作物学报 ›› 2021, Vol. 47 ›› Issue (5): 983-990.doi: 10.3724/SP.J.1006.2021.04207
• 研究简报 • 上一篇
TANG Xin(), LI Yuan-Yuan, LU Jun-Xing, ZHANG Tao*()
摘要:
明确甘蓝型油菜温敏核雄性不育系160S花器形态变化、花药败育的时期和细胞学特征, 初步探究败育的原因, 为深入研究不育系160S的内在分子调控机制提供理论基础, 也对其在油菜两系杂交育种中的实际应用具有指导意义。本研究在15℃和28℃条件下培养试验材料160S, 利用体式显微镜分别观察花发育形态特征; 采用醋酸洋红染色方法观察各时期小孢子发育形态; 通过石蜡切片和苏木精-伊红染色对可育植株(Male Fertile/160S-MF)和不育植株(Male Sterile/160S-MS)花药细胞学特征进行显微观察; TUNEL染色法检测花药发育各时期绒毡层细胞凋亡情况。160S-MF在15℃表现为可育, 雄蕊正常发育, 成熟的花药呈黄色, 形态饱满, 正常开裂, 表面一层有活性的花粉附着在上面; 28℃条件下, 160S-MS花朵的雌蕊、萼片与160S-MF花朵无差异, 但花瓣变小, 花丝变短, 雄蕊明显退化, 花药干瘪呈黄褐色, 无花粉粒附着在花药上, 表现出雄性完全不育。160S-MF的小孢子能正常发育为成熟有活力的花粉。而160S-MS由于雄蕊完全败育, 未观察到小孢子和花粉粒。160S-MS花药在造孢时期和花粉母细胞时期与160S-MF无明显差异, 但在减数分裂期, 160S-MS花药绒毡层形态和结构出现异常, 绒毡层细胞排列不整齐, 细胞空泡化, 伴随提前解体。同时花粉母细胞发育受阻, 无四分体结构形成, 最终在减数分裂期完成前形成空的花粉囊。TUNEL检测发现, 160S-MS花药绒毡层细胞在减数分裂期开始凋亡。本研究结果表明, 160S属花粉母细胞败育型不育系, 败育时期发生在减数分裂期, 绒毡层异常降解, 绒毡层未向腺质型转化, 不能提供花粉母细胞发育所需要的营养物质, 致使花粉母细胞发育受阻无法形成四分体结构, 从而导致小孢子无法形成, 花药形成空的花粉囊, 产生雄性不育。
[1] |
Tester M, Langridge P. Breeding technologies to increase crop production in a changing world. Science, 2010,327:818-822.
pmid: 20150489 |
[2] | Rondanini D P, Gomez N V, Agosti M B, Miralles D J. Global trends of rapeseed grain yield stability and rapeseed-to-wheat yield ratio in the last four decades. Eur J Agron, 2012,37:56-65. |
[3] |
Hochholdinger F, Hoecker N. Towards the molecular basis of heterosis. Trends Plant Sci, 2007,12:427-432.
doi: 10.1016/j.tplants.2007.08.005 pmid: 17720610 |
[4] | Chen L, Liu Y G. Male sterility and fertility restoration in crops. Ann Rev Plant Biol, 2014,65:579-606. |
[5] | Virmani S S, Ilyas-Ahmed M. Environment-sensitive genic male sterility (EGMS) in crops. Adv Agron, 2001,72:139-195. |
[6] |
Lei S L, Yao X Q, Yi B, Chen W, Ma C Z, Tu J X, Fu T D. Towards map-based cloning: fine mapping of a recessive genic male-sterile gene ( BnMs2) in Brassica napus L. and syntenic region identification based on the Arabidopsis thaliana genome sequences. Theor Appl Genet, 2007,115:643-651.
doi: 10.1007/s00122-007-0594-1 pmid: 17605126 |
[7] | Sun Y, Zhang D, Wang Z, Guo Y, Sun X, Li W, Zhi W, Hu S. Cytological observation of anther structure and genetic investigation of a thermo-sensitive genic male sterile line 373S in Brassica napus L. BMC Plant Biol, 2020,20:8. |
[8] | 石明松. 对光照长度敏感的隐性雄性不育水稻的发现与初步研究. 中国农业科学, 1985,18(2):44-48. |
Shi M S. The discovery and study of the photosensitive recessive male-sterile rice ( Oryza sativa L. subsp. japonica). Sci Agric Sin, 1985,18(2):44-48 (in Chinese with abstract). | |
[9] | Lee D S, Chen L J, Suh H S. Genetic characterization and fine mapping of a novel thermo-sensitive genic male-sterile gene tms6 in rice ( Oryza sativa L.). Theo Appl Genet, 2005,111:1271-1277. |
[10] |
Tang J H, Fu Z Y, Hu Y M, Li J S, Sun L L, Ji H Q. Genetic analyses and mapping of a new thermo-sensitive genic male sterile gene in maize. Theor Appl Genet, 2006,113:11-15.
