欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (12): 2348-2361.doi: 10.3724/SP.J.1006.2021.04268

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

马铃薯GAUT基因家族的全基因组鉴定及表达分析

牛娜1,2(), 刘震2, 黄鹏翔2,3, 朱金勇1,2, 李志涛1,2, 马文婧1,2, 张俊莲2,3, 白江平1,2,*(), 刘玉汇1,2,*()   

  1. 1甘肃农业大学农学院,甘肃兰州 730070
    2甘肃省干旱生境作物学重点实验室 / 甘肃省作物遗传改良与种质创新重点实验室,甘肃兰州 730070
    3甘肃农业大学园艺学院,甘肃兰州 730070
  • 收稿日期:2020-12-09 接受日期:2021-04-14 出版日期:2021-12-12 网络出版日期:2021-06-03
  • 通讯作者: 白江平,刘玉汇
  • 作者简介:E-mail: 2413748774@qq.com
  • 基金资助:
    国家自然科学基金项目(31860398);甘肃省高等学校创新基金项目(2020A-056);甘肃省杰出青年基金项目(17JR5RA138);甘肃省陇原青年创新团队项目(LRYCT-2020-1)

Genome-wide identification and expression analysis of potato GAUT gene family

NIU Na1,2(), LIU Zhen2, HUANG Peng-Xiang2,3, ZHU Jin-Yong1,2, LI Zhi-Tao1,2, MA Wen-Jing1,2, ZHANG Jun-Lian2,3, BAI Jiang-Ping1,2,*(), LIU Yu-Hui1,2,*()   

  1. 1College of Agronomy, Gansu Agricultural University, Lanzhou 730070, Gansu, China
    2Gansu Provincial Key Laboratory of Arid Land Crop Science / Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Lanzhou 730070, Gansu, China
    3College of Horticulture, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2020-12-09 Accepted:2021-04-14 Published:2021-12-12 Published online:2021-06-03
  • Contact: BAI Jiang-Ping,LIU Yu-Hui
  • Supported by:
    National Natural Science Foundation of China(31860398);Program for Innovation Foundation of the Higher Education Institutions of Gansu Province(2020A-056);Gansu Science Foundation for Distinguished Young Scholars(17JR5RA138);Program for Longyuan Youth Innovation Team of Gansu Province(LRYCT-2020-1)

摘要:

半乳糖醛酸转移酶(GAUT)是一种参与催化糖基化反应的酶类,在植物生长发育过程中发挥着重要作用。本研究鉴定了马铃薯GAUT家族成员,并对其理化性质、染色体定位、基因结构、保守蛋白结构域、基因重复事件和表达模式进行了分析。结果表明,鉴定到的41个GAUT家族成员(StGAUT),不均匀的分布在10条染色体上。根据基因的结构和系统发育蛋白特征,将41个StGAUT分为4个亚组。共线性分析表明,StGAUT基因家族存在12对片段重复基因,均在纯化选择下进化。通过对马铃薯双单倍体(DM)的不同组织部位和非生物胁迫下的RNA-seq数据进行分析,筛选出了组织特异性表达及响应非生物胁迫的StGAUT基因。此外,进一步对不同四倍体栽培种彩色马铃薯的薯皮和薯肉进行RNA-seq测序和分析,获得了可能参与花色素苷生物合成的StGAUT基因。本研究结果为进一步阐明StGAUT基因在马铃薯中的功能提供了有价值的信息。

关键词: 马铃薯, 半乳糖醛酸转移酶, 表达分析, 花色素苷生物合成

Abstract:

Galacturonyltransferases (GAUTs) are enzymes responsible for catalyzing glycosylation reactions and play an important role in the growth and development of plant. In this study, GAUT genes family members in potato (StGAUT) were identified, and their physical and chemical characteristics, distribution on chromosomes, gene structure, conserved motifs, gene duplication events, and expression patterns were analyzed. The results showed that a total of 41 StGAUTs were identified and distributed extensively and unevenly on 10 chromosomes. According to their structural and phylogenetic protein features, these 41 StGAUT genes were divided into four subclasses. Collinearity analysis indicated that 12 pairs of StGAUTs were segmental duplication genes, and these gene pairs evolved under purifying selection. RNA-seq data of different tissues and abiotic stresses were used to analyze tissue-specific and abiotic stress-responses of the StGAUT genes in doubled monoploid potato (DM). Results revealed that StGAUT genes might be involved in anthocyanin biosynthesis in three different-colored potato cultivars based on RNA-seq data. The results provide valuable information regarding further functional elucidation of StGAUT genes in potato.

