作物学报 ›› 2021, Vol. 47 ›› Issue (12): 2299-2313.doi: 10.3724/SP.J.1006.2021.14022
• 综述 • 下一篇
邱红梅1(), 陈亮1, 侯云龙1, 王新风1, 陈健1, 马晓萍1, 崔正果1, 张玲1, 胡金海1, 王跃强1,*(), 邱丽娟2,*()
QIU Hong-Mei1(), CHEN Liang1, HOU Yun-Long1, WANG Xin-Feng1, CHEN Jian1, MA Xiao-Ping1, CUI Zheng-Guo1, ZHANG Ling1, HU Jin-Hai1, WANG Yue-Qiang1,*(), QIU Li-Juan2,*()
摘要:
大豆种子颜色是重要的形态标记和进化性状, 在驯化过程中种皮从黑色逐渐演变成黄、绿、褐及双色, 子叶从绿色进化出黄色。深色种子中含有较多的天然色素——花色素, 具有药用和营养价值。因此, 种子颜色的遗传调控机制研究对进化理论和实际应用均具有重要意义。种子中色素含量及组分构成导致多样的种皮颜色, 其分子调控机制复杂。本文主要阐述了控制大豆种子颜色的遗传位点、相关基因与调控机制、类黄酮生物合成途径三方面的研究进展。具体介绍了9个经典遗传位点I、R、T、O、W1、K1、G、D1、D2和相关分子标记, 以及位点间的相互作用; 23个调控种子颜色的相关基因, 与部分基因等位变异的调控机制; 相关基因参与的类黄酮生物合成途径和主要代谢产物的生理功能。通过综述归纳了大豆种皮、种脐、子叶颜色的遗传调控研究进展, 利用遗传位点、基因、等位基因调控机制及类黄酮代谢途径绘制出调控网路, 以期为种子外观品质及花色苷组分遗传改良等研究提供参考。
[1] | 邱丽娟. 大豆种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006. pp 35-40. |
Qiu L J. Description and Data Standards for Soybean [Glycine max (L.) Merrill]. Beijing: China Agriculture Press, 2006. pp 35-40(in Chinese). | |
[2] |
Wilcox J R. Performance and use of seed coat mutants in soybean. Crop Sci, 1988, 28:30-32.
doi: 10.2135/cropsci1988.0011183X002800010007x |
[3] | 续曲, 郭勇, 邱丽娟. 褐色种皮大豆与其黄色种皮衍生亲本的表型及基因型比较. 植物遗传资源学报, 2013, 14:284-288. |
Xu Q, Guo Y, Qiu L J. Comparison of phenotype and genotype between brown seed coat line and its parental line with yellow seed coat in soybean (Glycine max). J Plant Genet Resour, 2013, 14:284-288 (in Chinese with English abstract). | |
[4] | 王英男, 齐广勋, 赵洪锟, 袁翠平, 刘晓冬, 李玉秋, 王玉民, 董英山. 不同种皮颜色大豆地方资源的遗传多样性. 分子植物育种, 2020, 18:1-18. |
Wang Y N, Qi G X, Zhao H K, Yuan C P, Liu X D, Li Y Q, Wang Y M, Dong Y S. Genetic diversity of soybean landraces with different seed coat color. Mol Plant Breed, 2020, 18:1-18 (in Chinese with English abstract). | |
[5] |
Takahashi R. Association of soybean genes I and T with low temperature induced deterioration. Crop Sci, 1997, 37:1755-1759.
doi: 10.2135/cropsci1997.0011183X003700060014x |
[6] |
Chandlee J M, Vodkin L O. Unstable expression of a soybean gene during seed coat development. Theor Appl Genet, 1989, 77:587-594.
doi: 10.1007/BF00274285 pmid: 24232729 |
[7] | 宋健. 大豆种皮色相关基因定位与利用研究. 哈尔滨师范大学硕士学位论文, 黑龙江哈尔滨, 2012. |
Song J. Mapping and Utilization of Genes Related to Seed Coat Color in Soybean (Glycine max (L.) Merr.). MS Thesis of Harbin Normal University, Harbin, Heilongjiang, China, 2012 (in Chinese with English abstract). | |
[8] | Piper C V, Morse W J. The soy-bean: history, varieties, and field studies. US Depart Agric, 1910, 197:1-84. |
[9] | Terao H. Maternal inheritance in the soybean. Am Nat, 1918, 62:51-56. |
[10] |
Owen F V. Inheritance studies in soybeans: III. Seed-coat color and summary of all other mendelian characters thus far reported. Genetics, 1928, 13:50-79.
