欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (2): 342-350.doi: 10.3724/SP.J.1006.2021.04091

• 耕作栽培·生理生化 • 上一篇    下一篇

长期施用不同剂量氮肥对高粱产量、氮素利用特性和土壤硝态氮含量的影响

王媛1,2(), 王劲松1, 董二伟1, 武爱莲1, 焦晓燕1,*()   

  1. 1山西省农业科学院农业环境与资源研究所, 山西太原 030031
    2高粱遗传与种质创新山西省重点实验室, 山西晋中 030600
  • 收稿日期:2020-04-13 接受日期:2020-08-19 出版日期:2021-02-12 网络出版日期:2020-09-04
  • 通讯作者: 焦晓燕
  • 作者简介:E-mail: wangyuan1520@126.com
  • 基金资助:
    国家现代农业产业技术体系建设专项(CARS-06-13.5-A20);山西省应用基础青年科技研究基金项目(201901D211559);高粱遗传与种质创新山西省重点实验室开放基金项目(2019K-2)

Effects of long-term nitrogen fertilization with different levels on sorghum grain yield, nitrogen use characteristics and soil nitrate distribution

WANG Yuan1,2(), WANG Jin-Song1, DONG Er-Wei1, WU Ai-Lian1, JIAO Xiao-Yan1,*()   

  1. 1Institute of Agricultural Environment and Resources, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, Shanxi, China
    2Shanxi Province Key Laboratory of Sorghum Genetics & Germplasm Innovation, Jinzhong 030600, Shanxi, China
  • Received:2020-04-13 Accepted:2020-08-19 Published:2021-02-12 Published online:2020-09-04
  • Contact: JIAO Xiao-Yan
  • Supported by:
    China Agriculture Research System(CARS-06-13.5-A20);Science and Technology Research Project in Shanxi Province(201901D211559);Shanxi Province Key Laboratory of Sorghum Genetics & Germplasm Innovation(2019K-2)

摘要:

本研究于2015—2019年以晋杂34、辽杂27、晋饲2号、晋糯3号和汾酒粱1号为研究对象, 设0 (N0)、75 (N75)、150 (N150)、225 (N225)、300 (N300)、450 kg hm-2 (N450) 6个氮素水平, 调查其对产量性状、淀粉含量和土壤硝态氮以及氮素利用特性指标的影响, 以探讨高粱合理的氮素施用方案。结果表明, 高粱的产量、穗粒数及植株地上部氮素累积量, 随施氮水平的增加呈先增加后趋于稳定的趋势, 其中以N75处理增幅最大, 较N0处理最大增幅分别可达23.68%、48.05%和51.86%; 籽粒淀粉含量、5年叠加氮肥利用率、5年叠加氮肥农学效率和氮素5年叠加表观回收率随施氮水平的增加都存在不同程度的降低, 其中N75处理下5年叠加氮肥利用率为63.01%, 较N150处理提高了76.91%; 籽粒淀粉产量则随施氮水平的增加呈先增加后降低的趋势。连续施氮4~5年后, 施氮量≥225 kg hm-2, 残留的硝态氮在60~200 cm土层逐年累积, 且在0~200 cm土层存在明显的累积峰, 硝态氮淋失风险加剧。施氮量75~150 kg hm-2之间, 在满足高粱植株基本生长需求的同时, 可以弥补了土壤氮库的消耗, 有效降低了土壤硝态氮的淋失, 亦有利于高粱产量和籽粒淀粉产量的形成。

关键词: 高粱, 施氮水平, 氮素利用特性, 土壤硝态氮

Abstract:

To determine a suitable nitrogen fertilizer application rate, an experiment was conducted using Jinza 34, Liaoza 27, Jinsi 2, Jinnuo 3, and Fenjiuliang 1 with six nitrogen (N) fertilization levels, including 0 (N0), 75 (N75), 150 (N150), 225 (N225), 300 (N300), and 450 kg hm-2 (N450). The effects of long-term nitrogen fertilization with different levels on sorghum grain yield, nitrogen use characteristics and soil nitrate nitrogen distribution were investigated. The grain yield, grain number and N accumulation of sorghum increased initially and then tended to be stabile with the increase of nitrogen fertilizer application. Among them, the maximum increase of sorghum under N75 treatment compared with that under N0 treatment was 23.68%, 48.05%, and 51.86%, respectively. With the increase of nitrogen fertilizer application, the grain starch content decreased, while the grain starch yield increased firstly and then decreased. Nitrogen apparent recovery rate, nitrogen fertilizer agronomic efficiency and nitrogen use efficiency which were accumulated for five years were reduced significantly with the increase of nitrogen fertilizer application. Compared with the N150 treatment, nitrogen use efficiency accumulated for five years under N75 treatment, which was 63.01%, was increased by 76.91%. When nitrogen fertilizer application was beyond 225 kg hm-2, after four to five years later, nitrate nitrogen residue was increased rapidly in the 60-200 cm soil layer year by year, NO3--N accumulation peaks distributed in the 0-200 cm soil layer and the risk of nitrate nitrogen leaching was increased. In view of the yield, starch yield, nitrogen utilization and environmental benefit, the reasonable nitrogen fertilizer application for sorghum was between 75 kg hm-2 and 150 kg hm-2.

Key words: sorghum, nitrogen fertilizer application, nitrogen utilization characteristics, soil nitrate nitrogen distribution

表1

生育期降水量(2015-2019)"

时期
Period
降水量Precipitation
2015 2016 2017 2018 2019 平均Average
5月May 32.0 20.2 15.0 48.6 0.6 27.8
6月June 15.5 61.9 70.8 54.3 45.8 52.3
7月July 74.4 256.6 143.1 143.5 45.6 119.1
8月August 67.6 137.5 124.2 77.2 48.8 83.2
9月September 68.1 19.8 3.4 56.8 73.4 69.3
生育期Total growth period 257.6 496.0 356.5 380.4 214.2 351.7

表2

供试高粱品种及种植模式"

年份
Year
品种名称
Variety
生育期
Growth period
(d)
来源
Origin
种植密度
Planting density
(×104 plant hm-2)
2015 晋杂34号
Jinza 34
132 山西省农业科学院高粱研究所
Sorghum Research Institute, Shanxi Academy of Agriculture Sciences
18.0
2016 辽杂27号
Liaoza 27
110 辽宁省农业科学院
Liaoning Academy of Agriculture Sciences
13.5
2017 晋饲2号
Jinsi 2
125 山西省农业科学院高粱研究所
Sorghum Research Institute, Shanxi Academy of Agriculture Sciences
16.5
2018 晋糯3号
Jinnuo 3
120 山西省农业科学院高粱研究所
Sorghum Research Institute, Shanxi Academy of Agriculture Sciences
12.0
2019 汾酒粱1号
Fenjiuliang 1
127 山西省农业科学院高粱研究所
Sorghum Research Institute, Shanxi Academy of Agriculture Sciences
18.0

表3

不同施氮水平下高粱产量和植株地上部氮素累积量"

