欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (12): 2335-2347.doi: 10.3724/SP.J.1006.2021.01097

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

长江下游麦区新育成品种(系) 3种主要病害的抗性鉴定及抗病基因/ QTL的分子检测

吕国锋(), 别同德, 王慧, 赵仁慧, 范金平, 张伯桥, 吴素兰, 王玲, 汪尊杰, 高德荣*()   

  1. 江苏里下河地区农业科学研究所 / 农业农村部长江中下游小麦生物学与遗传育种重点实验室, 江苏扬州 225007
  • 收稿日期:2020-12-15 接受日期:2021-04-26 出版日期:2021-12-12 网络出版日期:2021-06-02
  • 通讯作者: 高德荣
  • 作者简介:E-mail: lgf@wheat.org.cn
  • 基金资助:
    国家重点研发计划项目(2017YFD0100800);江苏省重点研发计划项目(BE2018350)

Evaluation and molecular detection of three major diseases resistance of new bred wheat varieties (lines) from the lower reaches of the Yangtze River

LYU Guo-Feng(), BIE Tong-De, WANG Hui, ZHAO Ren-Hui, FAN Jin-Ping, ZHANG Bo-Qiao, WU Su-Lan, WANG Ling, WANG Zun-Jie, GAO De-Rong*()   

  1. Lixiahe Institute of Agricultural Sciences / Key Laboratory of Wheat Biology and Genetic Improvement for Lower & Middle Yangtze Valley, Ministry of Agriculture and Rural Affairs, Yangzhou 225007, Jiangsu, China
  • Received:2020-12-15 Accepted:2021-04-26 Published:2021-12-12 Published online:2021-06-02
  • Contact: GAO De-Rong
  • Supported by:
    National Key Research and Development Programs of China(2017YFD0100800);Key Research and Development Programs of Jiangsu Province(BE2018350)

摘要:

小麦赤霉病、白粉病和黄花叶病是长江下游麦区小麦生产的主要病害。本研究对长江下游麦区新育成49个品种(系)的上述3种病害进行抗性鉴定, 同时利用与抗赤霉病主效QTL Fhb1QFhs.crc-2D、抗白粉病基因Pm21以及抗黄花叶病主效QTL QYm.nau-5A.1QYm.nau-2D连锁的分子标记检测试验品种3种病害抗病基因/QTL组成。结果显示, 49.0%的品种赤霉病抗性达中抗以上, 32.6%的品种对白粉病免疫或抗, 44.9%的品种抗黄花叶病。30.6%和73.6%的试验品种分别含有抗赤霉病主效QTL Fhb1QFhs.crc-2D, 宁麦9号和扬麦158及其衍生品种分别是Fhb1QFhs.crc-2D的主要载体品种; 28.6%的品种含抗白粉病基因Pm21, 镇麦9号和扬麦18及其衍生品种为Pm21的主要载体品种; 分子检测含抗黄花叶病主效QTL QYm.nau-5A.1QYm.nau-2D的品种比例均为24.5%, 宁麦9号和苏麦6号及其衍生品种分别是QYm.nau-5A.1QYm.nau-2D的主要载体品种。宁麦9号和扬麦158衍生品种在小麦抗赤霉病和黄花叶病基因/QTL的组成存在分化。结果为长江下游麦区小麦抗病分子育种提供了重要参考。

关键词: 小麦, 品种, 抗病QTL/基因, 分子鉴定

Abstract:

Fusarium head blight (FHB), powdery mildew (PM), and wheat yellow mosaic virus (WYMV) are three major diseases of wheat in the lower reaches of Yangtze River. The resistance to FHB, PM, and WYMV of 49 new bred wheat varieties (advanced lines) from the lower reaches of the Yangtze River were evaluated, and the molecular markers linked to FHB resistance QTL Fhb1 and QFhs.crc-2D, PM gene Pm21 and WYMV resistance QTL QYm.nau-5A.1 and QYm.nau-2D were used to detect the correspond resistance genes/QTLs. 49.0% of the varieties were above moderate resistance to FHB, 32.6% varieties were immune or resistant to PM, and 44.9% varieties were resistant to WYMV. 30.6% and 73.6% of the tested varieties contained Fhb1 and QFhs.crc-2D, respectively. Ningmai 9 and Yangmai 158 as well as their derived varieties were the main carriers of Fhb1 and QFhs.crc-2D, respectively. Pm21, a powdery mildew resistant gene, was detected in 28.6% of the tested varieties, Zhenmai 9 and Yangmai 18 were two major donors of Pm21. QYm.nau-5A.1 and QYm.nau-2D, two MYMV resistant QTL, were detected in 24.5% of the tested varieties. Ningmai 9 and Zhenmai 9 were two major QTL donors. The composition of resistance genes/QTLs to FHB and WYMV in Yangmai 158 and their derived varieties diverged from Ningmai 9 and its derived varieties. These results provide the important information for molecular breeding for wheat disease resistance in lower reaches of Yangtze River.

