欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (12): 2324-2334.doi: 10.3724/SP.J.1006.2021.04269

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

红麻DNA甲基化响应镉胁迫及甲基化差异基因的表达分析

卢海1(), 李增强1, 唐美琼1, 罗登杰1, 曹珊1, 岳娇1, 胡亚丽1, 黄震1, 陈涛2, 陈鹏1,*()   

  1. 1广西大学农学院 / 广西高校植物遗传育种重点实验室, 广西南宁 530004
    2广西壮族自治区亚热带作物研究所, 广西南宁 530004
  • 收稿日期:2020-12-09 接受日期:2021-04-14 出版日期:2021-12-12 网络出版日期:2021-05-14
  • 通讯作者: 陈鹏
  • 作者简介:E-mail: 294856020@qq.com
  • 基金资助:
    国家自然科学基金项目(31560341);国家自然科学基金项目(31960368);国家现代农业产业技术体系建设专项(CARS-16-E14)

DNA methylation in response to cadmium stress and expression of different methylated genes in kenaf

LU Hai1(), LI Zeng-Qiang1, TANG Mei-Qiong1, LUO Deng-Jie1, CAO Shan1, YUE Jiao1, HU Ya-Li1, HUANG Zhen1, CHEN Tao2, CHEN Peng1,*()   

  1. 1College of Agriculture, Guangxi University / Guangxi Colleges and Universities Key Laboratory of Plant Genetics and Breeding, Nanning 530004, Guangxi, China
    2Guangxi Subtropical Crops Research Institute, Nanning 530004, Guangxi, China
  • Received:2020-12-09 Accepted:2021-04-14 Published:2021-12-12 Published online:2021-05-14
  • Contact: CHEN Peng
  • Supported by:
    National Natural Science Foundation of China(31560341);National Natural Science Foundation of China(31960368);China Agriculture Research System of MOF and MARA(CARS-16-E14)

摘要:

DNA甲基化是植物重要的表观遗传修饰方式之一, 在响应逆境胁迫中具有重要作用, 但是有关镉胁迫下植物DNA甲基化水平变化的报道甚少。本研究以红麻P3A为材料, 采用水培法对幼苗进行300 μmol L-1的CdCl2处理, 测定幼苗农艺性状及镉含量; 利用甲基化敏感扩增多态性技术(methylation-sensitive amplification polymorphism, MSAP)分析镉胁迫下根系DNA甲基化水平变化; 回收甲基化差异片段并克隆测序, 采用qRT-PCR技术对DNA甲基化差异基因的表达量进行分析。结果表明, CdCl2胁迫显著抑制红麻幼苗的株高、茎粗、根长、根表面积以及全鲜重。对照及镉处理下幼苗根系的DNA甲基化率分别为62.78%、68.23%, 其中全甲基化率分别为37.50%、36.36%, 半甲基化率分别为25.28%、31.87%, 表明镉胁迫显著提高红麻幼苗根系的DNA甲基化水平。qRT-PCR分析表明, 7个与抗性密切相关的DNA甲基化差异基因也存在表达量的差异, 推测DNA甲基化水平变化在响应红麻镉胁迫中发挥重要作用。本结果为深入探索DNA甲基化响应植物镉胁迫的潜在机制提供了理论基础。

关键词: 红麻, 镉胁迫, DNA甲基化, 甲基化敏感扩增多态性(MSAP), 实时荧光定量PCR (qRT-PCR)

Abstract:

DNA methylation is one of the important epigenetic modifications in plants and plays an important role in response to stress. However, there are few reports of the changes of DNA methylation levels in plants under cadmium stress. The seedlings of kenaf P3A were treated with 300 μmol L-1 CdCl2 by hydroponics, the agronomic traits and cadmium contents were investigated. The changes of DNA methylation level of root under cadmium stress were analyzed by using methylation sensitive amplified polymorphism (MSAP) method. In addition, the differential methylation fragments were recovered, cloned, and sequenced. The relative expression levels of differential methylated genes revealed that Cd stress significantly inhibited the plant height, stem diameter, root length, root surface area, and total fresh weight of kenaf seedlings. The whole DNA methylation ratio in root was 68.23% and 62.78% under cadmium and control treatments, respectively. Among them the total methylation ratio was 37.50% and 36.36%, and the semi-methylation ratio was 25.28% and 31.87%, respectively. These results indicated that cadmium stress significantly increased the DNA methylation level of roots DNA. Seven differential methylated genes which involved in stress resistance were characterized differentially expressed under cadmium stress, suggesting that the change of DNA methylation played an important role in response to cadmium stress. This study provides a theoretical basis for further exploring the potential mechanism of DNA methylation in response to cadmium stress in plants.

