欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (12): 2314-2323.doi: 10.3724/SP.J.1006.2021.04266

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

花生全基因组抗病基因鉴定及其对青枯菌侵染的响应分析

张欢**(), 罗怀勇**(), 李威涛, 郭建斌, 陈伟刚, 周小静, 黄莉, 刘念, 晏立英, 雷永, 廖伯寿, 姜慧芳*()   

  1. 中国农业科学院油料作物研究所 / 农业农村部油料作物生物学与遗传育种重点实验室, 湖北武汉 430062
  • 收稿日期:2020-12-08 接受日期:2021-04-14 出版日期:2021-12-12 网络出版日期:2021-06-15
  • 通讯作者: 姜慧芳
  • 作者简介:张欢, E-mail: 18198335427@163.com;
    罗怀勇, E-mail: huaiyongluo@caas.cn第一联系人:**同等贡献
  • 基金资助:
    国家自然科学基金项目(31761143005);国家自然科学基金项目(31971903);中央级科研院所基本业务费专项(1610172019008)

Genome-wide identification of peanut resistance genes and their response to Ralstonia solanacearum infection

ZHANG Huan**(), LUO Huai-Yong**(), LI Wei-Tao, GUO Jian-Bin, CHEN Wei-Gang, ZHOU Xiao-Jing, HUANG Li, LIU Nian, YAN Li-Ying, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang*()   

  1. Oil Crops Research Institute, Chinese Academy of Agricultural Sciences / Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
  • Received:2020-12-08 Accepted:2021-04-14 Published:2021-12-12 Published online:2021-06-15
  • Contact: JIANG Hui-Fang
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    National Natural Science Foundation of China(31761143005);National Natural Science Foundation of China(31971903);Central Public-interest Scientific Institution Basal Research Fund(1610172019008)

摘要:

花生是主要的油料作物之一, 在生产过程中受到多种病原微生物的危害。培育和选用抗病品种是防治病害最经济有效的途径之一, 而抗病基因是植物抵御病原微生物的重要基因。本文首次对花生抗病基因进行全基因组鉴定, 发掘抗病候选基因4156个, 其中RLK、RLP、NL、CNL、TNL这5种典型抗病基因分别有536、490、232、182和149个。抗病基因在染色体上分布不均匀, 多数抗病基因集中在B02染色体上。转录组测序发现, 抗病材料中特异表达的基因有111个, 感病材料中特异表达的基因有104个, 抗、感病材料均有表达的基因2216个、均不表达的有1725个。筛选出第1类响应青枯菌诱导的抗病基因5个, 第2类持续上调表达抗青枯病基因65个。qRT-PCR成功验证了1个抗病候选基因Arahy.5D95TJ。本文对花生抗病基因的鉴定分析, 为后续研究抗病基因功能与花生抗病的分子育种提供重要参考。

关键词: 花生, 抗病基因, 青枯病, 转录组

Abstract:

Peanut is one of the main oil crops, which is harmed by many pathogenic microorganisms during growth and development period. Breeding and selection of disease-resistant varieties is one of the most economical and effective ways to control disease, and disease resistance genes are important genes for plant resistance to pathogenic microorganisms. Here, the whole genome-wide identification of peanut disease resistance genes was carried out for the first time. A total of 4156 candidate disease resistance genes were identified. Among them, 536, 490, 232, 182, and 149 genes were RLK, RLP, NL, CNL, and TNL, respectively. The distribution of disease resistance genes was uneven on chromosomes, and most of them were concentrated on chromosome B02. Transcriptome profiling revealed that 111 genes were specifically expressed in resistant materials, 104 genes were specifically expressed in susceptible materials, 2216 genes were expressed in both resistant and susceptible materials, while 1725 genes were not expressed in both resistant and susceptible materials. Two kinds of differentiate expressed R genes were identified, including five genes in the first group responded to the infection of Ralstonia solanacearum at specific time and 65 genes in the second group which exhibited higher expressions in resistant cultivar than susceptible cultivar. A candidate gene Arahy.5D95TJ was successfully validated by qRT-PCR. In this study, the identification and analysis of peanut disease resistance genes provides the important reference for further research of their functions and molecular breeding of peanut disease resistance.