Key words: potato (Solanum tuberosum L.), galacturonyltransferase, the relative expression level, anthocyanin biosynthesis

表1

qPCR引物序列"

基因名称
Gene name
正向引物
Forward sequence (5°-3°)
反向引物
Reverse sequence (5°-3°)
StEF-1α GGTCGTGTTGAGACTGGTGTGATC GCTTCGTGGTGCATCTCTACAGAC
PG0024800 ACAGAGTATTCGCTTGGCAGGTTC CTTCCATCCGGCAGCCTCTAAAC
PG0024782 CATTGGAGTGGAGGTGGCAAACC TGCAAATCATATCGAGCCCAGAGC
PG0020103
PG0000827
CTGATCTCGGCGTCGGAATTACAC
AAGCTCCAGCATTCCGCAACG
AGCCAGAACCAATGAACGGTGATC
CGGAGGTAAGGGGAGGAGTAATCG
PG0003522 GCCGTTGATGGTGAAGTTGAAGC GCCGCCGATGGAGCAGTTATG
PG0001444 CAGACAGTTGCCTTCACCAGAGC GGCAGCCAGGATGTTGTCAGTG
PG0001396 GGGAAACCTTGGGTCAGGCTTG CATCGCTCTTCGCTCTTGATCGTC
PG0001388 ACTTGCATCGGTCATTGGTGTCAC TAAGCGGCGTAGGCATTCACAAG

图1

StGAUT基因在马铃薯12条染色体上的分布"

图2

拟南芥和马铃薯GAUT基因家族进化分析 不同颜色的半圆代表不同的亚组。蓝色圆表示StGAUT基因,红色五角星表示AtGAUT基因。"

表2

StGAUT基因家族理化性质及亚细胞定位"