Key words: kenaf, cadmium stresses, DNA methylation, methylation-sensitive amplified polymorphism (MSAP), real-time fluorescent quantitative PCR (qRT-PCR)

表1

接头和引物序列"

引物类型
Primer type
引物名称及序列 Primer name and sequence (5′-3′)
EcoR I (E) Hpa II/Msp I (HM)
接头
Adapter
EA1 CTCGTAGACTGCGTACC HMA1 GACGATGAGTCTAGAA
EA2 AATTGGTACGCAGTC HMA2 CGTTCTAGACTCATC
预扩增 E0 GACTGCGTACCAATTCA HM0 GATGAGTCTAGAACGGT
Pre-amplification E1 GACTGCGTACCAATTCAAC HM1 GATGAGTCTAGAACGGTAG
E2 GACTGCGTACCAATTCAAG HM2 GATGAGTCTAGAACGGTAC
E3 GACTGCGTACCAATTCACA HM3 GATGAGTCTAGAACGGTTG
选择性扩增 E4 GACTGCGTACCAATTCACT HM4 GATGAGTCTAGAACGGTTC
Selective amplification E5 GACTGCGTACCAATTCACC HM5 GATGAGTCTAGAACGGTGT
E6 GACTGCGTACCAATTCACG HM6 GATGAGTCTAGAACGGTGC
E7 GACTGCGTACCAATTCAGC HM7 GATGAGTCTAGAACGGTCT
E8 GACTGCGTACCAATTCAGG HM8 GATGAGTCTAGAACGGTCG

表2

实时荧光定量PCR引物序列"

引物名称
Primer name
正向引物
Forward sequence (5′-3′)
反向引物
Reverse sequence (5′-3′)
GH3.1 GACCGCCGTCTGTAACTCG GGTTCCACAACTCCGCCC
GrKCS1 GCCGCCAGTGTGATGGATAT CGGTGCTCGGTTCTCCATT
NADP-ME TTCATCTTCCCTTCGCCTT CATCCCAACAACACCTTCCT
ABCG26 ATTGGTACGCAGTCACGATG TTCACCTTCATTTGACACGG
L-AAOh AAGCCTTTCCGATTGTTCTGC GGAGTTAGATTTTTGTTGTTGGGAG
LRR-RLK GCATATACACGATAAGAAACCGC CATGAAGATATTCCAAGCCCC
GaTPPD CCTTCCTCCCTTGGGTTAGT TTCTGTTCGCCTGTGGTTTT
XlCGF8.2DB GACTGCGTACCAATTCAAGGC AATTGTTGCCATATTTCTCCCAT
His3 (reference gene) GTGGAGTCAAGAAGCCTCACAG ATGGCTCTGGAAACGCAAA

表3

CdCl2胁迫对红麻幼苗农艺性状的影响"

CdCl2浓度
Concentration of CdCl2 (μmol L-1)
株高
Plant height
(cm)
茎粗
Stem diameter (mm)
全鲜重
Fresh weight
(g)
根鲜重
Root fresh weight (g)
根长
Root length
(cm)
根表面积
Root surface area (cm2)
0 29.24 a 2.49 a 21.19 a 9.27 a 275.32 a 23.68 a
300 19.94 b 1.70 b 9.54 b 5.50 b 186.74 b 8.98 b

表4

CdCl2胁迫对红麻幼苗农艺性状的相对抑制率"

CdCl2浓度
Concentration of CdCl2 (μmol L-1)
株高
Plant height
茎粗
Stem diameter
全鲜重
Fresh weight
根鲜重
Root fresh weight
根长
Root length
根表面积
Root surface area
0 0 0 0 0 0 0
300 21.52 21.07 54.93 40.67 64.27 49.66

图1

CdCl2胁迫对红麻不同部位镉含量的影响 不同小写字母表示在0.05水平差异显著。"

图2

MSAP聚丙烯酰胺凝胶电泳图 泳道M代表BM50 DNA marker; 泳道1和3代表EcoR I/Hpa II酶切; 泳道2和4代表EcoR I/Msp I酶切。1和2: 0 μmol L-1 CdCl2; 3和4: 300 μmol L-1 CdCl2。蓝色方框; I型(无甲基化); 黑色方框; II型(半甲基化); 白色方框; III型(全甲基化); 红色方框; IV型(全甲基化)。"

表5

DNA甲基化水平统计分析"

甲基化类型
Methylation type
各类型的条带数和比率
Band numbers and ratio of each type
变化比率(上升↑, 下降↓)
Exchange rate (up↑, down↓)
0 μmol L-1 300 μmol L-1
类型I (无甲基化) Type I (Unmethylation) 356 304 ↓ 14.61
类型II (半甲基化) Type II (Hemi-methylation) 242 305 ↑ 26.03
类型III, IV (全甲基化) Type III and IV (Full methylation) 359 348 ↓ 3.06
半甲基化率Hemi-methylated ratio (%) 25.28 31.87 ↑ 26.07
全甲基化率Fully methylated ratio (%) 37.50 36.36 ↓ 3.04
甲基化率/MSAP Total methylated ratio/MSAP (%) 62.78 68.23 ↑ 8.68

表6

甲基化差异片段比对分析"