Key words: Arachis hypogaea, disease resistance gene, bacterial wilt, transcriptome profiling

表1

花生R基因的数量和分类"

类别
Type
包含结构域
Domain contained
基因数
Gene number
R基因比例
Proportion in R gene (%)
RLK TM, LRR, Kinase 536 12.90
RLP TM, LRR 490 11.79
CNL CC, TM, NBS, LRR 182 4.38
TNL TM, TIR, NBS, LRR 149 3.59
KIN TM, Kinase 1714 41.24
NL TM, NBS, LRR 232 5.58
CK CC, TM, Kinase 221 5.32
N TM, NBS 146 3.51
CN CC, TM, NBS 136 3.27
CTNL CC, TM, TIR, NBS, LRR 77 1.85
L LRR 76 1.83
T TM, TIR 65 1.57
TN TM, TIR, NBS 61 1.47
CL CC, TM, LRR 28 0.67
CLK CC, TM, LRR, Kinase 20 0.48
CNT CC, TM, NBS, TIR 15 0.36
CT CC, TM, TIR 6 0.14
TRAN TM 2 0.05
总计Total 4156

图1

花生R基因在染色体上的分布 绿色代表在抗病和感病材料中都表达; 红色是只在抗病材料中表达的抗病基因; 紫色是只在感病材料中表达的抗病基因; 黑色代表抗病基因在抗感材料中都不表达。"

图2

花生R基因FPKM值分布范围 RC: 抗病材料对照; RT: 抗病材料处理; SC: 感病材料对照; ST: 感病材料处理。"

图3

花生接种青枯菌后差异表达的2类R基因 RC: 抗病材料对照; RT: 抗病材料处理; SC: 感病材料对照; ST: 感病材料处理。RT12、RT24、RT48、RT72和RT96分别表示抗病材料接种青枯菌后12、24、48、72和96 h的样本; RC12、RC24、RC48、RC72和RC96分别表示抗病材料对照组(清水处理) 12、24、48、72和96 h的样本; ST12、ST24、ST48、ST72和ST96分别表示感病材料接种青枯菌后12、24、48、72和96 h的样本; SC12、SC24、SC48、SC72和SC96分别表示感病材料对照组(清水处理) 12、24、48、72和96 h的样本。"

图4

主效抗青枯病QTL区间差异表达R基因及验证 缩写同图3。"