基因名称
Gene name
染色体定位Chromosome
localization
亚组
分类Subgroup
氨基酸长度Amino acid
length
等电点
Point isoelectric (pI)
相对分子量
Molecular
weight (kD)
亚细胞定位
Subcellular localization
PG0025139 ch02 C III 533 9.30 60,619.92 线粒体 Mitochondrial
PG0003522 ch02 C II 337 5.48 38,646.39 细胞外 Extracellular
PG0015490 ch02 C II 327 5.52 37,560.90 细胞外 Extracellular
PG0001183 ch02 C I 285 5.77 31,985.75 细胞膜 Plasma membrane
PG0001388 ch02 C IV 547 8.47 63,223.59 线粒体 Mitochondrial
PG0001396 ch02 C I 365 8.84 42,038.75 细胞膜 Plasma membrane
PG0010088 ch02 C I 345 6.24 38,390.78 细胞膜 Plasma membrane
PG0001444 ch02 C III 534 9.09 60,404.61 线粒体 Mitochondrial
PG0004427 ch00 C III 423 9.04 48,777.15 线粒体 Mitochondrial
PG2003179 ch07 C IV 597 9.33 68,386.80 线粒体 Mitochondrial
PG0017341 ch07 C III 545 7.36 61,040.35 细胞膜 Plasma membrane
PG0019228 ch07 C III 533 9.10 60,862.53 线粒体 Mitochondrial
PG0018996 ch01 C II 555 8.84 65,196.17 细胞核 Nuclear
基因名称
Gene name
染色体定位Chromosome
localization
亚组
分类Subgroup
氨基酸长度Amino acid
length
等电点
Point isoelectric (pI)
相对分子量
Molecular
weight (kD)
亚细胞定位
Subcellular localization
PG0046135 ch01 C II 321 6.02 36,737.36 细胞质 Cytoplasmic
PG0018997 ch01 C II 504 8.56 58,979.96 细胞质 Cytoplasmic
PG0000010 ch01 C IV 688 9.46 78,276.85 线粒体 Mitochondrial
PG0005216 ch01 C II 336 6.02 38,507.42 细胞质 Cytoplasmic
PG0012098 ch01 C III 90 10.39 10,714.47 线粒体 Mitochondrial
PG0024782 ch01 C I 353 9.26 40,529.85 细胞膜 Plasma membrane
PG0014677 ch01 C IV 680 8.34 78,728.64 细胞核 Nuclear
PG0023500 ch05 C II 533 8.96 60,350.47 细胞膜 Plasma membrane
PG0000827 ch05 C I 351 8.64 40,823.85 细胞膜 Plasma membrane
PG0022608 ch05 C I 385 8.32 44,667.17 细胞膜 Plasma membrane
PG0019367 ch12 C I 116 9.45 13,445.85 细胞膜 Plasma membrane
PG0007896 ch12 C IV 579 9.00 66,706.29 线粒体 Mitochondrial
PG0014637 ch06 C I 350 8.68 40,382.78 细胞膜 Plasma membrane
PG0011872 ch06 C II 465 8.68 52,580.83 细胞膜 Plasma membrane
PG0020103 ch06 C IV 557 9.23 63,946.48 线粒体 Mitochondrial
PG0003843 ch09 C I 356 8.63 40,860.88 细胞外 Extracellular
PG0027950 ch09 C IV 288 7.21 32,817.57 细胞膜 Plasma membrane
PG0031840 ch09 C I 353 9.02 40,214.14 细胞膜 Plasma membrane
PG0024623 ch09 C IV 536 6.95 62,348.31 细胞膜 Plasma membrane
PG0027227 ch04 C IV 678 9.26 77,430.93 细胞核 Nuclear
PG0016880 ch04 C I 351 5.99 39,345.05 细胞膜 Plasma membrane
PG0008016 ch04 C II 579 8.70 67,676.72 细胞质 Cytoplasmic
PG0024824 ch04 C IV 534 9.18 61,816.85 细胞膜 Plasma membrane
PG0008015 ch04 C II 564 9.02 66,085.84 细胞核 Nuclear
PG0011479 ch04 C II 533 9.05 60,263.41 细胞膜 Plasma membrane
PG0024800 ch04 C II 648 6.24 75,006.44 细胞质 Cytoplasmic
PG0014401 ch10 C III 533 6.58 60,586.97 细胞质 Cytoplasmic
PG0010264 ch10 C IV 635 9.24 72,635.34 线粒体 Mitochondrial

图3

StGAUT的进化关系、基因结构和保守基序分析 A:StGAUT进化树。B:StGAUT基因的外显子/内含子结构;蓝色框表示外显子,相同长度的黑线表示内含子,红色方框表示上游/下游区域,数字0、1和2表示内含子的剪接阶段。C:StGAUT中保守基序的分布;10个不同颜色的框代表了10个不同的基序。"

图4

StGAUT基因的片段重复事件 灰色线表示马铃薯基因组中的所有同线性区块,红色线表示StGAUT基因的片段重复。"

表3

StGAUT片段重复基因的Ka/Ks比值"

