]
16 Glyma.20G241700 查尔酮异构酶2
Chalcone isomerase 2
CHI2 类黄酮合成途径酶:催化分子内环化反应
Flavonoid synthesis pathway enzymes: catalyzing intramolecular cyclization
Kovinich et al.[63]
17 Glyma.02G048400 黄烷酮3-羟化酶
Naringenin 3-dioxygenase
F3H Wp 类黄酮合成途径酶:催化黄烷酮羟基化
Flavonoid biosynthesis pathway enzymes: catalyzing the hydroxylation of flavanones
Zabala et al.[64]
18 Glyma.14G072700 二氢黄酮醇还原酶1
Dihydroflavonol 4-reductase 1
DFR1 W3 类黄酮合成途径酶:形成无色花青素
Flavonoid synthesis pathway enzymes: formation of colorless anthocyanins
Xu et al.[65]
19 Glyma.17G252200 二氢黄酮醇还原酶2
Dihydroflavonol 4-reductase 2
DFR2 W4 类黄酮合成途径酶:形成无色花青素
Flavonoid synthesis pathway enzymes: formation of colorless anthocyanins
Xu et al.[65]
20 Glyma.01G214200 花青素合成酶2
Anthocyanidin synthase 2
ANS2 类黄酮合成途径酶:形成花色素
Flavonoid biosynthesis pathway enzymes: anthocyanin formation
Kovinich et al.[68]
21 Glyma.11G027700 花青素合成酶3
Anthocyanidin synthase 3
ANS3 类黄酮合成途径酶:形成花色素
Flavonoid biosynthesis pathway enzymes: anthocyanin formation
Kovinich et al.[68]
22 Glyma.08G066800 UDP类黄酮葡萄糖基转移酶
UDP-flavonoid 3-O-glucosyltransferase
UF3GT 类黄酮合成途径酶:形成花色苷
Flavonoid biosynthesis pathway enzymes: anthocyanin formation
Kovinich et al.[68]
23 光系统Ⅱ反应中心M亚基
Photosystem II reaction center M subunit
Psbm 具有叶绿素b降解功能
Degradation of chlorophyll b
Kohzuma et al.[40]

表3

控制种子颜色等位基因的调控机制"

基因/编号
Gene ID
突变基因型
Mutant genotype
种子颜色
Seed color
变异方式
Variation
检测方法
Detection method
参考文献
Reference
I
Glyma.08G109500
Glyma.08G110300
Glyma.08G109200
ii 黄种皮黑脐 Yellow seed coat with black hilum CHS基因的拷贝数增加 The copy number of CHS gene increased BAC重测序 BAC resequencing Cho et al.[53]
ik 鞍挂 Black saddle 基因间序列缺失 Deletion of intergenic sequencesl BAC重测序 BAC resequencing Cho et al.[53]
i 深色种皮 Dark pigment seed coat 基因及基因间序列大片段缺失
Large deletions of genes and intergenic sequences
BAC重测序 BAC resequencing Cho et al.[53]
R
Glyma.09G235100
R* 黑种皮 Black seed coat 第2内含子插入CACTA转座子及CACTA序列的甲基化
Insertion of the second intron into the CACTA transposon and methylation of the CACTA sequence
长片段PCR扩增、表达谱分析、甲基化检测
Long fragment PCR amplification, expression profile analysis, methylation detection
Zabala et al.[64]
r 褐种皮 Brown seed coat 第2外显子单碱基C缺失 Single base C deletion in exon 2 克隆测序 Cloning and sequencing Zabala et al.[64]
rm 虎斑
Black spots or concentric rings of black pigment superimposed on an otherwise brown seed coat
第2内含子插入CACTA转座子
Insertion of the second intron into the CACTA transposon
长片段PCR扩增、表达谱分析、甲基化检测
Long fragment PCR amplification, expression profile analysis, methylation detection
Zabala et al.[64]
T
Glyma.06G202300
t 褐种皮 Brown seed coat 第3外显子单碱基A的缺失或非同义突变或单碱基C的缺失
Deletion of single base A or non synonymous mutation or deletion of single base C in exon 3
PCR测序 PCR sequencing Guo et al.[62]
tm 深褐和褐色种皮
Dark brown and brown seed coat,
第1内含子插入CACTA转座子
The first intron was inserted into the CACTA transposon
长片段PCR扩增
Long fragment PCR amplification
Zabala et al.[31]
W1
Glyma.13G072100
w1 淡褐种皮 Buff seed coat 第3外显子插入53 bp
The third exon was inserted 53 bp sequence
克隆测序
Cloning and sequencing
Guo et al.[62]
K1
Glyma.11G190900
k1 鞍挂 Black saddle 第7外显子129 bp的缺失
Deletion of 129 bp sequence in exon 7
转录组与小RNA测序、PCR测序、全基因组深度重测序