[1] Howden A J M, Huitema E. Effector-triggered post translational modifications and their role in suppression of plant immunity. Front Plant Sci, 2012, 3:1-6.
[2] Jones J D G, Dang J L. The plant immune system. Nature, 2006, 444:323-329.
doi: 10.1038/nature05286
[3] Osuna-Cruz C M, Paytuvi-Gallart A, Donato A D, Sundesha V, Andolfo G, Cigliano R A, Sanseverino W, Ercolano M R. PRGdb 3.0: a comprehensive platform for prediction and analysis of plant disease resistance genes. Nucleic Acids Res, 2018, 46:D1197-D1201.
doi: 10.1093/nar/gkx1119
[4] Liu J L, Liu X L, Dai L Y, Wang G L. Recent progress in elucidating the structure, function and evolution of disease resistance genes in plants. J Genet Genomics, 2007, 34:765-776.
doi: 10.1016/S1673-8527(07)60087-3
[5] Xun H W, Yang X D, He H L, Wang M, Guo P, Wang Y, Pang J S, Dong Y S, Feng X Z, Wang S C, Liu B. Over-expression of GmKR3, a TIR-NBS-LRR type R gene, confers resistance to multiple viruses in soybean. Plant Mol Biol, 2019, 99:95-111.
doi: 10.1007/s11103-018-0804-z
[6] 李廷刚. 棉花抗黄萎病全基因组关联分析及TIR-NBS-LRR类抗病基因GhTNL1功能研究. 中国农业科学院博士学位论文, 北京, 2018.
Li T G. Genome-wide Association Analysis of Cotton Resistance to Verticillium wilt and Functional Study of TIR-NBS-LRR Resistance Gene GhTNL1. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2018 (in Chinese with English abstract).
[7] 黄曼. 番茄SlNBRP1基因的克隆及抗病性研究. 合肥工业大学硕士学位论文, 安徽合肥, 2019.
Huang M. Cloning and Disease Resistance of SlNBRP1 Gene in Tomato. MS Thesis of Hefei University of Technology, Hefei, Anhui, China, 2019 (in Chinese with English abstract).
[8] Qu S H, Liu G F, Zhou B, Bellizzi M, Zeng L R, Dai L Y, Han B, Wang G L. The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics, 2006, 172:1901-1914.
doi: 10.1534/genetics.105.044891
[9] 付瑞双. 番茄类受体激酶SlDALR1在防御细菌性斑点病中的功能研究. 浙江大学硕士学位论文, 浙江杭州, 2020.
Fu R S. Study of Tomato LRR Receptor-like Kinase SlDALR1 in the Defense Against Bacterial Speck. MS Thesis of Zhejiang University, Hangzhou, Zhejiang, China, 2020 (in Chinese with English abstract).
[10] Jiang Z N, Ge S, Xing L P, Han D J, Kang Z S, Zhang G Q, Wang X J, Wang X E, Chen P D, Cao A Z. RLP1.1, a novel wheat receptor-like protein gene, is involved in the defence response against Puccinia striiformis f. sp. tritici. J Exp Bot, 2013, 64:3735-3746.
doi: 10.1093/jxb/ert206
[11] 游春平, 傅莹, 韩静君, 刘开启, 郑奕雄. 我国花生病害的种类及其防治措施. 江西农业学报, 2010, 22(1):97-101.
You C P, Fu Y, Han J J, Liu K Q, Zheng Y X. Occurrence and management of main peanut diseases in China. Acta Agric Jiangxi, 2010, 22(1):97-101 (in Chinese with English abstract).
[12] Deslandes L, Olivier J, Peeters N, Feng D X, Khounlotham M, Boucher C, Somssich I, Genin S, Marco Y. Physical interaction between RRSl-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proc Natl Acad Sci USA, 2003, 100:8024-8029.
doi: 10.1073/pnas.1230660100
[13] Godiard L, Sauviac L, Torii K U, Grenon O, Mangin B, Grimsley N H, Marco Y. ERECTA, an LRR receptor-like kinase protein controlling development pleiotropically affects resistance to bacterial wilt. Plant J, 2003, 36:353-365.
doi: 10.1046/j.1365-313X.2003.01877.x