Key words: wheat, varieties, disease resistant genes/QTLs, molecular detection

附表1

试验品种、系谱、抗病性及抗性基因/QTL组成"

序号
Order number
品种名称
Variety name
系谱
Pedigree
赤霉病 FHB 黄花叶病 WYMV 白粉病 PM
抗性等级resistance type Fbh1 QFhs.crc-2D 抗性等级resistance type QYm.nau-5A.1 QYm.nau-2D 抗性等级resistance type Pm21/ Pmv
1 苏麦3号 Sumai 3 阿夫/台湾小麦 Funo/Taiwan wheat R + + S HS
2 镇麦9号 Zhenmai 9 苏麦6号/扬97G59 Sumai 6/Yang 97G59 MS + R + IM +
3 苏麦6号 Sumai 6 6698白/扬麦5号 6698 Bai/Yangmai 5 MR + R + HS
4 西风 Xifeng 日本品种 Japanese Variety MS + R + HS
5 扬麦5号 Yangmai 5 9-16/ST1472/506 MS + S HS
6 扬麦158 Yangmai 158 扬麦4号//ST1472/506 Yangmai 4//ST1472/506 MR + S HS
7 宁麦9号 Ningmai 9 扬麦6号/西风 Yangmai 6/Xifeng MR + R + HS
8 宁麦13 Ningmai 13 宁麦9号选系 Selection from Ningmai 9 MR + + S HS
9 宁麦18 Ningmai 18 宁麦9号3/扬麦10号 Ningmai 93/Yangmai 10 MR + R + HS
10 宁麦21 Ningmai 21 宁麦9号/扬麦158//宁麦9号 Ningmai 9/Yangmai 158// Ningmai 9 MS + S HS
11 宁麦26 Ningmai 26 宁9351/宁麦9号 Ning 9351/Ningmai 9 MR + R + HS
12 扬辐麦4号Yangfumai 4 宁麦8号/宁麦9号 Ningmai 8/Ningmai 9 MS + + R + HS
13 扬麦18 Yangmai 18 宁麦9号4/3/扬麦1586//88-128/南农P045 Ningmai 94/3/Yangmai 1586//88-128/Nannong P045 MR + + R + IM +
14 扬14-122 Yang 14-122 镇麦9号/邯6172 Zhenmai 9/Han 6172 MS + + S IM +
15 扬15-65 Yang 15-65 扬麦18//扬02-60/Baldus Yangmai 18//Yang 02-60/Baldus MS + + S IM +
16 扬16-157 Yang 16-157 苏麦6号/扬97G59//扬麦18 Sumai 6/Yang 97G59//Yangmai 18 R + S IM +
17 扬麦9号 Yangmai 9 扬鉴三/扬麦5号 Yangjiansan/Yangmai5 MS + S HS
18 扬麦11 Yangmai 11 扬1583/3/Y.C/扬鉴二//扬85-85 Yangmai 1583/3/Y.C/Yangjian 2//Yang 85-85 MR + S MS
19 扬麦16 Yangmai 16 91F138/扬90-30 91F138/Yang 90-30 MR + S HS
20 扬麦20 Yangmai 20 扬麦10/扬麦9号 Yangmai 10/Yangmai 9 MS + S MS
21 扬麦22 Yangmai 22 扬麦9号3/97033-2 Yangmai 93/97033-2 MS + S IM +
22 扬麦30 Yangmai 30 扬09纹1009/扬麦18 Yang 09 Wen 1009/Yangmai 18 MR + S IM +
23 扬13-32 Yang 13-32 扬麦9号/扬麦18 Yangmai 9/Yangmai 18 MR + R + IM +
24 扬14-214 Yang 14-214 扬麦162/92R137 Yangmai 162/92R137 MR + S IM +
25 扬麦23 Yangmai 23 扬麦16/扬辐9311 Yangmai 16/Yangfumai 9311 MR + R + HS
26 镇麦168 Zhenmai 168 苏麦6号/扬97G59 Sumai 6/Yang 97G59 MS + R + HS
27 扬15-126 Yang 15-126 扬麦22/镇麦9号 Yangmai 22/Zhenmai 9 MS + R + IM +
28 扬14-179 Yang 14-179 宁麦9号/扬麦152//镇麦9号2 Ningmai 9/Yangmai 152//Zhenmai 92 MR R + + IM +
29 安农1124 Annong 1124 02P67/安农95081-8 02P67/Annong 95081-8 MS + R + IM +
30 明麦133 Mingmai 133 郑麦9023/扬麦11 Zhengmai 9023/Yangmai 11 MS + S + HS
31 扬麦13 Yangmai 13 扬88-84// (Maris Dove/扬麦3号) Yang 88-84//Maris Dove/Yangmai 3 S + S HS
32 扬麦14 Yangmai 14 扬麦158/扬麦6号 Yangmai 158/Yangmai 6 MR + S HS
33 扬麦15 Yangmai 15 扬89-40/川育21526 Yang 89-40/Chuanyu 21526 S + S HS
34 扬麦19 Yangmai 19 扬麦9号6/4/1584/3/扬85-854//扬麦5号/ Y.C
Yangmai 96/4/Yangmai 1584/3/Yang 85-854//Yangmai 5/Y.C
MS + S MS
35 扬麦24 Yangmai 24 扬麦17//扬麦11/豫麦18 Yangmai 17//Yangmai 11/Yumai 18 MS + S HS
36 扬麦25 Yangmai 25 扬麦172//扬麦11/豫麦18 Yangmai 172//Yangmai 11/Yumai 18 MS + S HS
37 扬麦27 Yangmai 27 扬麦19/扬07纹5418 Yangmai 18/扬07 Wen 5418 MR + S HS
38 扬15G35 Yang 15 G35 镇麦9号2/5/扬麦152/4/宁麦14/3/扬麦17//扬麦15/扬99G56
Zhenmai 92/5/Yangmai 152/4/Ningmai 14/3/Yangmai 17//Yangmai 15/Yang 99G56
MS + R + IM +
39 扬辐麦6号 Yangfumai 6 扬辐麦4号/扬麦14M1 Yangfumai 4/Yangmai 14M1 MR + R + HS
40 扬辐麦9号 Yangfumai 9 1-扬辐麦4号/扬麦19 1-Yangfumai 4/ Yangmai 19 MR + R + HS
41 扬辐麦10号 Yangfumai 10 (扬辐麦4号/扬麦19)F1辐照 (Yangfumai 4/Yangmai 19) M1 MR + R + HS
42 镇麦10号 Zhenmai 10 苏麦6号/扬97G59 Sumai 6/Yang 97G59 MR + R + IM +
43 宁麦19 Ningmai 19 宁麦8号/扬麦158//扬麦158 Ningmai 8/Yangmai 158//Yangmai 158 MS S HS
44 宁麦20 Ningmai 20 宁麦8号/宁麦9号 Ningmai 8/Ningmai 9 MR + R + HS
45 苏麦899 Sumai 899 宁麦9号/宁麦8号 Ningmai 9/Ningmai 8 MR + S HS
46 华麦6号 Huamai 6 扬麦13/苏麦6号 Yangmai 13/Sumai 6 MS R + HS
47 华麦1028 Huamai 1028 扬麦11/华麦6号 Yangmai 11/Huamai 6 MS R + HS
48 金丰0515 Jinfeng 0515 郑麦9023/镇麦168 Zhengmai 9023/Zhenmai 168 MR + + S R
49 国红6号 Guohong 6 扬麦11/扬麦18 Yangmai 11/Yangmai 18 MR + R + HS
50 国红9号 Guohong 9 扬辐麦2号/罗麦10号 Yangfumai 2/Luomai 10 MR + R + HS
51 鄂麦170 Emai 170 济麦19/豫麦34 Jimai 19/Yumai 34 S + S HS
52 襄麦25 Xiangmai 25 Tai1062/鄂麦19 TAI1062/Emai 19 S + S R