pmid: 17246542 |
[11] |
Lindstrom J T, Vodkin L O. A soybean cell wall protein is affected by seed color genotype. Plant Cell, 1991, 3:561-571.
pmid: 1841717 |
[12] | 宋健. 大豆种皮色相关基因的图位克隆及功能解析. 中国农业科学院博士学位论文, 北京, 2019. |
Song J. Map-based Cloning and Functional Analysis of Genes Controlling Seed Coat Color in Soybean (Glycine max (L.) Merr.). PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2019 (in Chinese with English abstract). | |
[13] | 张芳轩, 张名位, 张瑞芬, 刘章雄, 魏振承, 邱丽娟, 杨春英, 张雁, 唐小俊, 邓媛元. 不同黑大豆种质资源种皮花色苷组成及抗氧化活性分析. 中国农业科学, 2010, 43:5088-5099. |
Zhang F X, Zhang M W, Zhang R F, Liu Z X, Wei Z C, Qiu L J, Yang C Y, Zhang Y, Tang X J, Deng Y Y. Comparative analysis of the anthocyanin profiles and antioxidant activity of seed coats from different black soybean germplasm resources. Sci Agric Sin, 2010, 43:5088-5099 (in Chinese with English abstract). | |
[14] |
Todd J J, Vodkin L O. Pigmented soybean (Glycine max) seed coats accumulate proanthocyanidins during development. Plant Physiol, 1993, 102:663-670.
pmid: 12231856 |
[15] |
Zhou Y, Ma Y, Zeng J, Duan L, Xue X, Wang H, Lin T, Zeng K, Zhong Y, Zhang S, Hu Q, Liu M, Zhang H, Reed J, Moses T, Liu X, Huang P, Qing Z, Liu X, Tu P, Kuang H, Zhang Z, Osbourn A, Ro D K, Shang Y, Huang S. Convergence and divergence of bitterness biosynthesis and regulation in Cucurbitaceae. Nat Plants, 2016, 2:16183.
doi: 10.1038/nplants.2016.183 |
[16] | 林王敏, 翁倩倩, 邓爱平, 赵佳琛, 金艳, 张悦, 张水利, 俞冰, 詹志来, 黄璐琦. 黑豆的本草考证. 中国中药杂志, 2020, 45:4519-4527. |
Lin W M, Weng Q Q, Deng A P, Zhao J S, Jin Y, Zhang Y, Zhang S L, Yu B, Zhan Z L, Huang L Q. Textual research on Sojae Semen Nigrum. China J Chin Mater Med, 2020, 45:4519-4527 (in Chinese with English abstract). | |
[17] | 汪颖舒, 朱广灏, 王冰, 李杰荣, 骆前飞, 何修滢, 赵佳逸, 修彦凤. 古法黑豆蒸晒与药典黑豆汁连续蒸对何首乌中12个成分含量的影响. 中草药, 2020, 51:4972-4982. |
Wang Y S, Zhu G Y, Wang B, Li J R, Luo Q F, He X Y, Zhao J Y, Xiu Y F. Influences of ancient processing method steaming with black bean and drying and pharmacopoeia processing method continuous steaming with black bean decoction on 12 components of Polygoni multiflori Radix. Chin Trad Herbal Drugs, 2020, 51:4972-4982 (in Chinese with English abstract). | |
[18] | 刘秀玉, 王利丽, 左瑞庭, 陈随清. 药用黑豆的研究进展. 亚太传统医药, 2017, 13(20):82-85. |
Liu X Y, Wang L L, Zuo R T, Chen S Q. Study on the research progress of Sojae Semen Nigrum. Asia-Pacific Trad Med, 2017, 13(20):82-85 (in Chinese with English abstract). | |
[19] |
Ohnishi S, Funatsuki H, Kasai A, Kurauchi T, Yamaguchi N, Takeuchi T, Yamazaki H, Kurosaki H, Shirai S, Miyoshi T, Horita H, Senda M. Variation of GmIRCHS (Glycine max inverted-repeat CHS pseudogene) is related to tolerance of low temperature-induced seed coat discoloration in yellow soybean. Theor Appl Genet, 2011, 122:633-642.