[14] Mou S L, Gao F, Shen L, He W H, Cheng W, Wu Y, He S L. CaLRR-RLK1, a novel RD receptor-like kinase from Capsicum annuum and transcriptionally activated by CaHDZ27, act as positive regulator in Ralstonia solanacearum resistance. BMC Plant Biol, 2019, 19:28.
doi: 10.1186/s12870-018-1609-6
[15] Cheng W, Xiao Z L, Cai H Y, Wang C Q, Hu Y, Xiao Y P, Zheng Y X, Shen L, Yang S, Liu Z Q, Mou S L, Qiu A L, Guan D Y, He S L. A novel leucine-rich repeat protein, CaLRR51, acts as a positive regulator in the response of pepper to Ralstonia solanacearum infection. Mol Plant Pathol, 2017, 18:1089-1100.
doi: 10.1111/mpp.12462 pmid: 27438958
[16] Zhang C, Chen H, Zhuang R R, Chen Y T, Deng Y, Cai T C, Wang S Y, Liu Q Z, Tang R H, Shan S H, Pan R L, Chen L S, Zhuang W J. Overexpression of the peanut CLAVATA1-like leucine-rich repeat receptor-like kinase AhRLK1 confers increased resistance to bacterial wilt in tobacco. J Exp Bot, 2019, 70:5407-5421.
doi: 10.1093/jxb/erz274
[17] Zhang C, Chen H, Cai T C, Deng Y, Zhuang R R, Zhang N, Zeng Y H, Zheng Y X, Tang R H, Pan R L, Zhuang W J. Overexpression of a novel peanut NBS-LRR gene AhRRS5 enhances disease resistance to Ralstonia solanacearum in tobacco. Plant Biotechnol J, 2017, 15:39-55.
doi: 10.1111/pbi.2017.15.issue-1
[18] Bertioli D J, Jenkins J, Clevenger J, Dudchenko O, Gao D Y, Seijo G, Leal-Bertioli S C M, Ren L H, Farmer A D, Pandey M K, Samoluk S S, Abernathy B, Agarwal G, Ballén-Taborda C, Cameron C, Campbell J, Chavarro C, Chitikineni A, Chu Y, Dash S, Baidouri M E, Guo B Z, Huang W, Kim K D, Korani W, Lanciano S, Lui C G, Mirouze M, Moretzsohn M C, Pham M, Shin J H, Shirasawa K, Sinharoy S, Sreedasyam A, Weeks N T, Zhang X Y, Zheng Z, Sun Z Q, Froenicke L, Aiden E L, Michelmore R, Varshney R K, Holbrook C C, Cannon E K S, Scheffler B E, Grimwood J, Ozias-Akins P, Cannon S B, Jackson S A, Schmutz J. The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nat Genet, 2019, 51:877-884.
doi: 10.1038/s41588-019-0405-z pmid: 31043755
[19] Zhuang W J, Chen H, Yang M, Wang J P, Pandey M K, Zhang C, Chang W C, Zhang L S, Zhang X T, Tang R H, Garg V, Wang X J, Tang H B, Chow C N, Wang J P, Ye Deng1, Wang D P, Khan A W, Yang Q, Cai T C, Bajaj P, Wu K C, Guo B Z, Zhang X Y, Li J J, Liang F, Hu J, Liao B S, Liu S Y, Chitikineni A, Yan H S, Zheng Y X, Shan S H, Liu Q Z, Xie D Y, Wang Z Y, Khan S A , Ali N, Zhao C Z, Li X G, Luo Z L, Zhang S B, Zhuang R R, Peng Z, Wang S Y, Mamadou G, Zhuang Y H, Zhao Z F, Yu W C, Xiong F Q, Quan W P, Yuan M, Li Y, Zou H S, Xia H, Zha L, Fan J P, Yu J G, Xie W P, Yuan J Q, Chen K, Zhao S S, Chu W T, Chen Y T, Sun P C, Meng F B, Zhuo T, Zhao Y H, Li C J, He G H, Zhao Y L, Wang C C, Kavikishor P B, Pan R L, Paterson A H, Wang X Y, Ming R, Varshney R K. The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nat Genet, 2019, 51:865-876.
doi: 10.1038/s41588-019-0402-2
[20] 晏立英, 黄家权, 雷永, 王圣玉, 廖伯寿. 花生青枯菌红安分离物的鉴定. 中国油料作物学报, 2010, 32:144-146.
Yan L Y, Huang J Q, Lei Y, Wang S Y, Liao B S. Identification and mutation of Ralstonia solacearum Hongan isolate. Chin J Oil Crop Sci, 2010, 32:144-146 (in Chinese with English abstract).
[21] Chen Y, Ren X P, Zhou X J, Huang L, Yan L Y, Liao B S, Huang J Y, Huang S M, Wei W H, Jiang H F. Dynamics in the resistant and susceptible peanut ( Arachis hypogaea L.) root transcriptome on infection with the Ralstonia solanacearum. BMC Genomics, 2014, 15:1078.