Ranscriptome and micro RNA sequencing, PCR sequencing, whole genome deep resequencing
Cho et al.[34]
G
Glyma.01G198500
g 黄种皮 Yellow seed coat 第8内含子末端发生碱基突变
A base mutation occurred at the end of intron 8
克隆测序
Cloning and sequencing
Wang et al.[66]
D1
Glyma.01g214600
d1 绿种皮、绿子叶
Green seed coat and cotyledon
第2外显子单碱基T缺失
Single base T deletion in exon 2
基因组重测序、克隆测序
Genome resequencing, cloning and sequencing
Fang et al.[35], Song J[12]
D2
Glyma.11g027400
d2 绿种皮、绿子叶
Green seed coat and cotyledon
322 bp重复插入
322 bp sequence repeated insertion
基因组重测序、克隆测序
Genome resequencing, cloning and sequencing
Fang et al.[35], Song J[12]
CytG
cytG 绿种皮、绿子叶
Green seed coat and cotyledon
5 bp插入 5 bp sequence insertion 对叶绿体基因组广泛的测序
Extensively sequenced the chloroplast genome
Kohzuma et al.[40]

图3

种皮颜色相关基因调控的大豆类黄酮生物合成途径 修改自Zabala等[64]。"

[1] 邱丽娟. 大豆种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006. pp 35-40.
Qiu L J. Description and Data Standards for Soybean [Glycine max (L.) Merrill]. Beijing: China Agriculture Press, 2006. pp 35-40(in Chinese).
[2] Wilcox J R. Performance and use of seed coat mutants in soybean. Crop Sci, 1988, 28:30-32.
doi: 10.2135/cropsci1988.0011183X002800010007x
[3] 续曲, 郭勇, 邱丽娟. 褐色种皮大豆与其黄色种皮衍生亲本的表型及基因型比较. 植物遗传资源学报, 2013, 14:284-288.
Xu Q, Guo Y, Qiu L J. Comparison of phenotype and genotype between brown seed coat line and its parental line with yellow seed coat in soybean (Glycine max). J Plant Genet Resour, 2013, 14:284-288 (in Chinese with English abstract).
[4] 王英男, 齐广勋, 赵洪锟, 袁翠平, 刘晓冬, 李玉秋, 王玉民, 董英山. 不同种皮颜色大豆地方资源的遗传多样性. 分子植物育种, 2020, 18:1-18.
Wang Y N, Qi G X, Zhao H K, Yuan C P, Liu X D, Li Y Q, Wang Y M, Dong Y S. Genetic diversity of soybean landraces with different seed coat color. Mol Plant Breed, 2020, 18:1-18 (in Chinese with English abstract).
[5] Takahashi R. Association of soybean genes I and T with low temperature induced deterioration. Crop Sci, 1997, 37:1755-1759.
doi: 10.2135/cropsci1997.0011183X003700060014x
[6] Chandlee J M, Vodkin L O. Unstable expression of a soybean gene during seed coat development. Theor Appl Genet, 1989, 77:587-594.
doi: 10.1007/BF00274285 pmid: 24232729
[7] 宋健. 大豆种皮色相关基因定位与利用研究. 哈尔滨师范大学硕士学位论文, 黑龙江哈尔滨, 2012.
Song J. Mapping and Utilization of Genes Related to Seed Coat Color in Soybean (Glycine max (L.) Merr.). MS Thesis of Harbin Normal University, Harbin, Heilongjiang, China, 2012 (in Chinese with English abstract).
[8] Piper C V, Morse W J. The soy-bean: history, varieties, and field studies. US Depart Agric, 1910, 197:1-84.
[9] Terao H. Maternal inheritance in the soybean. Am Nat, 1918, 62:51-56.
[10] Owen F V. Inheritance studies in soybeans: III. Seed-coat color and summary of all other mendelian characters thus far reported. Genetics, 1928, 13:50-79.
pmid: 17246542
[11] Lindstrom J T, Vodkin L O. A soybean cell wall protein is affected by seed color genotype. Plant Cell, 1991, 3:561-571.
pmid: 1841717
[12] 宋健. 大豆种皮色相关基因的图位克隆及功能解析. 中国农业科学院博士学位论文, 北京, 2019.
Song J. Map-based Cloning and Functional Analysis of Genes Controlling Seed Coat Color in Soybean (Glycine max (L.) Merr.). PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2019 (in Chinese with English abstract).