年份
Year
处理
Treatment
产量
Grain yield
(kg hm-2)
千粒重
1000-grain weight
(g)
穗粒数
Grain number
per ear
氮素吸收量
N accumulation
(kg hm-2)
2015 N0 8828.00±425.81 a 23.58±0.82 a 1954.49±84.55 a 176.03±3.35 a
N75 9474.50±223.62 b 24.01±2.31 a 1925.23±229.71 a 225.93±7.43 b
N150 9398.50±263.27 ab 22.13±1.25 a 2200.79±158.03 a 227.53±9.59 b
N225 9373.00±408.22 ab 22.17±0.40 a 2044.42±114.56 a 220.93±13.63 b
N300 9157.50±231.13 ab 23.28±0.97 a 1992.32±185.57 a 250.97±9.57 c
N450 9178.00±107.92 ab 23.39±1.04 a 2019.53±93.40 a 264.37±5.75 c
2016 N0 6558.45±867.17 a 25.38±1.08 a 1785.01±96.17 a 126.20±23.91 a
N75 8039.30±783.39 b 26.67±0.95 ab 2141.66±223.08 b 195.45±38.84 b
N150 8609.20±699.18 b 27.81±0.44 b 1969.83±118.01 ab 191.70±1.08 b
N225 8523.85±785.79 b 27.08±0.45 ab 2120.00±168.73 b 191.70±17.16 b
N300 7720.10±358.35 ab 27.09±2.26 ab 2133.19±203.92 b 187.65±33.45 b
N450 8016.70±636.33 b 27.32±0.78 ab 2005.44±40.11 ab 193.65±6.94 b
2017 N0 6049.05±302.83 a 20.25±2.02 a 1752.42±231.41 a 100.90±8.71 a
N75 7481.25±860.12 b 18.76±1.45 a 2594.47±251.06 b 140.55±8.55 b
N150 6815.10±352.25 ab 19.04±3.58 a 2360.97±460.97 b 142.00±9.05 b
N225 7014.95±300.14 ab 20.64±1.70 a 2277.21±312.13 ab 145.35±1.73 bc
N300 7099.55±756.17 ab 18.45±0.39 a 2298.74±200.92 ab 150.50±9.80 bc
N450 7131.00±773.23 ab 19.65±2.82 a 2218.02±282.58 ab 163.95±18.09 c
2018 N0 6431.75±264.32 a 27.49±1.09 a 2167.46±37.54 a 87.25±6.78 a
N75 7525.70±533.25 b 26.09±1.32 a 2818.92±312.25 b 132.50±9.62 b
N150 7550.20±628.92 b 25.19±0.60 a 2776.43±61.98 b 145.30±7.60 b
N225 7166.90±729.93 b 26.01±2.01 a 2682.47±71.18 b 140.10±13.08 b
N300 6803.75±840.38 ab 26.93±2.51 a 2598.97±396.42 b 135.60±16.37 b
N450 6829.75±442.84 ab 26.74±3.72 a 2641.43±263.05 b 140.40±10.78 b
2019 N0 7248.78±1112.36 a 20.90±1.04 b 1960.07±445.54 a 97.10±17.91 a
N75 7915.81±664.66 a 19.47±1.63 ab 2423.49±316.84 ab 129.32±17.69 ab
N150 7715.23±585.36 a 18.33±1.10 a 2545.77±126.49 b 148.10±13.08 b
N225 7466.09±750.31 a 18.20±0.44 a 2455.83±112.38 ab 142.19±19.16 b
N300 8358.97±872.92 a 19.57±0.72 ab 2593.18±350.69 b 159.20±29.95 b
N450 7485.30±746.40 a 19.83±1.40 ab 2336.11±224.37 ab 149.83±20.74 b

图1

不同施氮量下高梁淀粉含量和淀粉产量 不同字母表示同一年度不同处理间差异达0.05显著水平。处理同表3。"

表4

不同氮素用量下高粱5年累积氮肥利用特性"

处理
Treatment
氮肥施入量
N fertilization
(kg hm-2)
氮素积累
N accumulation
(kg hm-2)
氮肥利用率
NFUE
(%)
氮肥农学效率
NAE
(kg kg-1)
氮素表观回收率
NARR
(%)
N0 0 587.45 a
N75 375 823.72 b 63.01 d 14.19 d 219.66 e
N150 750 854.60 bc 35.62 c 6.63 c 113.95 d
N225 1125 840.24 bc 22.47 b 3.94 b 74.69 c
N300 1500 883.90 cd 19.76 ab 2.68 ab 58.92 b
N450 2250 912.18 d 14.43 a 1.57 a 40.54 a

图2

2018年和2019年高粱收获后0~200 cm土层土壤硝态氮 处理同表3。"