doi: 10.1186/1471-2164-15-1078
[22] Li B, Dewey C N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinf, 2011, 12:323.
doi: 10.1186/1471-2105-12-323
[23] Trapnell C, Williams B A, Pertea G, Mortazavi A, Kwan G, Baren M J, Salzberg S L, Wold B J, Pachter L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol, 2010, 28:511-515.
doi: 10.1038/nbt.1621 pmid: 20436464
[24] Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 2014, 15:550.
doi: 10.1186/s13059-014-0550-8
[25] Grömping U. Using R and RStudio for data management, statistical analysis and graphics (2nd Edition). J Stat Softw, 2015, 68:1-7.
[26] Luo H Y, Pandey M K, Khan A W, Wu B, Guo J B, Ren X P, Zhou X J, Chen Y N, Chen W G, Huang L, Liu N, Lei Y, Liao B S, Varshney R K, Jiang H F. Next-generation sequencing identified genomic region and diagnostic markers for resistance to bacterial wilt on chromosome B02 in peanut ( Arachis hypogaea L.). Plant Biotechnol J, 2019, 17:2356-2369.
doi: 10.1111/pbi.v17.12
[27] 刘潮, 韩利红, 褚洪龙, 王海波, 高永, 唐利洲. 植物抗病研究进展与展望. 植物保护, 2018, 44(4):1-8.
Liu C, Han L H, Chu H L, Wang H B, Gao Y, Tang L Z. Progresses in and prospects for plant disease resistance research. Plant Prot, 2018, 44(4):1-8 (in Chinese with English abstract).
[28] Shao Z Q, Zhang Y M, Hang Y Y, Xue J Y, Zhou G C, Wu P, Wu X Y, Wu X Z, Wang Q, Wang B, Chen J Q. Long-term evolution of nucleotide-binding site-leucine-rich repeat genes: understanding gained from and beyond the legume family. Plant Physiol, 2014, 166:217-234.
doi: 10.1104/pp.114.243626
[29] Varshney R K, Chen W B, Li Y P, Bharti A K, Saxena R K, Schlueter J A, Donoghue M T A, Azam S , Fan G Y, Whaley A M, Farmer A D, Sheridan J , Iwata A, Tuteja R, Penmetsa R V, Wu W, Upadhyaya H D, Yang S P, Shah T, Saxena K B, Michael T, McCombie W R, Yang B, Zhang G Y, Yang H M, Wang J, Spillane C, Cook D R, May G D, Xu X, Jackson S A. Draft genome sequence of pigeonpea ( Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol, 2012, 30:83-89.
doi: 10.1038/nbt.2022
[30] Schmutz J, McClean P E, Mamidi S, Wu G A, Cannon S B, Grimwood J, Jenkins J, Shu S Q, Song Q J, Chavarro C, Torres-Torres M, Geffroy V, Moghaddam S M, Gao D Y, Abernathy B, Barry K, Blair M, Brick M A, Chovatia M, Gepts P, Goodstein D M, Gonzales M, Hellsten U, Hyten D L, Jia G F, Kelly J D, Kudrna D, Lee R, Richard M M S, Miklas P N, Osorno J M, Rodrigues J, Thareau V, Urrea C A, Wang M, Yu Y, Zhang M, Wing R A, Cregan P B, Rokhsar D S, Jackson S A. A reference genome for common bean and genome-wide analysis of dual domestications. Nat Genet, 2014, 46:707-713.
doi: 10.1038/ng.3008 pmid: 24908249
[31] Schmutz J, Cannon S B, Schlueter J, Ma J X, Mitros T, Nelson W, Hyten D L, Song Q J, Thelen J J, Cheng J L, Xu D, Hellsten U, May G D, Yu Y, Sakurai T, Umezawa T, Bhattacharyya M K, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S Q, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J C, Tian Z X, Zhu L C, Gill N, Joshi T, Libault M, Sethurama A, Zhang X C, Shinozaki K, Nguyen H T, Wing R A, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker R C, Jackson S A. Genome sequence of the palaeopolyploid soybean. Nature, 2010, 463:178-183.