[13] 张芳轩, 张名位, 张瑞芬, 刘章雄, 魏振承, 邱丽娟, 杨春英, 张雁, 唐小俊, 邓媛元. 不同黑大豆种质资源种皮花色苷组成及抗氧化活性分析. 中国农业科学, 2010, 43:5088-5099.
Zhang F X, Zhang M W, Zhang R F, Liu Z X, Wei Z C, Qiu L J, Yang C Y, Zhang Y, Tang X J, Deng Y Y. Comparative analysis of the anthocyanin profiles and antioxidant activity of seed coats from different black soybean germplasm resources. Sci Agric Sin, 2010, 43:5088-5099 (in Chinese with English abstract).
[14] Todd J J, Vodkin L O. Pigmented soybean (Glycine max) seed coats accumulate proanthocyanidins during development. Plant Physiol, 1993, 102:663-670.
pmid: 12231856
[15] Zhou Y, Ma Y, Zeng J, Duan L, Xue X, Wang H, Lin T, Zeng K, Zhong Y, Zhang S, Hu Q, Liu M, Zhang H, Reed J, Moses T, Liu X, Huang P, Qing Z, Liu X, Tu P, Kuang H, Zhang Z, Osbourn A, Ro D K, Shang Y, Huang S. Convergence and divergence of bitterness biosynthesis and regulation in Cucurbitaceae. Nat Plants, 2016, 2:16183.
doi: 10.1038/nplants.2016.183
[16] 林王敏, 翁倩倩, 邓爱平, 赵佳琛, 金艳, 张悦, 张水利, 俞冰, 詹志来, 黄璐琦. 黑豆的本草考证. 中国中药杂志, 2020, 45:4519-4527.
Lin W M, Weng Q Q, Deng A P, Zhao J S, Jin Y, Zhang Y, Zhang S L, Yu B, Zhan Z L, Huang L Q. Textual research on Sojae Semen Nigrum. China J Chin Mater Med, 2020, 45:4519-4527 (in Chinese with English abstract).
[17] 汪颖舒, 朱广灏, 王冰, 李杰荣, 骆前飞, 何修滢, 赵佳逸, 修彦凤. 古法黑豆蒸晒与药典黑豆汁连续蒸对何首乌中12个成分含量的影响. 中草药, 2020, 51:4972-4982.
Wang Y S, Zhu G Y, Wang B, Li J R, Luo Q F, He X Y, Zhao J Y, Xiu Y F. Influences of ancient processing method steaming with black bean and drying and pharmacopoeia processing method continuous steaming with black bean decoction on 12 components of Polygoni multiflori Radix. Chin Trad Herbal Drugs, 2020, 51:4972-4982 (in Chinese with English abstract).
[18] 刘秀玉, 王利丽, 左瑞庭, 陈随清. 药用黑豆的研究进展. 亚太传统医药, 2017, 13(20):82-85.
Liu X Y, Wang L L, Zuo R T, Chen S Q. Study on the research progress of Sojae Semen Nigrum. Asia-Pacific Trad Med, 2017, 13(20):82-85 (in Chinese with English abstract).
[19] Ohnishi S, Funatsuki H, Kasai A, Kurauchi T, Yamaguchi N, Takeuchi T, Yamazaki H, Kurosaki H, Shirai S, Miyoshi T, Horita H, Senda M. Variation of GmIRCHS (Glycine max inverted-repeat CHS pseudogene) is related to tolerance of low temperature-induced seed coat discoloration in yellow soybean. Theor Appl Genet, 2011, 122:633-642.
doi: 10.1007/s00122-010-1475-6 pmid: 20981401
[20] 宋健, 郭勇, 于丽杰, 邱丽娟. 大豆种皮色相关基因研究进展. 遗传, 2012, 34:687-694.
Song J, Guo Y, Yu L J, Qiu L J. Progress in genes related to seed- coat color in soybean. Hereditas (Beijing), 2012, 34:687-694.
[21] Song J, Liu Z, Hong H, Ma Y, Long T, Li X, Li Y H, Guan R, Guo Y, Qiu L J. Identification and validation of loci governing seed coat color by combining association mapping and bulk segregation analysis in soybean. PLoS One, 2016, 11:e0159064.
doi: 10.1371/journal.pone.0159064
[22] Senda M, Kasai A, Yumoto S, Akada S, Ishikawa R, Harada T, Niizeki M. Sequence divergence at chalcone synthase gene in pigmented seed coat soybean mutants of the Inhibitor locus. Genes Genet Syst, 2002, 77:341-350.
doi: 10.1266/ggs.77.341
[23] Woodworth C M. Inheritance of cotyledon, seed-coat, hilum, and pubescence colors in soybeans. Genetics, 1921, 31:1123-1130.