[1] 朱兆良, 文启孝. 中国土壤氮素. 南京: 江苏科学技术出版社, 1992. pp 228-245.
Zhu Z L, Wen Q X. Nitrogen in Soil of China. Nanjing: Jiangau Science and Technology Press, 1992. pp 228-245(in Chinese).
[2] 张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陆新平, 江荣凤. 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008,45:915-924.
Zhang F S, Wang J Q, Zhang W F, Cui Z L, Ma W Q, Lu X P, Jiang R F. Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedol Sin, 2008,45:915-924 (in Chinese with English abstract).
[3] 王夏雯, 王绍华, 李刚华, 王强盛, 刘正辉, 余翔, 丁艳锋. 氮素穗肥对水稻幼穗细胞分裂素和生长素浓度的影响及其与颖花发育的关系. 作物学报, 2008,34:2184-2189.
doi: 10.3724/SP.J.1006.2008.02184
Wang X W, Wang S H, Li G H, Wang Q S, Liu Z H, Yu X, Ding Y F. Effect of panicle nitrogen fertilizer on concentrations of cytokinin and auxin in young panicles of japonica rice and its relation with spikelet development. Acta Agron Sin, 2008,34:2184-2189 (in Chinese with English abstract).
[4] 依兵. 高粱子粒淀粉积累与合成相关酶活性研究. 沈阳农业大学博士学位论文, 辽宁沈阳, 2014.
Yi B. Starch Accumulation and Enzymes Activities for Starch Synthesis in Sorghum Grains PhD Dissertation of Shenyang Agricultural University, Shenyang, Liaoning, China, 2014 (in Chinese with English abstract).
[5] Osaki M, Iyoda M, Tadano T. Ontogenetic changes in the contents of ribulose-1,5-bisphosphate carboxylase/oxygenase, phosphoenol pyruvate carboxylase, and chlorophyll in individual leaves of maize. Soil Sci Plant Nutr, 1995,41:285-293.
doi: 10.1080/00380768.1995.10419585
[6] Stitt M, Müller C, Matt P, Gibon Y, Carillo P, Morcuende R, Scheible W, Krapp A. Steps towards an integrated view of nitrogen metabolism. J Exp Bot, 2002,53:959-970.
doi: 10.1093/jexbot/53.370.959 pmid: 11912238
[7] Wang H, McCaig T N, DePauw R M, Clarke F R, Clarck J M. Physiological characteristics of recent Canada western red spring wheat cultivars: components of grain nitrogen yield. Can J Plant Sci, 2003,83:699-707.
[8] Wang G L, Chen X P, Cui Z L, Yue S C, Zhang F S. Estimated reactive nitrogen losses for intensive maize production in China. Agric Ecosyst Environ, 2014,197:293-300.
[9] Rimski-Korsakov H, Rubio G, Lavador R S. Fate of the nitrogen from fertilizers in field-grown maize. Nutr Cycl Agroecosys, 2012,93:253-263.
doi: 10.1007/s10705-012-9513-1
[10] Liang B, Zhao W, Yang X Y, Zhou J B. Fate of nitrogen-15 as influenced by soil and nutrient management history in a 19-year wheat-maize experiment. Field Crops Res, 2013,144:126-134.
[11] 戴健, 王朝辉, 李强, 李孟华, 李富翠. 氮肥用量对旱地冬小麦产量及夏闲期土壤硝态氮变化的影响. 土壤学报, 2013,50:956-965.
Dai J, Wang Z H, Li Q, Li M H, Li F C. Effects of nitrogen application rate on winter wheat yield and soil nitrate nitrogen during summer fallow season on dryland. Acta Pedol Sin, 2013,50:956-965 (in Chinese with English abstract).