doi: 10.1007/s00122-010-1475-6 pmid: 20981401 |
[20] | 宋健, 郭勇, 于丽杰, 邱丽娟. 大豆种皮色相关基因研究进展. 遗传, 2012, 34:687-694. |
Song J, Guo Y, Yu L J, Qiu L J. Progress in genes related to seed- coat color in soybean. Hereditas (Beijing), 2012, 34:687-694. | |
[21] |
Song J, Liu Z, Hong H, Ma Y, Long T, Li X, Li Y H, Guan R, Guo Y, Qiu L J. Identification and validation of loci governing seed coat color by combining association mapping and bulk segregation analysis in soybean. PLoS One, 2016, 11:e0159064.
doi: 10.1371/journal.pone.0159064 |
[22] |
Senda M, Kasai A, Yumoto S, Akada S, Ishikawa R, Harada T, Niizeki M. Sequence divergence at chalcone synthase gene in pigmented seed coat soybean mutants of the Inhibitor locus. Genes Genet Syst, 2002, 77:341-350.
doi: 10.1266/ggs.77.341 |
[23] | Woodworth C M. Inheritance of cotyledon, seed-coat, hilum, and pubescence colors in soybeans. Genetics, 1921, 31:1123-1130. |
[24] |
Nicholas C D, Lindstrom J T, Vodkin L O. Variation of proline rich cell wall proteins in soybean lines with anthocyanin mutations. Plant Mol Biol, 1993, 21:145-156.
pmid: 8425044 |
[25] | Bernard R L, Weiss M G. Qualitative genetics in soybean: improvement, production and uses. Am Soc Agron Mad, 1973, 1:117-149. |
[26] |
Todd J J, Vodkin L O. Duplications that suppress and deletions that restore expression from a chalcone synthase multigene family. Plant Cell, 1996, 8:687-699.
doi: 10.2307/3870344 |
[27] |
Tuteja J H, Clough S J, Chan W C, Vodkin L O. Tissue-specific gene silencing mediated by a naturally occurring Chalcone synthase gene cluster in Glycine max. Plant Cell, 2004, 16:819-835.
doi: 10.1105/tpc.021352 |
[28] | Clough S J, Tuteja J H, Li M, Marek L F, Shoemaker R C, Vodkin L O. Features of a 103-kb gene-rich region in soybean include an inverted perfect repeat cluster of CHS genes comprising the I locus. Genome, 2004, 47:811-831. |
[29] |
Song Q J, Marek L F, Shoemaker R C, Lark K G, Concibido V C, Delannay X, Specht J E, Cregan P B. A new integrated genetic linkage map of the soybean. Theor Appl Genet, 2004, 109:122-128.
pmid: 14991109 |
[30] |
Zabala G, Vodkin L O. Cloning of the pleiotropic T locus in soybean and two recessive alleles that differentially affect structure and expression of the encoded flavonoid 3’-hydroxylase. Genetics, 2003, 163:295-309.
doi: 10.1093/genetics/163.1.295 |
[31] |
Zabala G, Vodkin L. A putative autonomous 20.5 kb-CACTA transposon insertion in an F3’H allele identifies a new CACTA transposon subfamily in Glycine max. BMC Plant Biol, 2008, 8:124.
doi: 10.1186/1471-2229-8-124 |
[32] |
Yang K, Jeong N, Moon J K, Lee Y H, Lee S H, Kim H M, Hwang C H, Back K, Palmer R G, Jeong S C. Genetic analysis of genes controlling natural variation of seed coat and flower colors in soybean. J Hered, 2010, 101:757-768.
doi: 10.1093/jhered/esq078 |
[33] | Zabala G, Vodkin L O. A rearrangement resulting in small tandem repeats in the F3’5’H gene of white flower genotypes is associated with the soybean W1 locus. Crop Sci, 2007, 47:S113-S124. |
[34] |
Cho Y B, Jones S I, Vodkin L O. Mutations in Argonaute5 illuminate epistatic interactions of the K1 and I loci leading to saddle seed color patterns in Glycine max. Plant Cell, 2017, 29:708-725.