序列编号
Sequence number
甲基化差异片段比对结果
Comparisons of differentially methylated sequences
功能注释
Functional annotation
1 Leucine-rich repeat receptor-like kinases, (LRR-RLK) At5g15730, Gossypium 充当胞外信号的受体, 参与各种环境及发育信号的感知和传递[22]
As the receptor of extracellular signal, it participates in the perception and transmission of various environmental and developmental signals[22].
2 Zinc finger protein XlCGF8.2DB-like
(XlCGF8.2DB), Bemisia tabaci gastrula
参与一些重要的调控过程, 如; 形态建成、花粉发育、胚发育、胁迫反应等[23]
Widely involved in regulatory of important processes, such as morphogenesis, pollen development, embryo development, stress response, and so on[23].
3 Ankyrin-3-like, Gossypium arboreum 尚未见报道。
Has not been reported.
4 Trehalose-phosphate phosphatase D (GaTPPD), Gossypium arboreum 海藻糖磷酸磷酸酶在植物生长和胁迫反应中起重要作用[24]
Trehalose phosphatase plays an important role in plant growth and stress response[24].
5 Serine/threonine-protein kinase, Gossypium raimondii 丝氨酸/苏氨酸蛋白激酶, 催化多种功能蛋白的磷酸化, 调控植物非生物胁迫[25]
Serine/threonine protein kinases, catalyze the phosphorylation of various functional proteins and regulate abiotic stress in plants[25].
6 Peroxidasin (Pxdn) transcript variant X6, Castor canadensis 过氧化物酶, 植物抗逆过程中的关键酶之一[26]
Peroxidase is one of the key enzymes in plant stress resistance[26].
7 Protein NRT1/ PTR FAMILY 2.7 (NPF2.7), Gossypium hirsutum NRT1/PTR家族蛋白参与转运植物激素及次生代谢物合成过程。
NRT1/PTR family proteins is involved in the transport of plant hormones and the synthesis of secondary metabolites.
8 60S ribosomal protein L16(RPL16), Gossypium hirsutum 参与细胞中蛋白质合成及调控基因表达[27]
It is involved in protein synthesis and gene expression regulation[27].
9 Receptor-like protein kinase At2g46850, Durio zibethinus 类受体激酶通过接收和传递胞外信号调控细胞的生理反应, 参与植物生长发育过程。
Receptor like kinases are involved in plant growth and development by receiving and transmitting extracellular signals to regulate cell physiological responses.
10 Transcript variant X2, Gossypium raimondii 转录变异体X2, 参与细胞增殖及细胞周期活动的调节。
Transcription variant X2 is involved in the regulation of cell proliferation and cell cycle activity.
11 3-ketoacyl-CoA synthase 1 (GrKCS1), Gossypium raimondii 3-酮脂酰辅酶A合成酶, 在抵抗干旱和盐害等非生物胁迫过程中起着重要的作用。
3-ketoacyl coenzyme A synthetase plays an important role in abiotic stresses such as drought and salt stress.
12 L-ascorbate oxidase homolog (L-AAOh), Gossypium hirsutum 抗坏血酸氧化酶, 在调节植物发育过程和应激反应方面发挥重要作用[21]
L-Ascorbic acid oxidase plays an important role in regulating plant development and stress response[21].
13 Indole-3-acetic acid-amido synthetase (GH3.1), Camellia sinensis 吲哚-3醋酸-酰胺合成酶, 通过调节植物体内激素的动态平衡, 参与调控植物的生长发育过程[18]
Indole-3 acetate amide synthetase is involved in the regulation of plant growth and development by regulating the dynamic balance of hormones in plants[18].
14 Acyl-CoA-binding domain-containing protein 4 (ACBD4) 酰基辅酶A结合域蛋白, 在植物的生长发育、生物和非生物胁迫应答中起重要的作用。
Acyl-CoA-binding domain proteins play an important role in plant growth and development, biological and abiotic stress response.
序列编号
Sequence number
甲基化差异片段比对结果
Comparisons of differentially methylated sequences
功能注释
Functional annotation
15 ABC transporter G family member 26 (ABCG26), Gossypium arboreum ABC 转运蛋白G家族参与植物信号转导、次生代谢物运输和非生物胁迫响应等过程[20]
ABC transporter G family are involved in plant signal transduction, secondary metabolite transport and abiotic stress response[20].
16 NADP-dependent malic enzyme (NADP-ME) At1G65930, Gossypium hirsutum NADP依赖苹果酸酶, 通过苹果酸代谢来平衡细胞内的pH来防御生物和非生物胁迫[19]
NADP relies on malic acid enzyme to balance intracellular pH through malate metabolism to protect against biotic and abiotic stresses[19].
17 NAC domain-containing protein 71 (GrNAC71) NAC转录因子, 在逆境胁迫信号转导过程中发挥重要作用[28]
NAC transcription factor plays an important role in stress signal transduction[28].
18 F-box protein At3g07870, Gossypium raimondii 参与调控胞内蛋白降解、受体识别和信号传导[29]
It is involved in the regulation of intracellular protein degradation, receptor recognition and signal transduction[29].
19 Pentatricopeptide repeat-containing
protein (PPRC) At5g55740, Gossypium arboreum
从RNA剪切、编辑、降解和翻译等多个方面影响细胞器中RNA的新陈代谢[30]
RNA metabolism in organelles is affected by RNA splicing, editing, degradation, and translation[30].
20 Ethylene-responsive transcription factor 2 (ERF2) 乙烯转录因子(AP2/ERFs)调控激素响应非生物胁迫[31]
Ethylene transcription factors (AP2/ERFs), widely involved in plant hormone regulation and thus response to abiotic stress[31].