doi: 10.1007/s00122-006-0262-x pmid: 16783588 |
[11] |
Xing Q H, Ru Z G, Zhou C J, Xue X, Liang C Y, Yang D E, Jin D M, Wang B. Genetic analysis, molecular tagging and mapping of the thermo-sensitive genic male-sterile gene ( wtms1) in wheat. Theor Appl Genet, 2003,107:1500-1504.
doi: 10.1007/s00122-003-1385-y pmid: 12928780 |
[12] |
Frasch R M, Weigand C, Perez P T, Palmer R G, Sandhu D. Molecular mapping of 2 environmentally sensitive male-sterile mutants in soybean. J Hered, 2011,102:11-16.
doi: 10.1093/jhered/esq100 pmid: 20864624 |
[13] |
Zhu J, Lou Y, Shi Q S, Zhang S, Zhou W T, Yang J, Zhang C, Yao X Z, Xu T, Liu J L, Zhou L, Hou J Q, Wang J Q, Wang S, Huang X H, Yang Z N. Slowing development restores the fertility of thermo-sensitive male-sterile plant lines. Nat Plants, 2020,6:360-367.
pmid: 32231254 |
[14] | 李可琪, 曾新华, 袁荣, 闫晓红, 吴刚. 甘蓝型油菜温敏细胞核雄性不育系TE5A花药发育的细胞学研究. 中国农业科学, 2016,49:2408-2417. |
Li K Q, Zeng X H, Yuan R, Yan X H, Wu G. Cytological researches on the anther development of a thermo-sensitive genic male sterile line TE5A in Brassica napus. Sci Agric Sin, 2016,49:2408-2417 (in Chinese with English abstract). | |
[15] |
Yan X, Zeng X, Wang S, Li K, Yuan R, Gao H, Luo J, Liu F, Wu Y, Li Y, Zhu L, Wu G. Aberrant meiotic prophase I leads to genic male sterility in the novel TE5A mutant of Brassica napus. Sci Rep, 2016,6:33955.
pmid: 27670217 |
[16] | Yu C Y, Guo Y F, Ge J, Hu Y M, Dong J G, Dong Z S. Characterization of a new temperature-sensitive male sterile line SP2S in rapeseed ( Brassica napus L.). Euphytica, 2015,206:473-485. |
[17] | 张涛, 沈余亮, 王瑞雪, 邹燕, 赵敬会, 李荣冲, 梁晶龙, 龚慧明. 甘蓝型油菜雄性不育系160S育性转换与利用. 西北植物学报, 2012,32:35-41. |
Zhang T, Shen L Y, Wang R X, Zou Y, Zhao J H, Li R C, Liang J L, Gong H M. Fertility alteration and utilization of male-sterile line 160S in Brassica napus. Acta Bot Boreali-Occident Sin, 2012,32:35-41 (in Chinese with English abstract). | |
[18] | Laser K D, Lersten N K. Anatomy and cytology of microsporo-genesis in cytoplasmic male sterile (CMS) angiosperms. Bot Rev, 1972,38:425-454. |
[19] |
Wang S P, Zhang G S, Song Q L, Zhang Y X, Li Z, Guo J L, Niu N, Ma S C, Wang J W. Abnormal development of tapetum and microspores induced by chemical hybridization agent SQ-1 in wheat. PLoS One, 2015,10:e0119557.
doi: 10.1371/journal.pone.0119557 pmid: 25803723 |
[20] | 余凤群, 傅廷栋. 甘蓝型油菜几个雄性不育系花药发育的细胞形态学研究. 武汉植物学研究, 1990,8:209-216. |
Yu F Q, Fu T D. Cytomorphology study on anther development of several male sterile lines of Brassica napus. J Wuhan Bot Res, 1990,8:209-216 (in Chinese with English abstract). | |
[21] | 葛娟, 郭英芬, 于澄宇, 张国云, 董军刚, 董振生. 甘蓝型油菜光、温敏雄性不育系Huiyou 50S花粉败育的细胞学观察. 作物学报, 2012,38:541-548. |
Ge J, Guo Y F, Yu C Y, Zhang G Y, Dong J G, Dong Z S. Cytological observation of anther development of photoperiod/thermo-sensitive male sterile line Huiyou 50S in Brassica napus. Acta Agron Sin, 2012,38:541-548 (in Chinese with English abstract). | |
[22] |
Ma H. Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants. Annu Rev Plant Biol, 2005,56:393-434.
pmid: 15862102 |
[23] |
Jung K H, Han M J, Lee Y S, Kim Y W, Hwang I W, Kim M J, Kim Y K, Nahm B H, An G. Rice undeveloped tapetum1 is a major regulator of early tapetum development. Plant Cell, 2005,17:2705-2722.
doi: 10.1105/tpc.105.034090 pmid: 16141453 |
[24] |
Zhao D Z, Wang G F, Speal B, Ma H. The excess microsporocytes1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther. Genes Dev, 2002,16:2021-2031.