doi: 10.1105/tpc.17.00162 |
[35] |
Fang C, Li C C, Li W Y, Wang Z, Zhou Z K, Shen Y T, Wu M, Wu Y S, Li G Q, Kong L A, Liu C M, Jackson S A, Tian Z X. Concerted evolution of D1 and D2 to regulate chlorophyll degradation in soybean. Plant J, 2014, 77:700-712.
doi: 10.1111/tpj.12419 |
[36] |
Nakano M, Yamada T, Masuda Y, Sato Y, Kobayashi H, Ueda H, Morita R, Nishimura M, Kitamura K, Kusaba M. A green- cotyledon/stay-green mutant exemplifies the ancient whole- genome duplications in soybean. Plant Cell Physiol, 2014, 55:1763-1771.
doi: 10.1093/pcp/pcu107 |
[37] |
Ott A, Yang Y, Bhattacharyya M, Horner H T, Palmer R G, Sandhu D. Molecular mapping of D1, D2 and ms5 revealed linkage between the cotyledon color locus D2 and the male-sterile locus ms5 in Soybean. Plants, 2013, 2:441-454.
doi: 10.3390/plants2030441 |
[38] |
Guiamét J J, Schwartz E, Pichersky E, Noodén L D. Characterization of cytoplasmic and nuclear mutations affecting chlorophyll and chlorophyll-binding proteins during senescence in soybean. Plant Physiol, 1991, 96:227-231.
pmid: 16668156 |
[39] |
Guiamét J J, Tyystjärvi E, Tyystjärvi T, John I, Kairavuo M, Pichersky E, Noodén L D. Photoinhibition and loss of photosystem II reaction centre proteins during senescence of soybean leaves. Enhancement of photoinhibition by the ‘stay-green’ mutation cytG. Physiol Plant, 2002, 115:468-478.
pmid: 12081540 |
[40] |
Kohzuma K, Sato Y, Ito Hisashi, Okuzaki A, Watanabe M, Kobayashi H, Nakano M, Yamatani H, Masuda Y, Nagashima Y, Fukuoka H, Yamada T, Kanazawa A, Kitamura K, Tabei Y, Ikeuchi M, Sakamoto W, Tanaka A, Kusaba M. The non-Mendelian green cotyledon gene in soybean encodes a small subunit of photosystem II. Plant Physiol, 2017, 173:2138-2147.
doi: 10.1104/pp.16.01589 pmid: 28235890 |
[41] | 郁晓敏, 金杭霞, 杨清华, 傅旭军, 郭丹丹, 吕晓男, 袁凤杰. 利用SLAF-seq结合BSA方法发掘大豆种皮色相关基因. 分子植物育种, 2020, 18:1-8. |
Yu X M, Jin H X, Yang Q H, Fu X J, Guo D D, Lyu X N, Yuan F J. Mapping of soybean genes related to seed-coat color using SLAF-seq and BSA methods. Mol Plant Breed, 2020, 18:1-8 (in Chinese with English abstract). | |
[42] | 董全中, 蒋炳军, 张勇, 薛红, 张明明, 李微微, 韩天富, 宁海龙. 大豆褐色种皮遗传分析及基因定位. 大豆科学, 2020, 39:361-369. |
Dong Q Z, Jiang B J, Zhang Y, Xue H, Zhang M M, Li W W, Han T F, Ning H L. Inheritance analysis and gene mapping of brown seed coat in soybean. Soybean Sci, 2020, 39:361-369 (in Chinese with English abstract). | |
[43] | 王吴彬, 何庆元, 杨红燕, 向仕华, 邢光南, 赵团结, 盖钧镒. 大豆结荚习性、荚色和种皮色相关野生片段分析. 作物学报, 2013, 39:1155-1163. |
Wang W B, He Q Y, Yang H Y, Xiang S H, Xing G N, Zhao T J, Gai J Y. Identification of wild segments associated with stem termination, pod color, and seed coat color in soybean. Acta Agron Sin, 2013, 39:1155-1163 (in Chinese with English abstract). | |
[44] | Wang W B, Liu M F, Wang Y F, Li X L, Cheng S X, Shu L P, Yu Z P, Kong J J, Zhao T J, Gai J Y. Characterizing two inter-specific bin maps for the exploration of the QTLs/Genes that confer three soybean evolutionary traits. Front Plant Sci, 2016, 7:1248. |
[45] | Cheng L, Chen X L, Wang W B, Hu X Y, Han W, He Q Y, Yang H Y, Xiang S H, Gai J Y. Identifying wild versus cultivated gene-alleles conferring seed coat color and days to flowering in soybean. Mol Sci, 2021, 22:1559. |
[46] |
Jeong S C, Moon J K, Park S K, Kim M S, Lee K, Lee S R, Jeong N, Choi M S, Kim N, Kang S T, Park E. Genetic diversity patterns and domestication origin of soybean. Theor Appl Genet, 2019, 132:1179-1193.