图3

甲基化差异基因的qRT-PCR分析 不同小写字母表示处理在0.05水平差异显著。"

[1] Wadhwa S K, Tuzen M, Kazi T G, Soylak M, Hazer B. Polyhydroxybutyrate-b-polyethyleneglycol block copolymer for the solid phase extraction of lead and copper in water, baby foods, tea and coffee samples. Food Chem, 2014, 152:75-80.
doi: 10.1016/j.foodchem.2013.11.133 pmid: 24444908
[2] Chen P, Ran S, Li R, Huang Z, Qian J, Yu M, Zhou R. Transcriptome de novo assembly and differentially expressed genes related to cytoplasmic male sterility in kenaf (Hibiscus cannabinus L.). Mol Breed, 2014, 34:1879-1891.
doi: 10.1007/s11032-014-0146-8
[3] Chen P, Li Z Q, Luo D J, Jia R X, Lu H, Tang M Q, Hu Y L, Yue J, Huang Z. Comparative transcriptomic analysis reveals key genes and pathways in two different cadmium tolerance kenaf ( Hibiscus cannabinus L.) cultivars. Chemosphere, 2021, 263:128211.
doi: 10.1016/j.chemosphere.2020.128211
[4] Viswanathan C, Zhu J K. Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol, 2009, 12:133-139.
doi: 10.1016/j.pbi.2008.12.006 pmid: 19179104
[5] 赵一博, 辛翠花, 赵慧, 张琦, 池俊玲, 郭江波. DNA甲基化在植物响应重金属胁迫中的作用. 种子, 2016, 35(12):43-46.
Zhao Y B, Xin C H, Zhao H, Zhang Q, Chi J L, Guo J B. The role of DNA methylation in plant response to heavy metal stress. Seed, 2016, 35(12):43-46 (in Chinese with English abstract).
[6] 韩雅楠, 赵秀娟, 蔡禄. MSAP技术在植物抗逆性方面的应用. 生物技术通报, 2010, (6):71-74.
Han Y N, Zhao X J, Cai L. Application of methylation-sensitive amplified polymorphism technology in plant stress resistance. Biotechnol Bull, 2010, (6):71-74 (in Chinese with English abstract).
[7] 李卫国, 常天俊, 龚红梅. MSAP 技术及其在植物遗传学研究中的应用. 生物技术, 2008, 18(1):83-87.
Li W G, Chang T J, Gong H M. Methylation-sensitive amplified polymorphism and its application to plant genetics. Biotechnology, 2008, 18(1):83-87 (in Chinese with English abstract).
[8] 张凯凯, 陈兴银, 杨鹏, 关萍. 不同浓度镉胁迫对孔雀草DNA甲基化的影响. 草业科学, 2016, 33:1673-1680.
Zhang K K, Chen X Y, Yang P, Guan P. Effects of different concentrations Cd stress on DNA methylation of Tagetes patula. Pratac Sci, 2016, 33:1673-1680 (in Chinese with English abstract).
[9] 李照令, 王鹤潼, 陈瑞娟, 贾春云, 李晓军, 台培东, 李培军, 刘宛. 运用MSAP研究镉胁迫对拟南芥幼苗基因甲基化的影响. 农业环境科学学报, 2014, 33:28-36.
Li Z L, Wang H T, Chen R J, Jia C Y, Li X J, Tai P D, Li P J, Liu W. Studying genomic methylation of Arabidopsis thaliana seedlings under Cadmium stress using MSAP. J Agro-Environ Sci, 2014, 33:28-36 (in Chinese with English abstract).
[10] 丁国华, 郭丹蒂, 关旸, 刘保东, 池春玉. 重金属铅镉对濒危植物中华水韭(Isoetes sinensis) DNA甲基化的影响. 农业环境科学学报, 2017, 36:246-249.
Ding G H, Guo D D, Guan Y, Liu B D, Chi C Y. Effect of Pb and Cd on DNA methylation of Isoetes sinensis, a rare plant. J Agro-Environ Sci, 2017, 36:246-249 (in Chinese with English abstract).
[11] 黑淑梅. 重金属铬对小麦DNA甲基化水平的影响. 安徽农业科学, 2011, 39:7589-7591.
Hei S M. Effects of heavy metal-chromium on the DNA methylation in wheat seedling. J Anhui Agric, 2011, 39:7589-7591 (in Chinese with English abstract).
[12] 李红宇, 潘世驹, 钱永德, 马艳, 司洋, 高尚, 郑桂萍, 姜玉伟, 周健. 混合盐碱胁迫对寒地水稻产量和品质的影响. 南方农业学报, 2015, 46:2100-2105.