[24] Nicholas C D, Lindstrom J T, Vodkin L O. Variation of proline rich cell wall proteins in soybean lines with anthocyanin mutations. Plant Mol Biol, 1993, 21:145-156.
pmid: 8425044
[25] Bernard R L, Weiss M G. Qualitative genetics in soybean: improvement, production and uses. Am Soc Agron Mad, 1973, 1:117-149.
[26] Todd J J, Vodkin L O. Duplications that suppress and deletions that restore expression from a chalcone synthase multigene family. Plant Cell, 1996, 8:687-699.
doi: 10.2307/3870344
[27] Tuteja J H, Clough S J, Chan W C, Vodkin L O. Tissue-specific gene silencing mediated by a naturally occurring Chalcone synthase gene cluster in Glycine max. Plant Cell, 2004, 16:819-835.
doi: 10.1105/tpc.021352
[28] Clough S J, Tuteja J H, Li M, Marek L F, Shoemaker R C, Vodkin L O. Features of a 103-kb gene-rich region in soybean include an inverted perfect repeat cluster of CHS genes comprising the I locus. Genome, 2004, 47:811-831.
[29] Song Q J, Marek L F, Shoemaker R C, Lark K G, Concibido V C, Delannay X, Specht J E, Cregan P B. A new integrated genetic linkage map of the soybean. Theor Appl Genet, 2004, 109:122-128.
pmid: 14991109
[30] Zabala G, Vodkin L O. Cloning of the pleiotropic T locus in soybean and two recessive alleles that differentially affect structure and expression of the encoded flavonoid 3’-hydroxylase. Genetics, 2003, 163:295-309.
doi: 10.1093/genetics/163.1.295
[31] Zabala G, Vodkin L. A putative autonomous 20.5 kb-CACTA transposon insertion in an F3’H allele identifies a new CACTA transposon subfamily in Glycine max. BMC Plant Biol, 2008, 8:124.
doi: 10.1186/1471-2229-8-124
[32] Yang K, Jeong N, Moon J K, Lee Y H, Lee S H, Kim H M, Hwang C H, Back K, Palmer R G, Jeong S C. Genetic analysis of genes controlling natural variation of seed coat and flower colors in soybean. J Hered, 2010, 101:757-768.
doi: 10.1093/jhered/esq078
[33] Zabala G, Vodkin L O. A rearrangement resulting in small tandem repeats in the F3’5’H gene of white flower genotypes is associated with the soybean W1 locus. Crop Sci, 2007, 47:S113-S124.
[34] Cho Y B, Jones S I, Vodkin L O. Mutations in Argonaute5 illuminate epistatic interactions of the K1 and I loci leading to saddle seed color patterns in Glycine max. Plant Cell, 2017, 29:708-725.
doi: 10.1105/tpc.17.00162
[35] Fang C, Li C C, Li W Y, Wang Z, Zhou Z K, Shen Y T, Wu M, Wu Y S, Li G Q, Kong L A, Liu C M, Jackson S A, Tian Z X. Concerted evolution of D1 and D2 to regulate chlorophyll degradation in soybean. Plant J, 2014, 77:700-712.
doi: 10.1111/tpj.12419
[36] Nakano M, Yamada T, Masuda Y, Sato Y, Kobayashi H, Ueda H, Morita R, Nishimura M, Kitamura K, Kusaba M. A green- cotyledon/stay-green mutant exemplifies the ancient whole- genome duplications in soybean. Plant Cell Physiol, 2014, 55:1763-1771.
doi: 10.1093/pcp/pcu107
[37] Ott A, Yang Y, Bhattacharyya M, Horner H T, Palmer R G, Sandhu D. Molecular mapping of D1, D2 and ms5 revealed linkage between the cotyledon color locus D2 and the male-sterile locus ms5 in Soybean. Plants, 2013, 2:441-454.
doi: 10.3390/plants2030441
[38] Guiamét J J, Schwartz E, Pichersky E, Noodén L D. Characterization of cytoplasmic and nuclear mutations affecting chlorophyll and chlorophyll-binding proteins during senescence in soybean. Plant Physiol, 1991, 96:227-231.
pmid: 16668156
[39] Guiamét J J, Tyystjärvi E, Tyystjärvi T, John I, Kairavuo M, Pichersky E, Noodén L D. Photoinhibition and loss of photosystem II reaction centre proteins during senescence of soybean leaves. Enhancement of photoinhibition by the ‘stay-green’ mutation cytG. Physiol Plant, 2002, 115:468-478.
pmid: 12081540
[40] Kohzuma K, Sato Y, Ito Hisashi, Okuzaki A, Watanabe M, Kobayashi H, Nakano M, Yamatani H, Masuda Y, Nagashima Y, Fukuoka H, Yamada T, Kanazawa A, Kitamura K, Tabei Y, Ikeuchi M, Sakamoto W, Tanaka A, Kusaba M. The non-Mendelian green cotyledon gene in soybean encodes a small subunit of photosystem II. Plant Physiol, 2017, 173:2138-2147.
doi: 10.1104/pp.16.01589 pmid: 28235890
[41] 郁晓敏, 金杭霞, 杨清华, 傅旭军, 郭丹丹, 吕晓男, 袁凤杰. 利用SLAF-seq结合BSA方法发掘大豆种皮色相关基因. 分子植物育种, 2020, 18:1-8.