[12] Assefa Y, Roozeboom K, Thompson C, Schlegel A, Stone L, Lingenfelser J. Corn and Sorghum Comparison: All Things Considered. Waltham: Academic Press, 2013. pp 71-86.
[13] Muchow R C. Nitrogen utilization efficiency in maize and grain sorghum. Field Crops Res, 1998,56:209-216.
[14] 崔佩佩, 武爱莲, 王劲松, 董二伟, 南江宽, 白文斌, 焦晓燕. 不同施肥处理对高粱根际土壤微生物功能多样性的影响. 华北农学报, 2018,33(5):195-202.
Cui P P, Wu A L, Wang J S, Dong E W, Nan J K, Bai W B, Jiao X Y. Effect of different fertilization fertilization treatments on soil microbial function diversity in rhizosphere of sorghum. Acta Agric Boreali-Sin, 2018,33(5):195-202 (in Chinese with English abstract).
[15] Hossain A K M, Zakir G V, Subbarao S J, Pearse S G, Osamu I, Takayuki S, Naoyushi K, Nakahara K, Yoshihashi T, Ono H, Yoshida M. Detection isolation and characterization of a root-exuded compound, methyl 3-(4-hydroxyphenyl) propionate, responsible for biological nitrification inhibition by sorghum (Sorghum bicolor). New Phytol, 2008,180:442-451.
pmid: 18657214
[16] Subbarao G V, Nakahara K, Ishikawa T, Ono H, Yoshida M, Zhu Y Y. Biological nitrification inhibition (BNI) activity in sorghum and its characterization. Plant Soil, 2012,366:243-259.
[17] 王劲松, 董二伟, 武爱莲, 白文斌, 王媛, 焦晓燕. 不同肥力条件下施肥对粒用高粱产量、品质及养分吸收利用的影响. 中国农业科学, 2019,52:4166-4176.
Wang J S, Dong E W, Wu A L, Bai W B, Wang Y, Jiao X Y. Responses of fertilization on sorghum grain yield, quality and nutrient utilization to soil fertility. Sci Agric Sin, 2019,52:4166-4176 (in Chinese with English abstract).
[18] Gardner J C, Maranville J W, Paparozzi E T. Nitrogen use efficiency among diverse sorghum cultivars. Crop Sci, 1994,34:728-733.
[19] Marsalis M A, Angadi S V, Contrerasgovea F E. Dry matter yield and nutritive value of corn, forage sorghum, and BMR forage sorghum at different plant populations and nitrogen rates. Field Crops Res, 2010,116:52-57.
doi: 10.1016/j.fcr.2009.11.009
[20] Almodares A, Taheri R, Hadi M R, Fathi M. The effect of nitrogen and potassium fertilizers on the growth parameters and the yield components of two sweet sorghum cultivars. Pak J Biol Sci, 2006,9:2350-2353.
[21] Tang C C, Yang X L, Chen X, Ameen A, Xie G H. Sorghum biomass and quality and soil nitrogen balance response to nitrogen rate on semiarid marginal land. Field Crops Res, 2018,2:12-22.
[22] 张北赢, 徐学选, 刘文兆, 陈天林. 黄土丘陵沟壑区不同降水年型下土壤水分动态. 应用生态学报, 2008,19:1234-1240.
Zhang B Y, Xu X X, Liu W Z, Chen T L. Dynamic changes of soil moisture in loess hilly and gully region under effects of different yearly precipitation patterns. Chin J Appl Ecol, 2008,19:1234-1240 (in Chinese with English abstract).
[23] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 1999. pp 264-268.