表1

试验品种抗病基因/QTL分型所用的标记"

性状
Trait
基因/QTL名称
Name of genes/QTLs
染色体
Chr.
标记名称
Marker name
参考文献
References
小麦赤霉病Fusarium head blight Fhb1 3BS His3B-4 Zhu et al. [7]
QFhb.crc-2D 2DL gwm539 Somers et al. [12]
小麦白粉病Powdery mildew Pm21 6V MBH1 Bie et al. [24]
小麦黄花叶病Wheat yellow mosaic virus QYm.nau-5A.1 5AL wmc415 Zhu et al. [31]
QYm.nau-2D 2DL wmc41 Xiao et al. [30]

图1

His3B-4 (A)和gwm539 (B)分别对部分品种的Fhb1和QFhs.crc-2D扩增结果 M: DNA ladder; 1~25: 为附表1中相应序号品种; 箭头分别表示Fhb1和QFhs.crc-2D的特异扩增产物。"

图2

Fhb1和QFhs.crc-2D在49个试验品种中的传递路径 “?”表示抗性来源未知。"

图3

MBH1对部分品种Pm21的扩增结果 M: DNA ladder; 1~25: 为附表1中相应序号品种; 箭头分别表示Pm21的特异扩增产物。"

图4

Pm21在14个抗白粉病品种中的传递路径"

图5

wmc415 (A)和wmc41 (B)分别对部分品种小麦抗黄花叶病QTL QYm.nau-5A.1和QYm.nau-2D的扩增结果 M: DNA ladder; 1~25: 为附表1中相应序号品种; 箭头分别表示QYm.nau-5A.1和QYm.nau-2D的特异扩增产物。"

图6

QYm.nau-5A.1和QYm.nau-2D在22个抗小麦黄花叶病品种(系)中的传递路径 “?”表示抗性来源未知。"