Yu X M, Jin H X, Yang Q H, Fu X J, Guo D D, Lyu X N, Yuan F J. Mapping of soybean genes related to seed-coat color using SLAF-seq and BSA methods. Mol Plant Breed, 2020, 18:1-8 (in Chinese with English abstract).
[42] 董全中, 蒋炳军, 张勇, 薛红, 张明明, 李微微, 韩天富, 宁海龙. 大豆褐色种皮遗传分析及基因定位. 大豆科学, 2020, 39:361-369.
Dong Q Z, Jiang B J, Zhang Y, Xue H, Zhang M M, Li W W, Han T F, Ning H L. Inheritance analysis and gene mapping of brown seed coat in soybean. Soybean Sci, 2020, 39:361-369 (in Chinese with English abstract).
[43] 王吴彬, 何庆元, 杨红燕, 向仕华, 邢光南, 赵团结, 盖钧镒. 大豆结荚习性、荚色和种皮色相关野生片段分析. 作物学报, 2013, 39:1155-1163.
Wang W B, He Q Y, Yang H Y, Xiang S H, Xing G N, Zhao T J, Gai J Y. Identification of wild segments associated with stem termination, pod color, and seed coat color in soybean. Acta Agron Sin, 2013, 39:1155-1163 (in Chinese with English abstract).
[44] Wang W B, Liu M F, Wang Y F, Li X L, Cheng S X, Shu L P, Yu Z P, Kong J J, Zhao T J, Gai J Y. Characterizing two inter-specific bin maps for the exploration of the QTLs/Genes that confer three soybean evolutionary traits. Front Plant Sci, 2016, 7:1248.
[45] Cheng L, Chen X L, Wang W B, Hu X Y, Han W, He Q Y, Yang H Y, Xiang S H, Gai J Y. Identifying wild versus cultivated gene-alleles conferring seed coat color and days to flowering in soybean. Mol Sci, 2021, 22:1559.
[46] Jeong S C, Moon J K, Park S K, Kim M S, Lee K, Lee S R, Jeong N, Choi M S, Kim N, Kang S T, Park E. Genetic diversity patterns and domestication origin of soybean. Theor Appl Genet, 2019, 132:1179-1193.
doi: 10.1007/s00122-018-3271-7
[47] 徐艳平. 大豆分枝数和种皮色相关QTL的定位及抗旱野生大豆种质的筛选. 吉林农业大学硕士学位论文, 吉林长春, 2013.
Xu Y P. Mapping the QTL for Soybean Branch Number and Seed Coat Color and Screening Drougt-tolerant Wild Soybean Germplasm. MS Thesis of Jilin Agricultural University, Changchun, Jilin, China, 2013 (in Chinese with English abstract).
[48] Gillman J D, Tetlow A, Lee J D, Shannon J G, Bilyeu K. Loss-of-function mutations affecting a specific Glycine max R2R3 MYB transcription factor result in brown hilum and brown seed coats. BMC Plant Biol, 2011, 11:155.
doi: 10.1186/1471-2229-11-155 pmid: 22070454
[49] Zhou Z K, Jiang Y, Wang Z, Gou Z H, Lyu J, Li W Y, Yu Y J, Shu L P, Zhao Y J, Ma Y M, Fang C, Shen Y T, Liu T F, Li C C, Li Q, Wu M, Wang M, Wu Y S, Dong Y, Wan W T, Wang X, Ding Z L, Gao Y D, Xiang H, Zhu B G, Lee S H, Wang W, Tian Z X. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol, 2015, 4:408-414.
[50] Wen Z, Boyse J F, Song Q, Cregan P B, Wang D. Genomic consequences of selection and genome-wide association mapping in soybean. BMC Genomics, 2015, 16:671.
doi: 10.1186/s12864-015-1872-y
[51] Akada S, Dube S K. Organization of chalcone synthase gene clusters and characterization of a new member of the family. Plant Mol Biol, 1995, 29:189-199.
pmid: 7579172
[52] Senda M, Jumonji A, Yumoto S, Ishikawa R, Harada T, Niizeki M, Akada S. Analysis of the duplicated CHS1 gene related to the suppression of the seed coat pigmentation in yellow soybeans. Theor Appl Genet, 2002, 104:1086-1091.
pmid: 12582616
[53] Cho Y B, Jones S I, Vodkin L O. Nonallelic homologous recombination events responsible for copy number variation within an RNA silencing locus. Plant Direct, 2019, 3:e00162.