Lu R K. Analytical Methods for Soil and Agro-Chemistry. Beijing: China Agricultural Science and Technology Press, 1999. pp 264-268(in Chinese).
[24] 谷物籽粒粗淀粉测定方法(GB 5006-1985), 中华人民共和国国家标准.
Determination of Crude Starch in Cereals Seeds (GB 5006-1985), State Standard of the People’s Republic of China (in Chinese).
[25] 刘巽浩, 陈阜. 对氮肥利用率若干传统观念的质疑. 农业现代化研究, 1990,11(4):28-34.
Liu X H, Chen F. Queries on the traditional concepts of nitrogen use efficiency. Res Agric Modern, 1990,11(4):28-34 (in Chinese).
[26] 宇万太, 周桦, 马强, 沈善敏. 氮肥施用对作物吸收土壤氮的影响-兼论作物氮肥利用率. 土壤学报, 2010,47:90-96.
Yu W T, Zhou H, Ma Q, Shen S M. Effect of N fertilizer on uptake of soil N by crops with special discussion on fertilizer nitrogen recovery rate. Acta Pedol Sin, 2010,47:90-96 (in Chinese with English abstract).
[27] 张桂香, 史红梅, 李爱军. 高粱高淀粉基础材料的筛选及评价. 作物杂志, 2009, (1):97-98.
Zhang G X, Shi H M, Li A J. Screening and evaluation of sorghum varieties with high starch content. Crops, 2009, (1):97-98 (in Chinese with English abstract).
[28] Ebadi M R, Sedghi M, Kakahkai R M. Accurate prediction of nutritional value of sorghum grain using image analysis. Brit Poultry Sci, 2019,60:154-160.
doi: 10.1080/00071668.2018.1562157
[29] Jemison J M, Fox R H. Nitrate leaching from nitrogen-fertilized and manured corn measured with zero-tension pan lysimeters. J Environ Qual, 1994,23:337-343.
[30] Takei K. Nitrogen-dependent accumulation of cytokininsin root and the translocation to leaf: Implication of cytokinin species that induces gene expression of maize response regulator. Plant Cell Physiol, 2001,42:85-93.
pmid: 11158447
[31] Samuelson M E, Larsson C M. Nitrate regulation of zeatin riboside levels in barley roots: effects of inhibitors of N assimilation and comparison with ammonium. Plant Sci, 1993,93:77-84.
[32] 高杰, 李青风, 汪灿, 张国斌, 彭秋. 不同氮素水平对糯高粱物质生产及氮素利用特性的影响. 作物杂志, 2017, (6):126-130.
Gao J, Li Q F, Wang C, Zhang G B, Peng Q. Effects of different nitrogen level on material production and nitrogen use characteristics in glutinous sorghum. Crops, 2017, (6):126-130 (in Chinese with English abstract).
[33] Scheible W R, Gonzalez-Fontes A, Lauerer M, Müller-Röber B, Caboche M, Stitt M. Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco. Plant Cell, 1997,5:783-798.
[34] 王劲松, 董二伟, 武爱莲, 南江宽, 韩雄, 王立革, 丁玉川, 焦晓燕. 灌溉时期与施氮量对矮杆高粱产量和品质的影响. 灌溉排水学报, 2017,36(增刊2):1-8.
Wang J S, Dong E W, Wu A L, Nan J K, Han X, Wang L G, Ding Y C, Jiao X Y. Effects of irrigation period and nitrogen application rate on dwarf sorghum yield and quality. J Irrig Drain, 2017,36(S2):1-8 (in Chinese with English abstract).
[35] 刘璐, 王朝辉, 刁超朋, 王森, 李莎莎. 旱地不同小麦品种产量与干物质及氮磷钾养分需求的关系. 植物营养与肥料学报, 2018,24:599-608.