[1] 史建荣, 刘馨, 仇剑波, 祭芳, 徐剑宏, 董飞, 殷宪超, 冉军舰. 小麦中镰刀菌毒素脱氧雪腐镰刀菌烯醇污染现状与防控研究进展. 中国农业科学, 2014, 47:3641-3654.
Shi J R, Liu X, Qiu J B, Ji F, Xu J H, Dong F, Yin X C, Ran J J. Deoxynivalenol contamination in wheat and its management. Sci Agric Sin, 2014, 47:3641-3654 (in Chinese with English abstract).
[2] 张爱民, 阳文龙, 李欣, 孙家柱. 小麦抗赤霉病研究现状与展望. 遗传, 2018, 40:858-873.
Zhang A M, Yang W L, Li X, Sun J Z. Current status and perspective on research against Fusarium head blight in wheat. Hereditas (Beijing), 2018, 40:858-873 (in Chinese with English abstract).
[3] Pumphrey O M, Bernardo R, Anderson J A. Validation the Fhb1 QTL for Fusarium head blight resistance in near-isogenic wheat lines developed from breeding populations. Crop Sci, 2007, 47:200-206.
doi: 10.2135/cropsci2006.03.0206
[4] McCartney C A, Somers D J, Fedak G, DePauw R M, Thomas J, Fox S L, Humphreys D G, Lukow O, Savard M E, McCallum B D, Gilbert J, Cao W. The evaluation of FHB resistance QTLs introgressed into elite Canadian spring wheat germplasm. Mol Breed, 2007, 20:209-221.
doi: 10.1007/s11032-007-9084-z
[5] 张宏军, 宿振起, 柏贵华, 张旭, 马鸿翔, 李腾, 邓云, 买春艳, 于立强, 刘宏伟, 杨丽, 李洪杰, 周阳. 利用Fhb1基因功能标记选择提高黄淮冬麦区小麦品种对赤霉病的抗性. 作物学报, 2018, 44:505-511.
Zhang H J, Su Z Q, Bai G H, Zhang X, Ma H X, Li T, Deng Y, Mai C Y, Yu L Q, Liu H W, Yang L, Li H J, Zhou Y. Improvement of resistance of wheat cultivars to Fusarium head blight in the Yellow-Huai Rivers valley winter wheat zone with functional marker selection of Fhb1 gene. Acta Agron Sin, 2018, 44:505-511 (in Chinese with English abstract).
[6] Zhu Z W, Chen L, Zhang W, Yang L J, Zhu W W, Li J H, Liu Y K, Tong H W, Fu L P, Liu J D, Rasheed A, Xia X C, He Z H, Hao Y F, Gao C B. Genome-wide association analysis of Fusarium head blight resistance in Chinese elite wheat lines. Front Plant Sci, 2020, 11:206. doi: 10.3389/fpls.2020.00206.
doi: 10.3389/fpls.2020.00206
[7] 朱展望, 徐登安, 程顺和, 高春保, 夏先春, 郝元峰, 何中虎. 中国小麦品种抗赤霉病基因Fhb1的鉴定与溯源. 作物学报, 2018, 44:473-482.
Zhu Z W, Xu D A, Cheng S H, Gao C B, Xia X C, Hao Y F, He Z H. Characterization of Fusarium head blight resistance gene Fhb1 and its putative ancestor in Chinese wheat germplasm. Acta Agron Sin, 2018, 44:473-482 (in Chinese with English abstract).
[8] 张旭, 姜鹏, 叶人元, 吴磊, 张瑜, 马鸿翔. 宁麦9号及其衍生品种的赤霉病抗性分析及抗性溯源. 分子植物育种, 2017, 15:1053-1060.
Zhang X, Jiang P, Ye R Y, Wu L, Zhang Y, Ma H X. Evaluation and source tracing of resistance to Fusarium head blight in wheat variety Ningmai 9 and its derivatives. Mol Plant Breed, 2017, 15:1053-1060 (in Chinese with English abstract).
[9] 蒋正宁, 吕国锋, 王玲, 陈甜甜, 江伟, 李东升, 高德荣, 张勇. 扬麦品种(系)赤霉病抗扩展性基因分子检测及其抗性评价. 麦类作物学报, 2019, 39:1406-1415.
Jiang Z N, Lyu G F, Wang L, Chen T T, Jiang W, Li D S, Gao D R, Zhang Y. Evaluation of Fusarium head blight resistance and molecular detection of type II resistance genes in Yangmai wheat cultivars (lines). J Triticeae Crops, 2019, 39:1406-1415 (in Chinese with English abstract).
[10] Zhang P P, Guo C J, Liu Z, Bernardo A, Ma H X, Jiang P, Song G C, Bai G H. Quantitative trait loci for Fusarium head blight resistance in wheat cultivars Yangmai 158 and Zhengmai 9023. Crop J, 2021, 9:143-153.
doi: 10.1016/j.cj.2020.05.007
[11] 胡文静, 张勇, 陆成彬, 王凤菊, 刘金栋, 蒋正宁, 王金平, 朱展望, 徐小婷, 郝元峰, 何中虎, 高德荣. 小麦品种扬麦16赤霉病抗扩展QTL定位及分析. 作物学报, 2020, 46:157-165.
Hu W J, Zhang Y, Lu C B, Wang F J, Liu J D, Jiang Z N, Wang J P, Zhu Z W, Xu X T, Hao Y F, He Z H, Gao D R. Mapping and genetic analysis of QTLs for Fusarium head blight resistance to disease spread in Yangmai 16. Acta Agron Sin, 2020, 46:157-165 (in Chinese with English abstract).