序号
No.
基因1
Gene 1
基因2
Gene 2
非同义替换率
Ka
同义替换率
Ks
非同义替换率/同义替换率
Ka/Ks
P
P-value
类型
Type
1 PG0001396 PG0022608 0.946754 1.20121 0.788168 4.76E-08 片段重复Segmental repeat
2 PG0024782 PG0031840 0.291121 3.40619 0.0854681 0 片段重复Segmental repeat
3 PG0003843 PG0014637 0.121239 1.39384 0.0869818 1.54E-98 片段重复Segmental repeat
4 PG0010088 PG0016880 0.179392 4.47249 0.0401102 0 片段重复Segmental repeat
5 PG0001183 PG0010088 0.0740382 2.24318 0.0330059 2.71E-125 片段重复Segmental repeat
6 PG0011479 PG0023500 0.103092 0.542081 0.190177 1.53E-47 片段重复Segmental repeat
7 PG0005216 PG0046135 0.264587 3.85123 0.0687019 0 片段重复Segmental repeat
8 PG0003522 PG0015490 0.103439 1.30535 0.0792418 1.55E-87 片段重复Segmental repeat
9 PG0014401 PG0019228 0.077988 0.755095 0.103282 3.94E-89 片段重复Segmental repeat
10 PG0001444 PG0025139 0.0574037 0.557829 0.102906 6.74E-66 片段重复Segmental repeat
11 PG0020103 PG0027950 0.957665 1.1718 0.817262 1.33E-05 片段重复Segmental repeat
12 PG0007896 PG2003179 0.172114 0.703844 0.244535 2.81E-54 片段重复Segmental repeat

图5

StGAUT基因在不同组织中的表达 对41个StGAUT基因表达量取以2为底的对数进行标准化处理,不同颜色的色块表示基因在不同组织中的表达水平。"

图6

StGAUT基因在盐、干旱、热胁迫下的表达量 盐胁迫、甘露醇胁迫和高温胁迫下StGAUT基因在DM马铃薯中的表达量。标尺表示与对照相比各基因的表达倍数(log2 FC)。"

图7

StGAUT基因在不同薯皮薯肉颜色中的表达 对41个StGAUT基因表达量取以2为底的对数进行标准化处理,不同颜色的色块表示基因在不同颜色薯皮薯肉中的表达水平。XDS、HMS和LTS分别代表‘新大坪’、‘黑美人’和‘铃田红美’的薯皮。XDF、HMF和LTF分别代表‘新大坪’、‘黑美人’和‘铃田红美’的薯肉。"

图8

8个StGAUT基因在白色和彩色薯皮和薯肉中的定量表达分析 XDS、HMS和LTS分别代表‘新大坪’、‘黑美人’和‘铃田红美’的薯皮。XDF、HMF和LTF分别代表‘新大坪’、‘黑美人’和‘铃田红美’的薯肉。"