doi: 10.1007/s00122-018-3271-7 |
[47] | 徐艳平. 大豆分枝数和种皮色相关QTL的定位及抗旱野生大豆种质的筛选. 吉林农业大学硕士学位论文, 吉林长春, 2013. |
Xu Y P. Mapping the QTL for Soybean Branch Number and Seed Coat Color and Screening Drougt-tolerant Wild Soybean Germplasm. MS Thesis of Jilin Agricultural University, Changchun, Jilin, China, 2013 (in Chinese with English abstract). | |
[48] |
Gillman J D, Tetlow A, Lee J D, Shannon J G, Bilyeu K. Loss-of-function mutations affecting a specific Glycine max R2R3 MYB transcription factor result in brown hilum and brown seed coats. BMC Plant Biol, 2011, 11:155.
doi: 10.1186/1471-2229-11-155 pmid: 22070454 |
[49] | Zhou Z K, Jiang Y, Wang Z, Gou Z H, Lyu J, Li W Y, Yu Y J, Shu L P, Zhao Y J, Ma Y M, Fang C, Shen Y T, Liu T F, Li C C, Li Q, Wu M, Wang M, Wu Y S, Dong Y, Wan W T, Wang X, Ding Z L, Gao Y D, Xiang H, Zhu B G, Lee S H, Wang W, Tian Z X. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol, 2015, 4:408-414. |
[50] |
Wen Z, Boyse J F, Song Q, Cregan P B, Wang D. Genomic consequences of selection and genome-wide association mapping in soybean. BMC Genomics, 2015, 16:671.
doi: 10.1186/s12864-015-1872-y |
[51] |
Akada S, Dube S K. Organization of chalcone synthase gene clusters and characterization of a new member of the family. Plant Mol Biol, 1995, 29:189-199.
pmid: 7579172 |
[52] |
Senda M, Jumonji A, Yumoto S, Ishikawa R, Harada T, Niizeki M, Akada S. Analysis of the duplicated CHS1 gene related to the suppression of the seed coat pigmentation in yellow soybeans. Theor Appl Genet, 2002, 104:1086-1091.
pmid: 12582616 |
[53] | Cho Y B, Jones S I, Vodkin L O. Nonallelic homologous recombination events responsible for copy number variation within an RNA silencing locus. Plant Direct, 2019, 3:e00162. |
[54] |
Liu Y C, Du H L, Li P C, Shen Y T, Peng H, Liu S L, Zhou G A, Zhang H K, Liu Z, Shi M, Huang X H, Li Y, Zhang M, Wang Z, Zhu B, Han B, Liang C Z, Tian Z X. Pan-genome of wild and cultivated soybeans. Cell, 2020, 182:162-176.
doi: 10.1016/j.cell.2020.05.023 |
[55] |
Tuteja J H, Zabala G, Varala K, Hudson M, Vodkin L O. Endogenous, tissue-specific short interfering RNAs silence the chalcone synthase gene family in Glycine max seed coats. Plant Cell, 2009, 21:3063-3077.
doi: 10.1105/tpc.109.069856 |
[56] | Cho Y B, Jones S I, Vodkin L. The transition from primary siRNAs to amplified secondary siRNAs that regulate chalcone synthase during development of Glycine max seed coats. PLoS One, 2013, 10:e76954. |
[57] |
Wang C, Todd J, Vodkin L O. Chalcone synthase mRNA and activity are reduced in yellow soybean seed coats with dominant I alleles. Plant Physiol, 1994, 105:739-748.
pmid: 8066134 |
[58] |
Rogers K, Chen X. Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell, 2013, 25:2383-2399.
doi: 10.1105/tpc.113.113159 |
[59] |
Song X W, Li Y, Cao X F, Qi Y J. MicroRNAs and their regulatory roles in plant-environment interactions. Annu Rev Plant Biol, 2019, 70:489-525.