[12] Somers D J, Fedak G, Savard M. Molecular mapping of novel genes controlling Fusarium head blight resistance and deoxynivalenol accumulation in spring wheat. Genome, 2003, 46:555-564.
pmid: 12897863
[13] Liu S, Christopher M D, Griffey C A, Hall M D, Gundrum P G, Brooks W S. Molecular characterization of resistance to Fusarium head blight in U.S. soft red winter wheat breeding line VA00W-38. Crop Sci, 2012, 52:2283-2292.
doi: 10.2135/cropsci2012.03.0144
[14] Lu Q X, Lillemo M, Skinnes H, He X Y, Shi J R, Ji F, Dong Y H, Bjørnstad Å. Anther extrusion and plant height are associated with Type I resistance to Fusarium head blight in bread wheat line ‘Shanghai-3/Catbird’. Theor Appl Genet, 2013, 126:317-334.
doi: 10.1007/s00122-012-1981-9
[15] He X Y, Lillemo M, Shi J R, Wu J R, Bjørnstad Å, Belova T, Dreisigacker S, Duveiller E, Singh P. QTL characterization of Fusarium head blight resistance in CIMMYT bread wheat line Soru 1. PLoS One, 2017, 11:e0158052. doi: 10.1371/journal.pone.0158052.
doi: 10.1371/journal.pone.0158052
[16] McCartney C A, Brûlé-Babel A L, Fedak G, Martin R A, McCallum B D, Gilbert J, Hiebert C W, Pozniak C J. Fusarium head blight resistance QTL in the spring wheat cross Kenyon/86ISMN 2137. Front Microbiol, 2016, 7:1542. doi: 10.3389/fmicb.2016.01542.
doi: 10.3389/fmicb.2016.01542 pmid: 27790188
[17] Yi X, Cheng J Y, Jiang Z N, Hu W J, Bie T D, Gao D R, Li D S, Wu R L, Li Y L, Chen S L, Cheng X M, Liu J, Zhang Y, Cheng S H. Genetic analysis of Fusarium head blight resistance in CIMMYT bread wheat line C615 using traditional and conditional QTL mapping. Front Plant Sci, 2018, 9:573. doi: 10.3389/fpls.2018.00573.
doi: 10.3389/fpls.2018.00573
[18] Yang Z P, Gilbert J, Fedak G, Somers D J. Genetic characterization of QTL associated with resistance to Fusarium head blight in a doubled-haploid spring wheat population. Genome, 2005, 48:187-196.
doi: 10.1139/g04-104
[19] Jiang G L, Shi J R, Ward R W. QTL analysis of resistance to Fusarium head blight in the novel wheat germplasm CJ 9306: I. Resistance to fungal spread. Theor Appl Genet, 2007, 116:3-13.
doi: 10.1007/s00122-007-0641-y
[20] 周阳, 何中虎, 张改生, 夏兰琴, 陈新民, 高永超, 井赵斌, 于广军. 1BL/1RS易位系在我国小麦育种中的应用. 作物学报, 2004, 30:531-535.
Zhou Y, He Z H, Zhang G S, Xia L Q, Chen X M, Gao Y C, Jing Z B, Yu G J. Utilization of 1BL/1RS translocation in wheat breeding in China. Acta Agron Sin, 2004, 30:531-535 (in Chinese with English abstract).
[21] 程顺和, 高德荣, 张伯桥, 吴荣林, 陆成彬, 吴宏亚, 吕国锋, 张勇, 陈佩度, 刘大钧. 小麦抗白粉病的遗传改良及多系品系的配制. 麦类作物学报, 2003, 23(2):34-38.
Cheng S H, Gao D R, Zhang B Q, Wu R L, Lu C B, Wu H Y, Lyu G F, Zhang Y, Chen P D, Liu D J. Genetic improvement of wheat powdery mildew resistance and construction of multi-lines. J Triticeae Crops, 2003, 23(2):34-38 (in Chinese with English abstract).
[22] Chen P D, Qi L L, Zhou B, Zhang S Z, Liu D J. Development and molecular cytogenetic analysis of wheat-Haymldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew. Theor Appl Genet, 1995, 91:1125-1128.
doi: 10.1007/BF00223930 pmid: 24170007
[23] He H G, Zhu S Y, Zhao R H, Jiang Z N, Ji Y Y, Ji J, Qiu D, Li H J, Bie T D. Pm21, Encoding a typical CC-NBS-LRR protein, confers broad-spectrum resistance to wheat powdery mildew disease. Mol Plant, 2018, 11:879-882.
doi: 10.1016/j.molp.2018.03.004