doi: 10.1038/nature08670
[32] 李任建, 申哲源, 李旭凯, 韩渊怀, 张宝俊. 谷子NBS-LRR类基因家族全基因组鉴定及表达分析. 河南农业科学, 2020, 49(2):34-43.
Li R J, Shen Z Y, Li X K, Han Y H, Zhang B J. Genome-wide identification and expression analysis of NBS-LRR gene family in Setaria italic. J Henan Agric Sci, 2020, 49(2):34-43 (in Chinese with English abstract).
[33] Cheng Y, Li X Y, Jiang H Y, Ma W, Miao W Y, Yamada T, Zhang M. Systematic analysis and comparison of nucleotide-binding site disease resistance genes in maize. FEBS J, 2012, 279:2431-2443.
doi: 10.1111/j.1742-4658.2012.08621.x pmid: 22564701
[34] Monosi B, Wisser R J, Pennill L, Hulbert S H. Full-genome analysis of resistance gene homologues in rice. Theor Appl Genet, 2004, 109:1434-1447.
pmid: 15309302
[35] 胡韵卓, 石媛媛, 黄小芳, 毕楚韵, 周丽香, 梁才晓, 黄碧芳, 许明, 林世强, 陈选阳. 三裂叶薯NBS-LRR类抗病基因的筛选鉴定与结构分析. 热带亚热带植物学报, 2020, 28:495-504.
Hu Y Z, Shi Y Y, Huang X F, Bi C Y, Zhou L X, Liang C X, Huang B F, Xu M, Lin S Q, Chen X Y. Screening and identification and structural analysis of NBS-LRR family genes in Ipomoea triloba. J Trop Subtrop Bot, 2020, 28:495-504 (in Chinese with English abstract).
[36] 丁玉梅, 高婷, 暴会会, 谢俊俊, 姚春馨, 周晓罡, 侯思名, 杨正安. 黑籽南瓜NBS类抗病基因的鉴别及关键基因分析. 植物生理学报, 2020, 56:1833-1844.
Ding Y M, Gao T, Bao H H, Xie J J, Yao C X, Zhou X G, Hou S M, Yang Z A. The identification and key genes analysis of NBS type disease-resistance gene from Cucurbita ficifotia. J Plant Physiol, 2020, 56:1833-1844 (in Chinese with English abstract).
[37] 刘云飞, 万红建, 韦艳萍, 李志邈, 叶青静, 王荣青, 阮美颖, 姚祝平, 周国治, 杨悦俭. 番茄NBS-LRR抗病基因家族全基因组分析. 核农学报, 2014, 28:790-799.
Liu Y F, Wan H J, Wei Y P, Li Z M, Ye Q J, Wang R Q, Ruan M Y, Yao Z P, Zhou G Z, Yang Y J. Genome-wide analysis of NBS-LRR resistance genes in tomato. J Nucl Agric Sci, 2014, 28:790-799 (in Chinese with English abstract).
[38] Yang S H, Zhang X H, Yue J X, Tian D C, Chen J Q. Recent duplications dominate NBS-encoding gene expansion in two woody species. Mol Genet Genomics, 2008, 280:187-198.
doi: 10.1007/s00438-008-0355-0
[39] Zheng F Y, Wu H Y, Zhang R Z, Li S M, He W M, Wong F L, Li G Y, Zhao S C, Lam H M. Molecular phylogeny and dynamic evolution of disease resistance genes in the legume family. BMC Genomics, 2016, 17:402.
doi: 10.1186/s12864-016-2736-9
[40] 路妍, 刘洋, 宋阳, 景岚. 向日葵NBS-LRR抗病基因家族全基因组分析. 中国油料作物学报, 2020, 42:441-452.
Lu Y, Liu Y, Song Y, Jing L. Genome-wide analysis of NBS-LRR-encoding gene in Helianthus annuus. Chin J Oil Crop Sci, 2020, 42:441-452 (in Chinese with English abstract).
[41] Kang Y J, Kim K H, Shim S, Yoon M Y, Kim M Y, Van K, Suk-Ha L. Genome-wide mapping of NBS-LRR genes and their association with disease resistance in soybean. BMC Plant Biol, 2012, 12:139.
doi: 10.1186/1471-2229-12-139
[42] Meyers B C, Kozik A, Griego A, Kuang H H, Michelmore R W. Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell, 2003, 15:809-834.
pmid: 12671079
[43] 马媛媛, 甘睿, 王宁宁. 植物富含亮氨酸重复序列型类受体蛋白激酶的生物学功能. 植物生理与分子生物学学报, 2005, 31:331-339.
Ma Y Y, Gan R, Wang N N. Biological functions of leucine-rich repeat class of receptor-like protein kinases in plants. J Plant Physiol Mol Biol, 2005, 31:331-339 (in Chinese with English abstract).