doi: 10.1146/annurev-arplant-050718-100334 |
[60] | Jia J B, Ji R H, Li Z W, Yu Y M, Nakano M, Long Y P, Li F, Chao Q, Lu D D, Zhan J P, Xia R, Meyers B C, Liu B, Zhai J X. Soybean Dicer-Like 2 regulates seed coat color via production of primary 22-nt small interfering RNAs from long inverted repeats. Plant Cell Adv Public, 2020, 32:3662-3673. |
[61] |
Toda K, Yang D, Yamanaka N, Watanabe S, Harada K, Takahashi R. A single-base deletion in soybean flavonoid 3’-hydroxylase gene is associated with gray pubescence color. Plant Mol Biol, 2002, 50:187-196.
doi: 10.1023/A:1016087221334 |
[62] |
Guo Y, Qiu L J. Allele-specific marker development and selection efficiencies for both flavonoid 3’-hydroxylase and flavonoid 3’,5’-hydroxylase genes in soybean subgenus soja. Theor Appl Genet, 2013, 126:1445-1455.
doi: 10.1007/s00122-013-2063-3 |
[63] |
Yan F, Di S K, Takahashi R. CACTA-superfamily transposable element is inserted in MYB transcription factor gene of soybean line producing variegated seeds. Genome, 2015, 58:365-374.
doi: 10.1139/gen-2015-0054 |
[64] |
Zabala G, Vodkin L O. Methylation affects transposition and splicing of a large CACTA transposon from a MYB transcription factor regulating anthocyanin synthase genes in soybean seed coats. PLoS One, 2014, 9:e111959.
doi: 10.1371/journal.pone.0111959 |
[65] |
Xie M, Chung Y L, Li M W, Wong F L, Wang X, Liu A L, Wang Z L, Leung A K Y, Wong T H, Tong S W, Xiao Z X, Fan K J, Ng M S, Qi X P, Yang L F, Deng T Q, He L J, Chen L, Fu A S, Ding Q, He J X, Chung G, Isobe S, Tanabata T, Valliyodan B, Nguyen H T, Cannon S B, Foyer C H, Chan T F, Lam H M. A reference-grade wild soybean genome. Nat Commun, 2019, 10:1216.
doi: 10.1038/s41467-019-09142-9 |
[66] |
Wang M, Li W Z, Fang C, Xu Fan, Liu Y C, Wang Z, Yang R, Zhang M, Liu S L, Lu S J, Lin T, Tang J Y, Wang Y Q, Wang H G, Lin H, Zhu B G, Chen M S, Kong F J, Liu B H, Zeng D L, Jackson S A, Chu C C, Tian Z X. Parallel selection on a dormancy gene during domestication of crops from multiple families. Nat Genet, 2018, 50:1435-1441.
doi: 10.1038/s41588-018-0229-2 pmid: 30250128 |
[67] |
Shimoda Y, Ito H, Tanaka A. Arabidopsis STAY-GREEN mendel’s green cotyledon gene encodes magnesium-dechelatase. Plant Cell, 2016, 28:2147-2160.
doi: 10.1105/tpc.16.00428 |
[68] |
Kovinich N, Saleem A, Arnason J T, Miki B. Combined analysis of transcriptome and metabolite data reveals extensive differences between black and brown nearly-isogenic soybean ( Glycine max) seed coats enabling the identification of pigment isogenes. BMC Genomics, 2011, 12:381.
doi: 10.1186/1471-2164-12-381 pmid: 21801362 |
[69] |
Zabala G, Vodkin L O. The wp mutation of Glycine max carries a gene-fragment-rich transposon of the CACTA superfamily. Plant Cell, 2005, 17:2619-2632.
doi: 10.1105/tpc.105.033506 |
[70] |
Xu M, Brar H K, Grosic S, Palmer R G, Bhattacharyya M K. Excision of an active CACTA-Like transposable element from DFR2 causes variegated flowers in soybean [Glycine max (L.) Merr.]. Genetics, 2010, 184:53-63.