[24] Bie T D, Zhao R H, Zhu S Y, Chen S L, Cen B, Zhang B Q, Gao D R, Jiang Z N, Chen T T, Wang L, Wu R L, He H G. Development and characterization of marker MBH1 simultaneously tagging genes Pm21 and PmV conferring resistance to powdery mildew in wheat. Mol Breed, 2015, 35:189.
doi: 10.1007/s11032-015-0385-3
[25] 雷娟利, 陈炯, 陈剑平, 郑滔, 程晔. 我国真菌传线状小麦花叶病毒病病原初步鉴定为小麦黄花叶病毒 (WYMV). 中国病毒学, 1998, 13:89-96.
Lei J L, Chen J, Chen J P, Zheng T, Chen Y. Identification of Chinese fungal-transmitted filamentous wheat mosaic virus by RT-PCR and SSCP. Virol Sin, 1998, 13:89-96 (in Chinese with English abstract).
[26] 岳绪国, 景德道, 陈爱大. 小麦抗梭条花叶病品种的田间筛选及抗性遗传初报. 麦类作物学报, 2001, 21(3):22-25.
Yue X G, Jing D D, Chen A D. Primary study on WSSM resistance and field screening of wheat. J Triticeae Crops, 2001, 21(3):22-25 (in Chinese with English abstract).
[27] Liu W H, Nie H, Wang S B, Li X, He Z T, Han C G, Wang J R, Chen X L, Li L H, Yu J L. Mapping of a novel resistant gene specifying for yellow mosaic disease derived from wheat cultivar Yangfu 9311 by using microsatellite markers. Theor Appl Genet, 2005, 111:651-657.
doi: 10.1007/s00122-005-2012-x
[28] Nishio Z, Kojima H, Hayata A, Iriki N, Tabiki T, Ito M, Yamauchi H, Murray T D. Mapping a gene conferring resistance to Wheat yellow mosaic virus in European winter wheat cultivar ‘Ibis’ ( Triticum aestivum L.). Euphytica, 2010, 176:223-229.
doi: 10.1007/s10681-010-0229-5
[29] Kojima H, Nishio Z, Kobayashi F, Saito M, Sasaya T, Otobe C, Seki M, Oda S, Nakamura T. Identification and validation of a quantitative trait locus associated with wheat yellow mosaic virus pathotype I resistance in a Japanese wheat variety. Plant Breed, 2015, 134:373-378.
doi: 10.1111/pbr.2015.134.issue-4
[30] Xiao J, Chen X L, Xu Z T, Guo J, Wu Z Z, Wang H Y, Zhu X B, Nie M J, Bie T D, Cheng S H, Zhu T T, Luo M C, You F, Wang X E. Validation and diagnostic marker development for a genetic region associated with wheat yellow mosaic virus resistance. Euphytica, 2016, 211:91-101.
doi: 10.1007/s10681-016-1731-1
[31] Zhu X B, Wang H Y, Guo J, Wu Z Z, Cao A Z, Bie T D, Nie M J, You F M, Cheng Z B, Xiao J, Liu Y Y, Cheng S H, Chen P D, Wang X E. Mapping and validation of quantitative trait loci associated with wheat yellow mosaic bymovirus resistance in bread wheat. Theor Appl Genet, 2012, 124:177-188.
doi: 10.1007/s00122-011-1696-3
[32] 姚金宝, 姚国才, 杨学明, 钱存鸣. 小麦抗梭条花叶病品种的鉴定和选育. 麦类作物学报, 2007, 27:345-348.
Yao J B, Yao G C, Yang X M, Qian C M. Evaluation and selection of wheat cultivars resistant to wheat spindle streak mosaic virus. J Triticeae Crops, 2007, 27:345-348 (in Chinese with English abstract).
[33] 何震天, 陈秀兰, 张容, 王建华, 王锦荣. 多抗小麦新品种扬辐麦5号选育. 核农学报, 2013, 27:173-176.
He Z T, Chen X L, Zhang R, Wang J H, Wang J R. Breeding of Yangfumai 5 with multiple disease resistance. Acta Agric Nuci Sin, 2013, 27:173-176 (in Chinese with English abstract).
[34] 吕国锋, 范金平, 高德荣, 张勇, 陆成彬, 张晓祥, 王慧, 刘业宇, 吴素兰, 张伯桥. 1996-2015年江苏省淮南麦区育成品种的遗传多样性分析. 江苏农业学报, 2019, 34:1225-1231.
Lyu G F, Fan J P, Gao D R, Zhang Y, Lu C B, Zhang X X, Wang H, Liu Y Y, Wu S L, Zhang B Q. Genetic diversity analysis of winter wheat cultivars developed in Huainan region of Jiangsu province from 1996 to 2015. Jiangsu J Agric Sci, 2019, 34:1225-1231 (in Chinese with English abstract).
[35] 盛宝钦. 用反应型记载小麦苗期白粉病. 植物保护, 1988, (1):49.
Sheng B Q. Infection reaction types against wheat powdery mildew at seedling stage. Plant Prot, 1988, (1):49 (in Chinese).
[36] 胡文静, 张春梅, 吴迪, 陆成彬, 董亚超, 程晓明, 张勇, 高德荣. 长江中下游小麦抗赤霉病品种筛选与部分农艺性状分析. 中国农业科学, 2020, 53:4313-4321.