[54] Liu Y C, Du H L, Li P C, Shen Y T, Peng H, Liu S L, Zhou G A, Zhang H K, Liu Z, Shi M, Huang X H, Li Y, Zhang M, Wang Z, Zhu B, Han B, Liang C Z, Tian Z X. Pan-genome of wild and cultivated soybeans. Cell, 2020, 182:162-176.
doi: 10.1016/j.cell.2020.05.023
[55] Tuteja J H, Zabala G, Varala K, Hudson M, Vodkin L O. Endogenous, tissue-specific short interfering RNAs silence the chalcone synthase gene family in Glycine max seed coats. Plant Cell, 2009, 21:3063-3077.
doi: 10.1105/tpc.109.069856
[56] Cho Y B, Jones S I, Vodkin L. The transition from primary siRNAs to amplified secondary siRNAs that regulate chalcone synthase during development of Glycine max seed coats. PLoS One, 2013, 10:e76954.
[57] Wang C, Todd J, Vodkin L O. Chalcone synthase mRNA and activity are reduced in yellow soybean seed coats with dominant I alleles. Plant Physiol, 1994, 105:739-748.
pmid: 8066134
[58] Rogers K, Chen X. Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell, 2013, 25:2383-2399.
doi: 10.1105/tpc.113.113159
[59] Song X W, Li Y, Cao X F, Qi Y J. MicroRNAs and their regulatory roles in plant-environment interactions. Annu Rev Plant Biol, 2019, 70:489-525.
doi: 10.1146/annurev-arplant-050718-100334
[60] Jia J B, Ji R H, Li Z W, Yu Y M, Nakano M, Long Y P, Li F, Chao Q, Lu D D, Zhan J P, Xia R, Meyers B C, Liu B, Zhai J X. Soybean Dicer-Like 2 regulates seed coat color via production of primary 22-nt small interfering RNAs from long inverted repeats. Plant Cell Adv Public, 2020, 32:3662-3673.
[61] Toda K, Yang D, Yamanaka N, Watanabe S, Harada K, Takahashi R. A single-base deletion in soybean flavonoid 3’-hydroxylase gene is associated with gray pubescence color. Plant Mol Biol, 2002, 50:187-196.
doi: 10.1023/A:1016087221334
[62] Guo Y, Qiu L J. Allele-specific marker development and selection efficiencies for both flavonoid 3’-hydroxylase and flavonoid 3’,5’-hydroxylase genes in soybean subgenus soja. Theor Appl Genet, 2013, 126:1445-1455.
doi: 10.1007/s00122-013-2063-3
[63] Yan F, Di S K, Takahashi R. CACTA-superfamily transposable element is inserted in MYB transcription factor gene of soybean line producing variegated seeds. Genome, 2015, 58:365-374.
doi: 10.1139/gen-2015-0054
[64] Zabala G, Vodkin L O. Methylation affects transposition and splicing of a large CACTA transposon from a MYB transcription factor regulating anthocyanin synthase genes in soybean seed coats. PLoS One, 2014, 9:e111959.
doi: 10.1371/journal.pone.0111959
[65] Xie M, Chung Y L, Li M W, Wong F L, Wang X, Liu A L, Wang Z L, Leung A K Y, Wong T H, Tong S W, Xiao Z X, Fan K J, Ng M S, Qi X P, Yang L F, Deng T Q, He L J, Chen L, Fu A S, Ding Q, He J X, Chung G, Isobe S, Tanabata T, Valliyodan B, Nguyen H T, Cannon S B, Foyer C H, Chan T F, Lam H M. A reference-grade wild soybean genome. Nat Commun, 2019, 10:1216.
doi: 10.1038/s41467-019-09142-9
[66] Wang M, Li W Z, Fang C, Xu Fan, Liu Y C, Wang Z, Yang R, Zhang M, Liu S L, Lu S J, Lin T, Tang J Y, Wang Y Q, Wang H G, Lin H, Zhu B G, Chen M S, Kong F J, Liu B H, Zeng D L, Jackson S A, Chu C C, Tian Z X. Parallel selection on a dormancy gene during domestication of crops from multiple families. Nat Genet, 2018, 50:1435-1441.
doi: 10.1038/s41588-018-0229-2 pmid: 30250128
[67] Shimoda Y, Ito H, Tanaka A. Arabidopsis STAY-GREEN mendel’s green cotyledon gene encodes magnesium-dechelatase. Plant Cell, 2016, 28:2147-2160.