Li H Y, Pan S J, Qian Y D, Ma Y, Si Y, Gao S, Zheng G P, Jiang Y W, Zhou J. Effects of saline-alkali stress on yield and quality of rice in cold region. J Southern Agric, 2015, 46:2100-2105 (in Chinese with English abstract).
[13] 孙莉鑫. 关于表层土壤重金属含量测定方法探讨. 世界有色金属, 2018, (12):276-277.
Sun L X. Discussion on determination method of heavy metal content in topsoil. World Nonferrous Metal, 2018, (12):276-277 (in Chinese with English abstract).
[14] 李荣华, 夏岩石, 刘顺枝, 孙莉丽, 郭培国, 缪绅裕, 陈健辉. 改进的CTAB提取植物DNA方法. 实验室研究与探索, 2009, 28(9):14-16.
Li R H, Xia Y S, Liu S Z, Sun L L, Guo P G, Miao S Y, Chen J H. CTAB: improved method of DNA extraction in plant. Res Exp Lab, 2009, 28(9):14-16 (in Chinese with English abstract).
[15] 李增强, 史奇奇, 孔祥军, 汤丹峰, 廖小芳, 韦范, 何冰, 莫良玉, 周瑞阳, 陈鹏. 红麻不育系与保持系基因组DNA甲基化比较分析. 中国农业大学学报, 2017, 22(11):17-27.
Li Z Q, Shi Q Q, Kong X J, Tang D F, Liao X F, Wei F, He B, Mo L Y, Zhou R Y, Chen P. Comparative analysis on the kenaf ( Hibiscus cannabinus L.) genomic DNA methylation of its male sterility line and maintainer line. J China Agric Univ, 2017, 22(11):17-27 (in Chinese with English abstract)
[16] Zhang L W, Xu Y, Zhang X T, Ma X K, Zhang L L, Liao Z Y, Zhang Q, Wan X B, Chang Y, Zhang J S, Li D X, Zhang L M, Xu J T, Tao A F, Lin L H, Fang P P, Chen S, Qi R, Xu X M, Qi J M, Ming R. The genome of kenaf ( Hibiscus cannabinus L.) provides insights into bast fibre and leaf shape biogenesis. Plant Biotechnol J, 2020, 18:1796-1809.
doi: 10.1111/pbi.13341 pmid: 31975524
[17] 王春晖, 赵云雷, 王红梅, 陈伟, 龚海燕, 桑晓慧. 适用于转录组测序的棉花幼根总RNA提取方法筛选. 棉花学报, 2013, 25:372-376.
Wang C H, Zhao Y L, Wang H M, Chen W, Gong H Y, Sang X H. Screening of methods to isolate high-quality total RNA from young cotton roots. Cotton Sci, 2013, 25:372-376 (in Chinese with English abstract).
[18] 廖德华. 烟草和番茄吲哚乙酸酰胺合成酶GH3.4在丛枝菌根共生过程中的作用与机制. 南京农业大学博士学位论文, 江苏南京, 2015.
Liao D H. Molecular Mechanisms of the Formation of Arbuscular Mycorrhizai Symbiosis in Tobacco and Tomato. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2015 (in Chinese with English abstract).
[19] Martinoia E, Rentsch D. Malate compartmentation-responses to a complex metabolism. Annu Rev Plant Physiol Plant Mol Biol, 1994, 45:447-467.
doi: 10.1146/annurev.pp.45.060194.002311
[20] 陈海霞, 王暄, 许璐. 铝胁迫下八仙花ABC转运蛋白基因家族的鉴定与生物信息学分析. 分子植物育种, [2021-02-05]. http://kns.cnki.net/kcms/detail/46.1068.S.20201105.1028.002.html.
Chen H X, Wang X, Xu L. Identification and bioinformatics analysis of ABC transporter gene family in hydrangea under aluminum stress. Mol Plant Breed, [2021-02-05]. http://kns.cnki.net/kcms/detail/46.1068.S.20201105.1028.002.html (in Chinese with English abstract).
[21] 贾玉芳, 何龙生, 刘行, 徐逸群. 植物AAO基因家族的鉴定与生物信息学分析. 分子植物育种, [2021-01-28]. http://kns.cnki.net/kcms/detail/46.1068.S.20200805.1627.018.html.
Jia Y F, He L S, Liu X, Xu Y Q. Identification and bioinformatics analysis of AAO gene family in plants. Mol Plant Breed, [2021-01-28]. http://kns.cnki.net/kcms/detail/46.1068.S.20200805.1627.018.html (in Chinese with English abstract).