Liu L, Wang Z H, Diao C P, Wang S, Li S S. Grain yield of different wheat cultivars and their relations to dry matter and NPK requirement in dryland. Plant Nutr Fert Sci, 2018,24:599-608 (in Chinese with English abstract).
[36] 杨文治, 余存祖. 黄土高原区域治理与评价. 北京: 科学出版社, 1992. pp 125-135.
Yang W Z, Yu C Z. The Management and Evaluation on the Loess Plateau Area. Beijing: Science Press, 1992. pp 125-135(in Chinese).
[37] 巨晓棠, 张福锁. 中国北方土壤硝态氮的累积及其对环境的影响. 生态环境, 2003,12(1):24-28.
Ju X T, Zhang F S. Nitrate accumulation and its implication to environment in north China. Ecol Environ, 2003,12(1):24-28 (in Chinese with English abstract).
[38] 刘平, 刘学军, 骆晓声. 山西北部农村区域大气活性氮沉降特征. 生态学报, 2016,36:5353-5359.
Liu P, Liu X J, Luo X S. The atmospheric deposition characteristics of reactive nitrogen (Nr) species in Shuozhou area. Acta Ecol Sin, 2016,36:5353-5359 (in Chinese with English abstract).
[39] Chan C K, Yao X H. Air pollution in mega cities in China. Atmos Environ, 2008,42:1-42.
[40] 巨晓棠. 氮肥有效率的概念及意义——兼论对传统氮肥利用率的理解误区. 土壤学报, 2014,51:921-933.
Ju X T. The concept and meanings of nitrogen fertilizer availability ratio discussing misunderstanding of traditional nitrogen use efficiency. Acta Pedol Sin, 2014,51:921-933 (in Chinese with English abstract).
[1] 董二伟, 王劲松, 武爱莲, 王媛, 王立革, 韩雄, 郭珺, 焦晓燕. 行距和密度对高粱籽粒灌浆、淀粉及氮磷钾累积特征的影响[J]. 作物学报, 2021, 47(12): 2459-2470.
[2] 张瑞栋,肖梦颖,徐晓雪,姜冰,邢艺凡,陈小飞,李邦,艾雪莹,周宇飞,黄瑞冬. 高粱种子对萌发温度的响应分析与耐低温萌发能力鉴定[J]. 作物学报, 2020, 46(6): 889-901.
[3] 宝力格,陆平,史梦莎,许月,刘敏轩. 中国高粱地方种质芽期苗期耐盐性筛选及鉴定[J]. 作物学报, 2020, 46(5): 734-744.
[4] 王瑞,凌亮,詹鹏杰,于纪珍,楚建强,平俊爱,张福耀. 控制高粱分蘖与主茎株高一致性的基因定位[J]. 作物学报, 2019, 45(6): 829-838.
[5] 张笑笑,潘映红,任富莉,蒲伟军,王道平,李玉斌,陆平,李桂英,朱莉. 基于多重表型分析的准确评价高粱抗旱性方法的建立[J]. 作物学报, 2019, 45(11): 1735-1745.
[6] 李莎莎,马耕,刘卫星,康娟,陈雨露,胡阳阳,张盼盼,王晨阳. 大田长期水氮处理对土壤氮素及小麦籽粒淀粉糊化特性的影响[J]. 作物学报, 2018, 44(7): 1067-1076.
[7] 朱广龙,宋成钰,于林林,陈许兵,智文芳,刘家玮,焦秀荣,周桂生. 外源生长调节物质对甜高粱种子萌发过程中盐分胁迫的缓解效应及其生理机制[J]. 作物学报, 2018, 44(11): 1713-1724.
[8] 赵燕燕, 习岗. 高粱种子萌发过程中超微弱光子辐射的特征[J]. 作物学报, 2018, 44(05): 783-789.
[9] 屈佳伟, 高聚林, 于晓芳, 王志刚, 胡树平, 孙继颖, 苏治军, 谢岷, 青格尔. 不同氮效率玉米品种对土壤硝态氮时空分布及农田氮素平衡的影响[J]. 作物学报, 2018, 44(05): 737-749.
[10] 吴奇,周宇飞,高悦,张姣,陈冰嬬,许文娟,黄瑞冬. 不同高粱品种萌发期抗旱性筛选与鉴定[J]. 作物学报, 2016, 42(08): 1233-1246.
[11] 唐朝臣,罗峰,李欣禹,裴忠有,高建明,孙守钧*. 甜高粱产量及品质相关性状对环境因子反应度分析[J]. 作物学报, 2015, 41(10): 1612-1618.
[12] 王劲松,焦晓燕,丁玉川,董二伟,白文斌,王立革,武爱莲. 粒用高粱养分吸收、产量及品质对氮磷钾营养的响应[J]. 作物学报, 2015, 41(08): 1269-1278.
[13] 王瑞,张福耀,程庆军,田承华,凌亮. 利用SSR荧光标记构建20个高粱品种指纹图谱[J]. 作物学报, 2015, 41(04): 658-665.
[14] 马强,顿宝庆,奚亚军,王智,陈朝儒,路明,李桂英. 碱处理对甜高粱秸秆渣组成结构及酶解糖化效果的影响[J]. 作物学报, 2014, 40(09): 1604-1611.
[15] 王艺陶,周宇飞,李丰先,依兵,白薇,闫彤,许文娟,高明超,黄瑞冬. 基于主成分和SOM聚类分析的高粱品种萌发期抗旱性鉴定与分类[J]. 作物学报, 2014, 40(01): 110-121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!