doi: 10.1534/genetics.109.107904 |
[71] | 李佳林. CsMYB60调控黄瓜类黄酮生物合成的分子机制. 山东农业大学博士学位论文, 山东泰安, 2020. |
Li J L. Molecular Mechanism of the Flavonoid Biosynthesis Regulated by CsMYB60 in Cucumber. PhD Dissertation of Shandong Agricultural University, Tai’an, Shandong, China, 2020 (in Chinese with English abstract). | |
[72] |
Yoshida K. Structural analysis and measurement of anthocyanins from colored seed coats of Vigna, Phaseolus, and Glycine legumes. Biosci Biotechnol Biochem, 1996, 60:589-593.
doi: 10.1271/bbb.60.589 |
[73] |
Springob K, Nakajima J. Recent advances in the biosynthesis and accumulation of anthocyanins. Nat Prod Rep, 2003, 20:288-303.
pmid: 12828368 |
[74] |
Yoshida K, Teppabut Y, Sawaguchi R, Nakane Y, Hayashi E, Oyama K, Nishizaki Y, Goda Y, Kondo T. 5,7,3,4 Tetrahydroxyflav-2-en-3-ol 3-O-glucoside, a new biosynthetic precursor of cyanidin 3-O-glucoside in the seed coat of black soybean, Glycine max. Sci Rep, 2020, 10:17184.
doi: 10.1038/s41598-020-74098-6 |
[75] |
Saito K, Kobayashi M, Gong Z Tanaka Y, Yamazaki M. Direct evidence for anthocyanidin synthase as a 2-oxoglutarate- dependent oxygenase: molecular cloning and functional expression of cDNA from a red forma of Perilla frutescens. Plant J, 1999, 17:181-189.
pmid: 10074715 |
[76] |
Zhang J R, Trossat-Magnin C, Bathany K, Delrot S, Chaudière J. Oxidative transformation of leucocyanidin by anthocyanidin synthase from vitis vinifera leads only to quercetin. J Agric Food Chem, 2019, 67:3595-3604.
doi: 10.1021/acs.jafc.8b06968 |
[77] | Gao R f, Han T T, Xun H W, Zeng X X, Li P H, Li Y Q, Wang Y N, Shao Y, Cheng X, Feng X Z, Zhao J, Wang L, Gao X. MYB transcription factor GmMYBA2 and GmMYBR function in a feedback loop to control pigmentation of seed coat in soybean. J Exp Bot, 2021, Publish online, http://dx.doi.org/10.1093/jxb/erab152. |
[78] |
Lim Y J, Kwon S J, Qu S, Kim D G, Eom S H. Antioxidant contributors in seed, seed coat, and cotyledon of γ-ray-induced soybean mutant lines with different seed coat colors. Antioxidants, 2021, 10:353.
doi: 10.3390/antiox10030353 |
[79] | 李泉岑, 王佳奇, 伍子涵, 焦清波, 王国相, 张智涛, 王莹, 张雨晴. 天然植物色素稳定性及其应用研究进展. 现代食品, 2020, (22):59-62. |
Li Q J, Wang J Q, Wu Z H, Jiao Q B, Wang G X, Zhang Z T, Wang Y, Zhang Y Q. Research progress on the stability and application of natural plant pigments. Modern Food, 2020, (22):59-62 (in Chinese with English abstract). | |
[80] | 黄韬睿, 王鑫, 童光森, 孟甜. 天然色素替代亚硝酸盐在腊肉着色和护色中的应用研究. 食品科技, 2019, 44(2):134-137. |
Huang T R, Wang X, Tong G S, Meng T. Application of natural pigments to substitute nitrite in coloring and color preserving of bacon. Food Technol, 2019, 44(2):134-137 (in Chinese with English abstract). | |
[81] | 廖远东, 刘顺字, 陈文田. 2种天然红色色素的稳定性及其在果汁饮料中的应用效果探析. 饮料工业, 2019, 22(6):28-31. |
Liao Y D, Liu S Z, Chen W T. Analysis of stability of two natural red pigments and their application in fruit juice beverages. Beverage Ind, 2019, 22(6):28-31 (in Chinese with English abstract). | |
[82] | 邓全富, 张环, 唐伟月, 赵爽. 天然植物色素提取物在牙膏中的应用. 日用化学品科学, 2019, 42(12):24-26. |
Deng Q F, Zhang H, Tang W Y, Zhao S. Application of natural plant pigment extracts in toothpaste. Deterg Cosmet, 2019, 42(12):24-26 (in Chinese with English abstract). | |
[83] | 刘亚, 高莉, 刘娟, 王猛, 陈芳锐, 王浩, 雷声. 天然食用色素的稳定性研究及在再造烟叶中的应用. 新型工业化, 2020, 10(4):132-137. |