[22] 王愿, 王晓坤, 戈海曼, 杨磊. 拟南芥富含亮氨酸重复序列类受体激酶AtLRR78A的定位及其分选序列研究. 植物生理学报, 2017, 53:477-486.
Wang Y, Wang X K, Ge H M, Yang L. Location and sequencing of the leucine-rich Arabidopsis thaliana receptor kinase AtLRR78A. Plant Physiol J, 2017, 53:477-486 (in Chinese with English abstract).
[23] 韩莹琰, 张爱红, 范双喜, 曹家树. 十字花科植物C2H2型锌指蛋白新基因BcMF20同源序列克隆与进化分析. 核农学报, 2011, 25:916-921.
Han Y Y, Zhang A H, Fan S X, Cao J S. Cloning and evolutionary analysis of homologous sequences of novel gene encoding C2H2 zinc finger protein in cruciferae. J Nucl Agric Sci, 2011, 25:916-921 (in Chinese with English abstract).
[24] Wang W J, Chen Q B, Xu S M, Liu W C, Zhu X H, Song C P. Trehalose-6-phosphate phosphatase E modulates ABA-controlled root growth and stomatal movement in Arabidopsis. J Integr Plant Biol, 2020, 62:1518-1534.
doi: 10.1111/jipb.v62.10
[25] 刘晨, 魏雅婷, 于月华, 倪志勇. 大豆Glyma.05G222700.2基因生物信息学与逆境表达分析. 大豆科学, 2020, 39:542-548.
Liu C, Wei Y T, Yu Y H, Ni Z Y. Bioinformatics and expression analysis under stress of soybean Glyma.05g22700.2 gene. Soybean Sci, 2020, 39:542-548 (in Chinese with English abstract).
[26] 马峙英, 刘叔倩, 王省芬, 张桂寅, 孙济中, 刘金兰. 过氧化物酶同工酶与棉花黄萎病抗性的相关研究. 作物学报, 2000, 26:431-437.
Ma Z Y, Liu S Q, Wang X F, Zhang G Y, Sun J Z, Liu J L. Relationship between peroxidase isozymes and resistance to Verticillium wilt in cotton. Acta Agron Sin, 2000, 26:431-437 (in Chinese with English abstract).
[27] 廖昌敏, 张咏祀, 刘小红, 魏村雪. 水杉40S核糖体蛋白S8基因的克隆及生物信息学分析. 分子植物育种, 2020, 18:7008-7014.
Liao C M, Zhang Y S, Liu X H, Wei C X. Cloning and bioinformatics analysis of the 40S ribosomal protein S8 gene in Metasequoia glyptostroboides. Mol Plant Breed, 2020, 18:7008-7014 (in Chinese with English abstract).
[28] 申玉华, 李雪梅, 乔晓慧, 苗晓娟, 孟振晗, 刘欣泽. 紫花苜蓿逆境响应转录因子MsNAC3基因克隆及表达分析. 西北植物学报, 2017, 37:1919-1925.
Shen Y H, Li X M, Qiao X H, Miao X J, Meng Z H, Liu X Z. Clone and expression of the NAC transcription factor gene MsNAC3 in Medicago sativa L. Acta Bot Boreali-Occident Sin, 2017, 37:1919-1925 (in Chinese with English abstract).
[29] 黄静依, 孙双, 张婷, 李锐, 兰利琼, 卿人韦. 三角褐指藻F-box like蛋白基因的原核表达及蛋白纯化. 分子植物育种, 2021, 19:3829-3836.
Huang J Y, Sun S, Zhang T, Li R, Lan L Q, Qing R W. Prokaryotic expression and protein purification of F-box like protein gene from Phaeodactylum tricornutum. Mol Plant Breed, 2021, 19:3829-3836 (in Chinese with English abstract).
[30] 黄俊然, 黄文超. 三角形五肽重复蛋白研究进展. 湖北农业科学, 2018, 57(23):19-31.
Huang J R, Huang W C. Research progress on the pentatricopeptide-repeat protein. Hubei Agric Sci, 2018, 57(23):19-31 (in Chinese with English abstract).
[31] Gao Y, Zhang H M, Fan M R, Jia C J, Shi L F, Pan X W, Cao P, Zhao X L, Chang W R, Li M. Structural insights into catalytic mechanism and product delivery of cyanobacterial acyl-acyl carrier protein reductase. Nat Commun, 2020, 11:1525.
doi: 10.1038/s41467-020-15268-y pmid: 32251275