[44] Wu Y Z, Xun Q Q, Guo Y, Zhang J H, Cheng K L, Shi T, He K, Hou S W, Gou X P, Li J. Genome-wide expression pattern analyses of the arabidopsis leucine-rich repeat receptor-like kinases. Mol Plant, 2016, 9:289-300.
doi: 10.1016/j.molp.2015.12.011
[45] Sun R B, Wang S H, Ma D, Liu C L. Genome-wide analysis of LRR-RLK gene family in four Gossypium species and expression analysis during cotton development and stress responses. Genes, 2018, 9:592
doi: 10.3390/genes9120592
[46] Li X X, Ahmad S, Guo C, Yu J, Cao S X, Gao X M, Li W, Li H, Guo Y F. Identification and characterization of LRR-RLK family genes in potato reveal their involvement in peptide signaling of cell fate decisions and biotic/abiotic stress responses. Cells, 2018, 7:120
doi: 10.3390/cells7090120
[47] Wang J L, Hu T H, Wang W H, Hu H J, Wei Q Z, Bao C L. Investigation of evolutionary and expressional relationships in the function of the leucine-rich repeat receptor-like protein kinase gene family (LRR-RLK) in the radish ( Raphanus sativus L.). Sci Rep, 2019, 9:10763-10768.
doi: 10.1038/s41598-019-46999-8
[48] Song H, Nan Z B. Genome-wide analysis of nucleotide-binding site disease resistance genes in Medicago truncatula. Chin Sci Bull, 2014, 59:1129-1138.
doi: 10.1007/s11434-014-0155-3
[49] Tan S L, Wu S. Genome wide analysis of nucleotide-binding site disease resistance genes in Brachypodium distachyon. Comp Funct Genom, 2012, 2012:1-12.
[50] Petre B, Hacquard S, Duplessis S, Rouhier N. Genome analysis of poplar LRR-RLP gene clusters reveals RISP, a defense-related gene coding a candidate endogenous peptide elicitor. Front Plant Sci, 2014, 5:111.
[51] 李奎, 李晓旭, 刘成, 段奇佳, 郭永峰. 普通烟草RLP类受体蛋白家族成员的鉴定与进化、表达分析. 中国烟草科学, 2017, 38(2):63-68.
Li K, Li X X, Liu C, Duan Q J, Guo Y F. Genome-wide identification and expression analysis of the RLPs gene family in Nicotiana tabacum. Chin Tob Sci, 2017, 38(2):63-68 (in Chinese with English abstract).
[52] 黄小芳, 毕楚韵, 石媛媛, 胡韵卓, 周丽香, 梁才晓, 黄碧芳, 许明, 林世强, 陈选阳. 甘薯基因组NBS-LRR类抗病家族基因挖掘与分析. 作物学报, 2020, 46:1195-1207.
Huang X F, Bi C Y, Shi Y Y, Hu Y Z, Zhou L X, Liang C X, Huang B F, Xu M, Lin S Q, Chen X Y. Discovery and analysis of NBS-LRR gene family in sweet potato genome. Acta Agron Sin, 2020, 46:1195-1207 (in Chinese with English abstract).
[1] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[2] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[3] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[4] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[5] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[6] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[7] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[8] 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653.
[9] 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679.
[10] 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711.
[11] 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723.
[12] 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767.
[13] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778.
[14] 曹亮, 杜昕, 于高波, 金喜军, 张明聪, 任春元, 王孟雪, 张玉先. 外源褪黑素对干旱胁迫下绥农26大豆鼓粒期叶片碳氮代谢调控的途径分析[J]. 作物学报, 2021, 47(9): 1779-1790.
[15] 郝西, 崔亚男, 张俊, 刘娟, 臧秀旺, 高伟, 刘兵, 董文召, 汤丰收. 过氧化氢浸种对花生种子发芽及生理代谢的影响[J]. 作物学报, 2021, 47(9): 1834-1840.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!