doi: 10.1105/tpc.16.00428
[68] Kovinich N, Saleem A, Arnason J T, Miki B. Combined analysis of transcriptome and metabolite data reveals extensive differences between black and brown nearly-isogenic soybean ( Glycine max) seed coats enabling the identification of pigment isogenes. BMC Genomics, 2011, 12:381.
doi: 10.1186/1471-2164-12-381 pmid: 21801362
[69] Zabala G, Vodkin L O. The wp mutation of Glycine max carries a gene-fragment-rich transposon of the CACTA superfamily. Plant Cell, 2005, 17:2619-2632.
doi: 10.1105/tpc.105.033506
[70] Xu M, Brar H K, Grosic S, Palmer R G, Bhattacharyya M K. Excision of an active CACTA-Like transposable element from DFR2 causes variegated flowers in soybean [Glycine max (L.) Merr.]. Genetics, 2010, 184:53-63.
doi: 10.1534/genetics.109.107904
[71] 李佳林. CsMYB60调控黄瓜类黄酮生物合成的分子机制. 山东农业大学博士学位论文, 山东泰安, 2020.
Li J L. Molecular Mechanism of the Flavonoid Biosynthesis Regulated by CsMYB60 in Cucumber. PhD Dissertation of Shandong Agricultural University, Tai’an, Shandong, China, 2020 (in Chinese with English abstract).
[72] Yoshida K. Structural analysis and measurement of anthocyanins from colored seed coats of Vigna, Phaseolus, and Glycine legumes. Biosci Biotechnol Biochem, 1996, 60:589-593.
doi: 10.1271/bbb.60.589
[73] Springob K, Nakajima J. Recent advances in the biosynthesis and accumulation of anthocyanins. Nat Prod Rep, 2003, 20:288-303.
pmid: 12828368
[74] Yoshida K, Teppabut Y, Sawaguchi R, Nakane Y, Hayashi E, Oyama K, Nishizaki Y, Goda Y, Kondo T. 5,7,3,4 Tetrahydroxyflav-2-en-3-ol 3-O-glucoside, a new biosynthetic precursor of cyanidin 3-O-glucoside in the seed coat of black soybean, Glycine max. Sci Rep, 2020, 10:17184.
doi: 10.1038/s41598-020-74098-6
[75] Saito K, Kobayashi M, Gong Z Tanaka Y, Yamazaki M. Direct evidence for anthocyanidin synthase as a 2-oxoglutarate- dependent oxygenase: molecular cloning and functional expression of cDNA from a red forma of Perilla frutescens. Plant J, 1999, 17:181-189.
pmid: 10074715
[76] Zhang J R, Trossat-Magnin C, Bathany K, Delrot S, Chaudière J. Oxidative transformation of leucocyanidin by anthocyanidin synthase from vitis vinifera leads only to quercetin. J Agric Food Chem, 2019, 67:3595-3604.
doi: 10.1021/acs.jafc.8b06968
[77] Gao R f, Han T T, Xun H W, Zeng X X, Li P H, Li Y Q, Wang Y N, Shao Y, Cheng X, Feng X Z, Zhao J, Wang L, Gao X. MYB transcription factor GmMYBA2 and GmMYBR function in a feedback loop to control pigmentation of seed coat in soybean. J Exp Bot, 2021, Publish online, http://dx.doi.org/10.1093/jxb/erab152.
[78] Lim Y J, Kwon S J, Qu S, Kim D G, Eom S H. Antioxidant contributors in seed, seed coat, and cotyledon of γ-ray-induced soybean mutant lines with different seed coat colors. Antioxidants, 2021, 10:353.
doi: 10.3390/antiox10030353
[79] 李泉岑, 王佳奇, 伍子涵, 焦清波, 王国相, 张智涛, 王莹, 张雨晴. 天然植物色素稳定性及其应用研究进展. 现代食品, 2020, (22):59-62.
Li Q J, Wang J Q, Wu Z H, Jiao Q B, Wang G X, Zhang Z T, Wang Y, Zhang Y Q. Research progress on the stability and application of natural plant pigments. Modern Food, 2020, (22):59-62 (in Chinese with English abstract).
[80] 黄韬睿, 王鑫, 童光森, 孟甜. 天然色素替代亚硝酸盐在腊肉着色和护色中的应用研究. 食品科技, 2019, 44(2):134-137.
Huang T R, Wang X, Tong G S, Meng T. Application of natural pigments to substitute nitrite in coloring and color preserving of bacon. Food Technol, 2019, 44(2):134-137 (in Chinese with English abstract).