Hu W J, Zhang C M, Wu D, Lu C B, Dong Y C, Cheng X M, Zhang Y, Gao D R. Screening for resistance to Fusarium head blight and agronomic traits of wheat germplasms from Yangtze River region. Sci Agric Sin, 2020, 53:4313-4321 (in Chinese with English abstract).
[37] Guo J, Liu C, Zhai S N, Li H S, Liu A F, Cheng D G, Han R, Liu J J, Kong L R, Zhao Z D, Song J M. Molecular and physical mapping of powdery mildew resistance genes and QTLs in wheat: a review. Agric Sci Technol, 2017, 18:965-970.
[38] 孙阳阳, 张勇, 胡文静, 陈树林, 刘健, 李东升, 程凯, 程婧晔, 程晓明, 程顺和. 小麦“N553×扬麦13”群体小穗密度、株高及赤霉病抗性QTL分析. 麦类作物学报, 2017, 37:880-889.
Sun Y Y, Zhang Y, Hu W J, Chen S L, Liu J, Li D S, Cheng K, Cheng J Y, Cheng X M, Cheng S H. QTL analysis for agronomic traits and Fusarium head blight (FHB) resistance using recombinant inbred lines of wheat. J Triticeae Crops, 2017, 37:880-889 (in Chinese with English abstract).
[39] Bai G H, Shaner G. Management and resistance in wheat and barley to Fusarium head blight. Annu Rev Phytopathol, 2004, 42:135-161.
doi: 10.1146/annurev.phyto.42.040803.140340
[40] Erayman M, Sandhu D, Sidhu D, Dilbirligi M, Baenziger P S, Gill K S. Demarcating the gene-rich regions of the wheat genome. Nucleic Acids Res, 2004, 32:3546-3565.
doi: 10.1093/nar/gkh639
[41] Dilbirligi M, Erayman M, Sandhu D, Sidhu D, Gill K S. Identification of wheat chromosomal regions containing expressed resistance genes. Genetics, 2004, 166:461-481.
pmid: 15020436
[42] Cuthbert P A, Somers D J, Thomas J, Cloutier S, Brulé-Babel A. Fine mapping Fhb1, a major gene controlling Fusarium head blight resistance in bread wheat (Triticum aestivum L.). Theor Appl Genet, 2006, 112:1465-1472.
doi: 10.1007/s00122-006-0249-7
[43] Mago R, Tabe L, McIntosh R A, Pretorius Z, Kota R, Paux E, Wicker T, Breen J, Lagudah E S, Ellis J G, Spielmeyer W. A multiple resistance locus on chromosome arm 3BS in wheat confers resistance to stem rust (Sr2), leaf rust (Lr27) and powdery mildew. Theor Appl Genet, 2011, 123:615-623.
doi: 10.1007/s00122-011-1611-y pmid: 21573954
[44] Zhang X F, Rouse M N, Nava I C, Jin Y, Anderson J A. Development and verification of wheat germplasm containing both Sr2 and Fhb1. Mol Breed, 2016, 36:85-99.
doi: 10.1007/s11032-016-0502-y
[45] Kumar U, Joshi A K, Kumari M, Paliwal R, Kumar S, Röder M S. Identification of QTLs for stay green trait in wheat ( Triticum aestivum L.) in the ‘Chirya3’ × ‘Sonalika’ population. Euphytica, 2010, 174:437-445.
doi: 10.1007/s10681-010-0155-6
[46] Sukumaran S, Dreisigacker S, Lopes M, Chavez P, Reynolds M P. Genome-wide association study for grain yield and related traits in an elite spring wheat population grown in temperate irrigated environments. Theor Appl Genet, 2015, 128:353-363.
doi: 10.1007/s00122-014-2435-3
[47] Li X M, He Z H, Xiao Y G, Xia X C, Trethowan R, Wang H J, Chen X M. QTL mapping for leaf senescence-related traits in common wheat under limited and full irrigation. Euphytica, 2015, 203:569-582.
doi: 10.1007/s10681-014-1272-4
[48] Pinto R S, Lopes M S, Collins N C, Reynolds M P. Modelling and genetic dissection of staygreen under heat stress. Theor Appl Genet, 2016, 129:2055-2074.
doi: 10.1007/s00122-016-2757-4
[49] Wang R X, Hai L, Zhang X Y, You G X, Yan C S, Xiao S H. QTL mapping for grain filling rate and yield-related traits in RILs of the Chinese winter wheat population Heshangmai × Yu 8679. Theor Appl Genet, 2009, 118:313-325.
doi: 10.1007/s00122-008-0901-5 pmid: 18853131