pmid: 12154130 |
[25] | Bedinger P. The remarkable biology of pollen. Plant Cell, 1992,4:879-887. |
[26] |
Xu J, Ding Z W, Vizcay-Barrena G, Shi J X, Liang W Q, Yuan Z, Werck-Reichhart D, Schreiber L, Wilson Z A, Zhang D B. Aborted microspores acts as a master regulator of pollen wall formation in Arabidopsis. Plant Cell, 2014,26:1544-1556.
doi: 10.1105/tpc.114.122986 pmid: 24781116 |
[27] | Liu Z H, Shi X Y, Li S, Hu G, Zhang L L, Song X Y. Tapetal-delayed programmed cell death (PCD) and oxidative stress-induced male sterility of Aegilops uniaristata cytoplasm in wheat. Int J Mol Sci, 2018,19:1708. |
[28] | Papini A, Mosti S, Brighigna L. Programmed-cell-death events during tapetum development of angiosperms. Protoplasma, 1999,207:213-221. |
[29] | Li N, Zhang D S, Liu H S, Yin C S, Li X X, Liang W Q, Yuan Z, Xu B, Chu H W, Wang J, Wen T Q, Huang H, Luo D, Ma H, Zhang D B. The ricetapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell, 2006,18:2999-3014. |
[30] | Zhang D, Liu D, Lyu X, Wang Y, Xun Z, Liu Z, Li F, Lu H. The cysteine protease CEP1, a key executor involved in tapetal programmed cell death, regulates pollen development in Arabidopsis. Plant Cell, 2014,26:2939-2961. |
[31] |
Jacobowitz J R, Doyle W C, Weng J K. PRX9 and PRX40 are extensin peroxidases essential for maintaining tapetum and microspore cell wall integrity during Arabidopsis anther development. Plant Cell, 2019,31:848-861.
doi: 10.1105/tpc.18.00907 pmid: 30886127 |
[32] |
Xie X, Zhang Z, Zhao Z, Xie Y, Li H, Ma X, Liu Y G, Chen L. The mitochondrial aldehyde dehydrogenase OsALDH2b negatively regulates tapetum degeneration in rice. J Exp Bot, 2020,71:2551-2560.
doi: 10.1093/jxb/eraa045 pmid: 31989154 |
[33] |
Uzair M, Xu D, Schreiber L, Shi J, Liang W, Jung K H, Chen M, Luo Z, Zhang Y, Yu J, Zhang D. PERSISTENT TAPETAL CELL2 is required for normal tapetal programmed cell death and pollen wall patterning. Plant Physiol, 2020,182:962-976.
pmid: 31772077 |
[34] | 许代香, 贾乐东, 王瑞, 马国强, 段谋正, 曲存民, 李加纳. 甘蓝型油菜显性核不育系D3A的细胞学研究. 西南大学学报(自然科学版), 2020,42(1):16-21. |
Xu D X, Jia L D, Wang R, Ma G Q, Duan M Z, Qu C M, Li J N. Cytological studies of dominant GMS sterile line D3A in Brassica napus L. J Southwest Univ (Nat Sci Edn), 2020,42(1):16-21 (in Chinese with English abstract). | |
[35] | 李六林. 植物雄性不育机理研究. 北京: 中国农业科学技术出版社, 2008. p 5. |
Li L L. Study on the Mechanism of Plant Male Sterility. Beijing: China Agricultural Science and Technology Press, 2008. p 5 (in Chinese). |
[1] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[2] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[3] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[4] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[5] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[6] | 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510. |
[7] | 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798. |
[8] | 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598. |
[9] | 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637. |
[10] | 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659. |
[11] | 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426. |
[12] | 蒙姜宇, 梁光伟, 贺亚军, 钱伟. 甘蓝型油菜耐盐和耐旱相关性状的QTL分析[J]. 作物学报, 2021, 47(3): 462-471. |
[13] | 李倩, Nadil Shah, 周元委, 侯照科, 龚建芳, 刘珏, 尚政伟, 张磊, 战宗祥, 常海滨, 傅廷栋, 朴钟云, 张椿雨. 抗根肿病甘蓝型油菜新品种华油杂62R的选育[J]. 作物学报, 2021, 47(2): 210-223. |
[14] | 魏丽娟, 申树林, 黄小虎, 马国强, 王曦彤, 杨怡玲, 李洹东, 王书贤, 朱美晨, 唐章林, 卢坤, 李加纳, 曲存民. 锌胁迫下甘蓝型油菜发芽期下胚轴长的全基因组关联分析[J]. 作物学报, 2021, 47(2): 262-274. |
[15] | 王瑞莉, 王刘艳, 雷维, 吴家怡, 史红松, 李晨阳, 唐章林, 李加纳, 周清元, 崔翠. 结合RNA-seq分析和QTL定位筛选甘蓝型油菜萌发期与铝毒胁迫相关的候选基因[J]. 作物学报, 2021, 47(12): 2407-2422. |
|