[81] 廖远东, 刘顺字, 陈文田. 2种天然红色色素的稳定性及其在果汁饮料中的应用效果探析. 饮料工业, 2019, 22(6):28-31.
Liao Y D, Liu S Z, Chen W T. Analysis of stability of two natural red pigments and their application in fruit juice beverages. Beverage Ind, 2019, 22(6):28-31 (in Chinese with English abstract).
[82] 邓全富, 张环, 唐伟月, 赵爽. 天然植物色素提取物在牙膏中的应用. 日用化学品科学, 2019, 42(12):24-26.
Deng Q F, Zhang H, Tang W Y, Zhao S. Application of natural plant pigment extracts in toothpaste. Deterg Cosmet, 2019, 42(12):24-26 (in Chinese with English abstract).
[83] 刘亚, 高莉, 刘娟, 王猛, 陈芳锐, 王浩, 雷声. 天然食用色素的稳定性研究及在再造烟叶中的应用. 新型工业化, 2020, 10(4):132-137.
Liu Y, Gao L, Liu J, Wang M, Chen F R, Wang H, Lei S. Study on color stability of natural food pigment and its application in reconstituted tobacco leaves. J New Ind, 2020, 10(4):132-137 (in Chinese with English abstract).
[84] 王华清. 蚕丝织物的黑豆皮色素染色. 印染, 2017, 43(6):24-27.
Wang Q H. Silk fabric dyeing with black soybean colorants. Dye Finish, 2017, 43(6):24-27 (in Chinese with English abstract).
[85] 宋岩. 黑豆花色苷提取、纯化及体内外抗氧化研究. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2013.
Song Y. The Extraction and Purification of Black Soybean Anthocyanin and Its Antioxidant Effects in vitro and in vivo. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang, China, 2013 (in Chinese with English abstract).
[86] 马成红. 青仁黑豆皮化学成分分析及应用. 长春理工大学硕士学位论文, 吉林长春, 2019.
Ma C H. Analysis and Application of Chemical Composition of Qingren Black Bean Skin. MS Thesis of Changchun University of Science and Technology, Changchun, Jilin, China, 2019 (in Chinese with English abstract).
[87] 徐金瑞. 黑大豆种皮花色苷抗动脉粥样硬化及其抗氧化机制研究. 西北农林科技大学博士学位论文, 陕西杨凌, 2006.
Xu J R. Antiatherogenic Effect and Antioxidation Mechanism of Anthocyanins Extracted from Black Soybean Seed Coat. PhD Dissertation of Northwest A&F University, Yangling, Shaanxi, China, 2006 (in Chinese with English abstract).
[88] 张继曼. 黑豆红花色苷的优化提取及其降血糖作用的研究. 安徽农业大学硕士学位论文, 安徽合肥, 2010.
Zhang J M. The Optimum Extraction and Hypoglycemic Effect of Anthocyanins in Black Soybean. MS Thesis of Anhui Agricultural University, Hefei, Anhui, China, 2010 (in Chinese with English abstract).
[89] 邱丽娟, 郭勇, 黎裕, 王晓波, 周国安, 刘章雄, 周时荣, 李新海, 马有志, 王建康, 万建民. 中国作物新基因发掘: 现状、挑战与展望. 作物学报, 2011, 37:1-17.
Qiu L J, Guo Y, Li Y, Wang X B, Zhou G A, Liu Z X, Zhou S R, Li X H, Ma Y Z, Wang J K, Wan J M. Novel gene discovery of crops in China: status, challenging, and perspective. Acta Agron Sin, 2011, 37:1-17 (in Chinese with English abstract).
[90] 徐金瑞, 张名位, 刘兴华, 刘章雄, 张瑞芬, 孙玲, 邱丽娟. 黑大豆种质抗氧化能力及其与总酚和花色苷含量的关系. 中国农业科学, 2006, 39:1545-1552.
Xu J R, Zhang M W, Liu X H, Liu Z X, Zhang R F, Sun L, Qiu L J. Correlation between antioxidation, and content of total phenolics and anthocyanin in black soybean accessions. Sci Agric Sin, 2006, 39:1545-1552 (in Chinese with English abstract).
[91] Zhu Q L, Yu S Z, Zeng D C, Guo J X, Chen L T, Liu Y G. Development of “Purple Endosperm Rice” by engineering anthocyanin biosynthesis in the endosperm with a high-efficiency transgene stacking system. Mol Plant, 2017, 10:918-929.
doi: 10.1016/j.molp.2017.05.008
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[9] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[10] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[11] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[12] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[13] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[14] 禹桃兵, 石琪晗, 年海, 连腾祥. 涝害对不同大豆品种根际微生物群落结构特征的影响[J]. 作物学报, 2021, 47(9): 1690-1702.
[15] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!