[50] 张学勇, 童依平, 游光霞, 郝晨阳, 盖红梅, 王兰芬, 李滨, 董玉琛, 李振声. 选择牵连效应分析: 发掘重要基因的新思路. 中国农业科学, 2006, 39:1526-1535.
Zhang X Y, Tong Y P, You G X, Hao C Y, Ge H M, Wang L F, Li B, Dong Y C, Li Z S. Hitchhiking effect mapping: a new approach for discovering agronomic important genes. Sci Agric Sin, 2006, 39:1526-1535 (in Chinese with English abstract).
[51] 吕国锋, 范金平, 刘业宇, 张伯桥, 高德荣, 王慧, 吴素兰, 程凯, 王秀娥. 小麦品种(系)延绿性的遗传变异及其特征. 麦类作物学报, 2018, 38:1072-1079.
Lyu G F, Fan J P, Liu Y Y, Zhang B Q, Gao D R, Wang H, Wu S L, Cheng K, Wang X E. Genetic variance of stay green and its characteristics of leaf senescence in wheat variety. J Triticeae Crops, 2018, 38:1072-1079 (in Chinese with English abstract).
[52] 姚金宝, 姚国才, 杨学明, 黄胜东, 钱存鸣, 周朝飞, 陈伟明. 长江下游地区小麦超高产育种的探讨. 南京农专学报, 2000, 16(4):1-5.
Yao J B, Yao G C, Yang X M, Huang S D, Qian C M, Zhou C F, Chen W M. Approach to super-high yield breeding in wheat in the lower reaches of the Yangtze River. J Nanjing Agric Tech Coll, 2000, 16(4):1-5 (in Chinese with English abstract).
[53] Guo J, Zhang Y, Shi W P, Zhang B Q, Zhang J J, Xu Y H, Cheng X M, Cheng K, Zhang X Y, Hao C Y, Cheng S H. Association analysis of grain-setting rates in apical and basal spikelets in bread wheat ( Triticum aestivum L.). Front Plant Sci, 2015, 6:1029. doi: 10.3389/fpls.2015.01029.
doi: 10.3389/fpls.2015.01029
[54] 张立平, 葛秀秀, 何中虎, 王德森, 闫俊, 夏先春, Mark W S. 普通小麦多酚氧化酶活性的QTL分析. 作物学报, 2005, 31:7-10.
Zhang L P, Ge X X, He Z H, Wang D S, Yan J, Xia X C, Mark W S. Mapping QTLs for polyphenol oxidase activity in a DH population from common wheat. Acta Agron Sin, 2005, 31:7-10 (in Chinese with English abstract).
[55] 王晓波, 马传喜, 何克勤, 司红起, 张业伦. 小麦2D染色体上多酚氧化酶(PPO)基因STS标记的开发与应用. 中国农业科学, 2018, 41:1583-1590.
Wang X B, Ma C X, He K Q, Si H Q, Zhang Y L. Development and application of an STS marker for grain PPO gene located on chromosome 2D in common wheat. Sci Agric Sin, 2018, 41:1583-1590 (in Chinese with English abstract).
[56] 姜朋, 张平平, 张旭, 陈小霖, 姚金保, 马鸿翔. 弱筋小麦宁麦9号及其衍生系的蛋白质含量遗传多样性及关联分析. 作物学报, 2015, 41:1828-1835.
Jiang P, Zhang P P, Zhang X, Chen X L, Yao J B, Ma H X. Genetic diversity and association analysis of protein content in weak gluten wheat Ningmai 9 and its derived lines. Acta Agron Sin, 2015, 41:1828-1835 (in Chinese with English abstract).
[57] Zhang D Y, Zhu K Y, Dong L L, Liang Y, Li G Q, Fang T L, Guo G H, Wu Q H, Xie J Z, Chen Y X, Lu P, Li M M, Zhang H Z, Wang Z Z, Zhang Y, Sun Q X, Liu Z Y. Wheat powdery mildew resistance gene Pm64 derived from wild emmer (Triticum turgidum var. dicoccoides) is tightly linked in repulsion with stripe rust resistance gene Yr5. Crop J, 2019, 7:761-770.
doi: 10.1016/j.cj.2019.03.003
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[3] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[4] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[5] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[6] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[7] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[8] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[9] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[10] 闫岩, 张钰石, 刘础荣, 任丹阳, 刘洪润, 刘雪晴, 张明才, 李召虎. 冬小麦-夏玉米轮作“双晚”种植模式下的品种匹配与资源效率[J]. 作物学报, 2022, 48(2): 423-436.
[11] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[12] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[13] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[14] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[15] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!