[1] 田鹏, 刘占林. 糖基转移酶超家族. 生命的化学, 2011, 31:732-736.
Tian P, Liu Z L. Glycosyltransferase superfamily. Chem Life, 2011, 31:732-736 (in Chinese with English abstract).
[2] Vincent L, Hemalatha G R, Elodie D, Coutinho P M, Bernard H. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res, 2014, 42:D490-D495.
doi: 10.1093/nar/gkt1178
[3] Yin Y, Chen H, Hahn M G, Mohnen D, Xu Y. Evolution and function of the plant cell wall synthesis-related glycosyltransferase family 8. Plant Physiol, 2010, 153:1729-1746.
doi: 10.1104/pp.110.154229
[4] Cantarel B L, Coutinho P M, Corinne R, Thomas B, Vincent L, Bernard H. The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res, 2009, 37:D233-D238.
doi: 10.1093/nar/gkn663
[5] Fabiana D G, Bermúdez L, Silvestre L B, Pereira D S A, Paula E, Demarco D, Alseekh S, Insani M, Buckeridge M, Almeida J, Grigioni G, Robert F A, Carrari F, Rossi M. Galacturonosyltransferase 4 silencing alters pectin composition and carbon partitioning in tomato. J Exp Bot, 2017, 64:2449-2466.
doi: 10.1093/jxb/ert106
[6] Sterling J, Atmodjo M, Inwood S, Kolli V, Quigley H, Hahn M, Mohnen D. Functional identification of an Arabidopsis pectin biosynthetic homogalacturonan galacturonosyltransferase. Proc Natl Acad Sci USA, 2006, 103:5236-5241.
doi: 10.1073/pnas.0600120103
[7] Mohnen D. Pectin structure and biosynthesis. Curr Opin Plant Biol, 2008, 11:266-277.
doi: 10.1016/j.pbi.2008.03.006 pmid: 18486536
[8] Wang L, Wang W, Wang Y Q, Liu Y Y, Wang J X, Zhang X Q, Ye D, Chen L Q. Arabidopsis galacturonosyltransferase GAUT13 and GAUT14 have redundant functions in pollen tube growth. Mol Plant, 2013, 6:1131-1148.
doi: 10.1093/mp/sst084 pmid: 23709340
[9] 张松雨, 刘正文, 张艳, 杨君, 马峙英, 王省芬. 海岛棉GAUT基因家族的鉴定及其在棉纤维发育中的表达分析. 植物遗传资源学报, 2018, 19:722-730.
Zhang S Y, Liu Z W, Zhang Y, Yang J, Ma Z Y, Wang X F. Genome-wide identification of GAUT gene family in Gossypium barbadense L. and expression analysis in fiber developmental stages. J Plant Genet Resour, 2018, 19:722-730 (in Chinese with English abstract).
[10] Altschul S F, Madden T L, Schäffer A A, Zhang J, Zhang Z, Miller W, Lipman D J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 1997, 25:3389-3402.
pmid: 9254694
[11] Bjellqvist B, Hughes G J, Pasquali C, Paquet N, Ravier F, Sanchez J C, Frutiger S, Hochstrasser D. The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequences. Electrophoresis, 1993, 14:1023-1031.
pmid: 8125050
[12] Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins M R, Appel R D, Bairoch A. Protein identification and analysis tools on the ExPASy server. Proteomics Protocol Handbook, 2005, 53:571-607.
[13] 沈知临, 许磊, 陈文, 吴楠, 蔡永萍, 林毅, 高俊山. 亚洲棉和雷蒙德氏棉MATE基因家族生物信息学及其同源基因在陆地棉中的表达分析. 棉花学报, 2016, 28:215-226.
Shen Z L, Xu L, Chen W, Wu N, Cai Y P, Lin Y, Gao J S. Bioinformatic analysis of the multidrug and toxic compound extrusion gene family in Gossypium arboreum and Gossypium raimondii and expression of orthologs in Gossypium hirsutum. Cotton Sci, 2016, 28:215-226 (in Chinese with English abstract).
[14] Bailey T L, Mikael B, Buske F A, Martin F, Grant C E, Luca C, Ren J, Li W W, Noble W S. MEME Suite: tools for motif discovery and searching. Nucleic Acids Res, 2009, 37:W202-W208.
doi: 10.1093/nar/gkp335
[15] 郭安源, 朱其慧, 陈新, 罗静初. GSDS: 基因结构显示系统. 遗传, 2007, 29:1023-1026.
Guo A Y, Zhu Q H, Chen X, Luo J C. GSDS: a gene structure display server. Hereditas (Beijing), 2007, 29:1023-1026 (in Chinese with English abstract).
[16] Zheng L G, Andre C, Feng C C, Peter B, Wen H L. Extent of gene duplication in the genomes of drosophila, nematode, and yeast. Mol Biol Evol, 2020, 19:256-262.
doi: 10.1093/oxfordjournals.molbev.a004079
[17] Yang S, Zhang X, Yue J X, Tian D, Chen J Q. Recent duplications dominate NBS-encoding gene expansion in two woody species. Mol Genet Genomics, 2008, 280:187-198.
doi: 10.1007/s00438-008-0355-0
[18] Wang L, Guo K, Li Y, Tu Y, Peng L. Expression profiling and integrative analysis of the CESA/CSL superfamily in rice. BMC Plant Biol, 2010, 10:282.