[32] Chen P, Chen T, Li Z Q, Jia R X, Luo D J, Tang M Q, Lu H, Hu Y L, Yue J, Huang Z. Transcriptome analysis revealed key genes and pathways related to cadmium-stress tolerance in kenaf ( Hibiscus cannabinus L.). Ind Crops Prod, 2020, 158:112970.
doi: 10.1016/j.indcrop.2020.112970
[33] 王蜜安. 水稻镉吸收与积累稳定性研究. 湖南农业大学硕士学位论文, 湖南长沙, 2015.
Wang M A. Study on the Stability of Cadmium Absorption and Accumulation in Rice. MS Thesis of Hunan Agricultural University, Changsha, Hunan, China, 2015 (in Chinese with English abstract).
[34] 吴勇. 木薯种质镉积累差异性评价及镉对幼苗生长影响的研究. 湖南农业大学硕士学位论文, 湖南长沙, 2018.
Wu Y. Evaluation of Cd Accumulation in Cassava Varieties and Effect of Cadmium on Seedling Growth. MS Thesis of Hunan Agricultural University, Changsha, Hunan, China, 2018 (in Chinese with English abstract).
[35] 黄湘吉. 芒属植物对重金属镉的耐性及镉积累特征研究. 湖南农业大学硕士学位论文, 湖南长沙, 2017.
Huang X J. Study on the Tolerance to Cadmium and the Cadmium Accumulation of Miscanthus. MS Thesis of Hunan Agricultural University, Changsha, Hunan, China, 2017 (in Chinese with English abstract).
[36] 栗原宏幸, 渡辺美生, 早川孝彦. カドミウム含有水田転換畑におけるケナフ(Hibiscz acasnnabinzas L.)を用いたファイトレメディエーションの試み. 日本壌肥料学雑誌, 2005, 76(40):27-24.
Hiroyuki K, Mio W, Takahiko H. Phytoremediation of Kenaf ( Hibiscz acasnnabinzas L.) in converted paddy field containing cadmium. Jpn J Soil Sci Plant Nutr, 2005, 76(40):27-24 (in Japanese with English abstract).
[37] Sarra A, Aricia E, Mohamed E W M, Bruno C, Roger P, Taoufik B. Potential of kenaf (Hibiscus cannabinus L.) and corn (Zea mays L.) for phytoremediation of dredging sludge contaminated by trace metals. Biodegradation, 2013, 24:563-567 (in Chinese).
doi: 10.1007/s10532-013-9626-5
[38] 李青芝, 李成伟, 杨同文. DNA甲基化介导的植物逆境应答和胁迫记忆. 植物生理学报, 2014, 50:725-734.
Li Q Z, Li C W, Yang T W. Stress response and memory mediated by DNA methylation in plants. Plant Physiol J, 2014, 50:725-734 (in Chinese with English abstract).
[39] 王淑妍, 郭九峰, 刘晓婷, 苑号坤, 李亚娇, 那日. 非生物胁迫下植物表观遗传变异的研究进展. 西北植物学报, 2016, 36:631-640.
Wang S Y, Guo J F, Liu X T, Yuan H K, Li Y J, Na R. Research progress of a biotic stress induced epigenetic variation in plants. Acta Bot Boreali-Occident Sin, 2016, 3:631-640 (in Chinese with English abstract).
[40] 何玲莉, 沈虹, 王燕, 王娟娟, 龚义勤, 徐良, 柳李旺. 铅胁迫下萝卜基因组DNA甲基化分析. 核农学报, 2015, 29:1278-1284.
He L L, Shen H, Wang Y, Wang J J, Gong Y Q, Xu L, Liu L W. Analysis of genomic DNA methylation level in radish under lead stress. J Nucl Agric Sci, 2015, 29:1278-1284 (in Chinese with English abstract).
[41] 王丙莲, 张迎梅, 谭玉凤, 侯亚妮, 刘阳. 镉铅对泥鳅DNA甲基化水平的影响. 毒理学杂志, 2006, 20(2):78-80.
Wang B L, Zhang Y M, Tan Y F, Hou Y N, Liu Y. Influence of cadmium and lead on the DNA methylation level of loach Misgurnus anguillicaudatus. J Toxicol, 2006, 20(2):78-80 (in Chinese with English abstract).
[42] 殷欣. 镉胁迫下大豆生理生化特性及DNA甲基化变异的研究. 哈尔滨师范大学硕士学位论文, 黑龙江哈尔滨, 2016.
Yin X. Soybean Physiological and Biochemical Characteristics and DNA Methylation Variation under Cadmium Stress. MS Thesis of Harbin Normal University, Harbin, Heilongjiang, China, 2016 (in Chinese with English abstract).