Liu Y, Gao L, Liu J, Wang M, Chen F R, Wang H, Lei S. Study on color stability of natural food pigment and its application in reconstituted tobacco leaves. J New Ind, 2020, 10(4):132-137 (in Chinese with English abstract). | |
[84] | 王华清. 蚕丝织物的黑豆皮色素染色. 印染, 2017, 43(6):24-27. |
Wang Q H. Silk fabric dyeing with black soybean colorants. Dye Finish, 2017, 43(6):24-27 (in Chinese with English abstract). | |
[85] | 宋岩. 黑豆花色苷提取、纯化及体内外抗氧化研究. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2013. |
Song Y. The Extraction and Purification of Black Soybean Anthocyanin and Its Antioxidant Effects in vitro and in vivo. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang, China, 2013 (in Chinese with English abstract). | |
[86] | 马成红. 青仁黑豆皮化学成分分析及应用. 长春理工大学硕士学位论文, 吉林长春, 2019. |
Ma C H. Analysis and Application of Chemical Composition of Qingren Black Bean Skin. MS Thesis of Changchun University of Science and Technology, Changchun, Jilin, China, 2019 (in Chinese with English abstract). | |
[87] | 徐金瑞. 黑大豆种皮花色苷抗动脉粥样硬化及其抗氧化机制研究. 西北农林科技大学博士学位论文, 陕西杨凌, 2006. |
Xu J R. Antiatherogenic Effect and Antioxidation Mechanism of Anthocyanins Extracted from Black Soybean Seed Coat. PhD Dissertation of Northwest A&F University, Yangling, Shaanxi, China, 2006 (in Chinese with English abstract). | |
[88] | 张继曼. 黑豆红花色苷的优化提取及其降血糖作用的研究. 安徽农业大学硕士学位论文, 安徽合肥, 2010. |
Zhang J M. The Optimum Extraction and Hypoglycemic Effect of Anthocyanins in Black Soybean. MS Thesis of Anhui Agricultural University, Hefei, Anhui, China, 2010 (in Chinese with English abstract). | |
[89] | 邱丽娟, 郭勇, 黎裕, 王晓波, 周国安, 刘章雄, 周时荣, 李新海, 马有志, 王建康, 万建民. 中国作物新基因发掘: 现状、挑战与展望. 作物学报, 2011, 37:1-17. |
Qiu L J, Guo Y, Li Y, Wang X B, Zhou G A, Liu Z X, Zhou S R, Li X H, Ma Y Z, Wang J K, Wan J M. Novel gene discovery of crops in China: status, challenging, and perspective. Acta Agron Sin, 2011, 37:1-17 (in Chinese with English abstract). | |
[90] | 徐金瑞, 张名位, 刘兴华, 刘章雄, 张瑞芬, 孙玲, 邱丽娟. 黑大豆种质抗氧化能力及其与总酚和花色苷含量的关系. 中国农业科学, 2006, 39:1545-1552. |
Xu J R, Zhang M W, Liu X H, Liu Z X, Zhang R F, Sun L, Qiu L J. Correlation between antioxidation, and content of total phenolics and anthocyanin in black soybean accessions. Sci Agric Sin, 2006, 39:1545-1552 (in Chinese with English abstract). | |
[91] |
Zhu Q L, Yu S Z, Zeng D C, Guo J X, Chen L T, Liu Y G. Development of “Purple Endosperm Rice” by engineering anthocyanin biosynthesis in the endosperm with a high-efficiency transgene stacking system. Mol Plant, 2017, 10:918-929.
doi: 10.1016/j.molp.2017.05.008 |
[1] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[2] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[3] | 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557. |
[4] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[5] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[6] | 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209. |
[7] | 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800. |
[8] | 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951. |
[9] | 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571. |
[10] | 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596. |
[11] | 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643. |
[12] | 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366. |
[13] | 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537. |
[14] | 禹桃兵, 石琪晗, 年海, 连腾祥. 涝害对不同大豆品种根际微生物群落结构特征的影响[J]. 作物学报, 2021, 47(9): 1690-1702. |
[15] | 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752. |
|