doi: 10.1186/1471-2229-10-282
[19] Wang Y, Tang H, Debarry J D, Tan X, Li J, Wang X, Lee T H, Jin H, Barry M, Guo H. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res, 2012, 40:e49.
doi: 10.1093/nar/gkr1293
[20] Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones S J, Marra M A. Circos: an information aesthetic for comparative genomics. Genome Res, 2009, 19:1639-1645.
doi: 10.1101/gr.092759.109 pmid: 19541911
[21] Wang D, Zhang Y, Zhang Z, Zhu J, Yu J. KaKs_Calculator 2.0: a toolkit incorporating gamma-series methods and sliding window strategies. Genomics Proteomics Bioinf, 2010, 8:77-80.
doi: 10.1016/S1672-0229(10)60008-3
[22] Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol, 2016, 33:1870-1874.
doi: 10.1093/molbev/msw054
[23] Tang X, Zhang N, Si H, Calderón-Urrea A. Selection and validation of reference genes for RT-qPCR analysis in potato under abiotic stress. Plant Methods, 2017, 13:85.
doi: 10.1186/s13007-017-0238-7 pmid: 29075311
[24] Chen C, Xia R, Chen H, He Y. TBtools, a toolkit for biologists integrating various biological HTS-data handling tools with a user-friendly interface. BioRxiv, 2018, 6:289660.
[25] Cannon S B, Mitra A, Baumgarten A, Young N D, May G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol, 2004, 4:10.
doi: 10.1186/1471-2229-4-10
[26] Hanada K, Zou C, Lehti-Shiu D M, Shinozaki K, Shiu S H. Importance of lineage-specific expansion of plant tandem duplicates in the adaptive response to environmental stimuli. Plant Physiol, 2008, 148:993-1003.
doi: 10.1104/pp.108.122457
[27] Jiang S Y, Ma Z, Ramachandran S. Evolutionary history and stress regulation of the lectin superfamily in higher plants. BMC Evol Biol, 2010, 10:79.
doi: 10.1186/1471-2148-10-79
[28] Dias A P, Braun E L, McMullen M D, Grotewold E. Recently duplicated maize R2R3 Myb genes provide evidence for distinct mechanisms of evolutionary divergence after duplication. Plant Physiol, 2003, 131:610-620.
doi: 10.1104/pp.012047
[29] Caffall K H, Mohnen D. The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydrate Res, 2009, 344:1879-1900.
doi: 10.1016/j.carres.2009.05.021
[30] Xu G, Guo C, Shan H, Kong H. Divergence of duplicate genes in exon-intron structure. Proc Natl Acad Sci USA, 2012, 109:1187-1192.
doi: 10.1073/pnas.1109047109
[31] Xiao J, Hu R, Gu T, Han J, Qiu D, Su P, Feng J, Chang J, Yang G, He G. Genome-wide identification and expression profiling of trihelix gene family under abiotic stresses in wheat. BMC Genomics, 2019, 20:287.
doi: 10.1186/s12864-019-5632-2 pmid: 30975075
[32] Hao Z, Avci U, Tan L, Zhu X, Glushka J, Pattathil S, Eberhard S, Sholes T, Rothstein G E, Lukowitz W. Loss of Arabidopsis GAUT12/IRX8 causes anther indehiscence and leads to reduced G lignin associated with altered matrix polysaccharide deposition. Front Plant Sci, 2014, 5:357.
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 王海波, 应静文, 何礼, 叶文宣, 涂卫, 蔡兴奎, 宋波涛, 柳俊. rDNA和端粒重复序列鉴定马铃薯和茄子体细胞杂种染色体丢失和融合[J]. 作物学报, 2022, 48(5): 1273-1278.
[3] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[4] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[5] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[6] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[7] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[8] 谭雪莲, 郭天文, 胡新元, 张平良, 曾骏, 刘晓伟. 黄土高原旱作区马铃薯连作根际土壤微生物群落变化特征[J]. 作物学报, 2022, 48(3): 682-694.
[9] 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258.
[10] 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98.
[11] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
[12] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[13] 尹明, 杨大为, 唐慧娟, 潘根, 李德芳, 赵立宁, 黄思齐. 大麻GRAS转录因子家族的全基因组鉴定及镉胁迫下表达分析[J]. 作物学报, 2021, 47(6): 1054-1069.
[14] 许静, 潘丽娟, 李昊远, 王通, 陈娜, 陈明娜, 王冕, 禹山林, 侯艳华, 迟晓元. 花生油脂合成相关基因的表达谱分析[J]. 作物学报, 2021, 47(6): 1124-1137.
[15] 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!