[43] Fu Z Y, Zhang Z B, Liu Z H, Hu X J, Xu P. The effects of abiotic stresses on the NADP-dependent malic enzyme in the leaves of the hexaploid wheat. Biol Plant, 2011, 55:196-200.
doi: 10.1007/s10535-011-0030-x
[44] Park J E, Park J Y, Kim Y S, Staswick P E, Jeon J, Yun J, Kim S Y, Kim J, Lee Y H, Park C M. GH3-mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis. J Biol Chem, 2007, 282:10036-10046.
doi: 10.1074/jbc.M610524200
[45] Parihar P, Singh S, Singh R, Singh V P, Prasad S M. Effect of salinity stress on plants and its tolerance strategies: a review. Environ Sci Poll Res Int, 2015, 22:4056-4075.
doi: 10.1007/s11356-014-3739-1
[46] Chiba Y, Shimizu T, Miyakawa S, Kanno Y, Koshiba T, Kamiya Y, Seo M. Identification of Arabidopsis thaliana NRT1/PTR FAMILY (NPF) proteins capable of transporting plant hormones. J Plant Res, 2015, 128:679-686.
doi: 10.1007/s10265-015-0710-2
[47] O'Hara L E, Paul M J, Wingler A. How do sugars regulate plant growth and development? New insight into the role of trehalose-6-phosphate. Mol Plant, 2013, 6:261-274.
doi: 10.1093/mp/sss120 pmid: 23100484
[48] 丁泽红, 吴春来, 颜彦, 付莉莉, 胡伟. 木薯海藻糖-6-磷酸酯酶MeTPP6基因克隆及其表达分析. 江苏农业科学, 2019, 47(6):31-35.
Ding Z H, Wu C L, Yan Y, Fu L L, Hu W. Cloning and expression analysis of MeTPP6 gene of trehalose-6-phosphatase in Manihot esculenta Crantz. Jiangsu Agric Sci, 2019, 47(6):31-35 (in Chinese).
[1] 李增强, 丁鑫超, 卢海, 胡亚丽, 岳娇, 黄震, 莫良玉, 陈立, 陈涛, 陈鹏. 铅胁迫下红麻生理特性及DNA甲基化分析[J]. 作物学报, 2021, 47(6): 1031-1042.
[2] 周步进, 李刚, 金刚, 周瑞阳, 刘冬梅, 汤丹峰, 廖小芳, 刘一丁, 赵艳红, 王颐宁. 利用红麻HcPDIL5-2a非全长基因创制雄性不育新种质[J]. 作物学报, 2021, 47(6): 1043-1053.
[3] 李辉, 李德芳, 邓勇, 潘根, 陈安国, 赵立宁, 唐慧娟. 红麻非生物逆境胁迫响应基因HCWRKY71表达分析及转化拟南芥[J]. 作物学报, 2021, 47(6): 1090-1099.
[4] 李鹏程, 毕真真, 孙超, 秦天元, 梁文君, 王一好, 许德蓉, 刘玉汇, 张俊莲, 白江平. DNA甲基化参与调控马铃薯响应干旱胁迫的关键基因挖掘[J]. 作物学报, 2021, 47(4): 599-612.
[5] 张云, 王丹媚, 王孝源, 任晴雯, 唐可, 张丽宇, 吴玉环, 刘鹏. 外源茉莉酸对菊芋镉胁迫下光合特性及镉积累的影响[J]. 作物学报, 2021, 47(12): 2490-2500.
[6] 李辉, 李德芳, 邓勇, 潘根, 陈安国, 赵立宁, 唐慧娟. 红麻海藻糖生物合成关键酶基因HcTPPJ的克隆及响应逆境的表达分析[J]. 作物学报, 2020, 46(12): 1914-1922.
[7] 袁溢,朱双,方婷婷,蒋金金,王幼平. 人工合成甘蓝型油菜抗旱性及DNA甲基化水平分析[J]. 作物学报, 2019, 45(5): 693-704.
[8] 李鹏程,毕真真,梁文君,孙超,张俊莲,白江平. DNA甲基化参与调控马铃薯干旱胁迫响应[J]. 作物学报, 2019, 45(10): 1595-1603.
[9] 万雪贝,李东旭,徐益,徐建堂,张力岚,张列梅,林荔辉,祁建民,张立武. 红麻EST-SSR标记的开发及其多态性评价[J]. 作物学报, 2017, 43(08): 1170-1180.
[10] 张旸,胡中影,赵月明,李娜,解莉楠. 羽衣甘蓝自交不亲和与自交亲和系种子萌发期DNA甲基化的动态变化[J]. 作物学报, 2016, 42(04): 532-539.
[11] 周艳华,曹红利,岳川,王璐,郝心愿,王新超*,杨亚军*. 冷驯化不同阶段茶树DNA甲基化模式的变化[J]. 作物学报, 2015, 41(07): 1047-1055.
[12] 谭河林,许欣颖,付立曼,向小娥,李剑桥,郭昊伦,叶文雪. 甘蓝型油菜及其亲本物种甲基化酶I基因的克隆及表达模式[J]. 作物学报, 2015, 41(03): 405-413.
[13] 张立武,黄枝秒,万雪贝,林荔辉,徐建堂,陶爱芬,方平平,祁建民. 红麻光周期钝感材料的鉴定与遗传分析[J]. 作物学报, 2014, 40(12): 2098-2103.
[14] 黄志熊,王飞娟,蒋晗,李志兰,丁艳菲,江琼,陶月良,朱诚. 两个水稻品种镉积累相关基因表达及其分子调控机制[J]. 作物学报, 2014, 40(04): 581-590.
[15] 吴绍华,张红宇,薛晶晶,徐培洲,吴先军. 双胚苗水稻来源的单倍体、二倍体及其杂交F1的DNA甲基化位点分析[J]. 作物学报, 2013, 39(01): 50-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!