欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (6): 1138-1148.doi: 10.3724/SP.J.1006.2021.03043

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

玉米生长素响应因子家族基因的表达模式分析

李文兰(), 李文才, 孙琦, 于彦丽, 赵勐, 鲁守平, 李艳娇, 孟昭东*()   

  1. 山东省农业科学院玉米研究所/小麦玉米国家工程实验室/农业部黄淮海北部玉米生物学与遗传育种重点实验室, 山东济南 250100
  • 收稿日期:2020-07-07 接受日期:2020-11-13 出版日期:2021-06-12 网络出版日期:2021-04-02
  • 通讯作者: 孟昭东
  • 作者简介:E-mail:liwenlantutu@126.com
  • 基金资助:
    山东省自然科学基金项目(ZR2019BC107)

A study of expression pattern of auxin response factor family genes in maize (Zea mays L.)

LI Wen-Lan(), LI Wen-Cai, SUN Qi, YU Yan-Li, ZHAO Meng, LU Shou-Ping, LI Yan-Jiao, MENG Zhao-Dong*()   

  1. Maize Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Laboratory of Wheat and Maize/Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-Huai Rivers Plain, Ministry of Agriculture, Jinan 250100, Shandong, China
  • Received:2020-07-07 Accepted:2020-11-13 Published:2021-06-12 Published online:2021-04-02
  • Contact: MENG Zhao-Dong
  • Supported by:
    The Natural Science Foundation of Shandong Province(ZR2019BC107)

摘要:

生长素响应因子(auxin response factor, ARF)是一类重要的转录因子, 通过特异性地结合生长素响应元件调节下游靶基因的转录, 参与诸多植物生长发育过程的调控。玉米中有许多ARF家族基因, 但其表达模式有待深入研究。本研究分析了玉米ARF家族基因在不同组织器官中的表达, 发现除ARF10ARF16ARF34组成型表达外, 其余32个ARF基因的表达水平在生殖器官中要明显高于营养器官。对ARF基因启动子区的顺式作用元件分析显示, 28个ARF基因的启动子区含有逆境胁迫相关顺式元件, 实时定量PCR分析结果显示, 多个ARF基因分别响应冷、热、盐和渗透胁迫。研究结果不仅暗示了ARF家族基因在玉米生殖生长和非生物逆境胁迫响应中的重要性, 也为全面解析ARF基因在玉米中的生物学功能提供有用信息。

关键词: ARF, 表达, 逆境胁迫, 玉米

Abstract:

Auxin response factors (ARFs) are important transcription factors which control the expression of target genes by binding specifically to auxin response elements, and are involved in a series of developmental processes in plant species. In maize genome, dozens of ARF genes are encoded, however, there is little known on their expression patterns. In this study, the analysis on the expression level of ARF genes in diverse tissues and organs revealed that expression level of 32 ARF genes were higher in reproductive organs than that in vegetative organs, except ARF10, ARF16, and ARF34 constitutively expressed. The predicted results of cis-acting elements showed that the promoter regions of 28 ARF genes harbored the cis-regulatory elements related to abiotic stresses. Real-time quantitative PCR results indicated that expression of several ARF genes showed a response to cold, heat, and osmotic stresses, respectively. The results highlighted the importance of ARF family genes in reproductive growth and abiotic stress response, and provided useful information for the comprehensive analysis of the biological function of ARF genes in maize.

Key words: auxin response factor, expression, abiotic stress, maize (Zea mays L.)

表1

实时定量PCR的引物序列"

基因名
Gene name
基因号
Gene accession
引物名称
Primer name
引物序列
Primer sequence (5°-3°)
ARF1 Zm00001 arf1-s CGTGTATATGTATCCTTCC
d030803 arf1-a ATTGTCTTCTGAGTACCA
ARF2 Zm00001 arf2-s AAACGACTCTGGGTATGT
d031064 arf2-a CTGAAGGACTTGTGTCTG
ARF3 Zm00001 arf3-s AACGGCATCTCTAACTAC
d031522 arf3-a ACGAATCTATGGAATTGAAC
ARF4 Zm00001 arf4-s AGTTCCGATGGCAGTGTT
d032683 arf4-a CGAGGAACCGATGCAGAT
ARF5 Zm00001 arf5-s CGCAACAACAACAGGCATG
d001879 arf5-a GGGCTAAAAAGGGACTGGTT
ARF6 Zm00001 arf6-s AATCTCAGCAGCAGTTAA
d001945 arf6-a CTTGGGACTCTTGGTTTA
ARF7 Zm00001 arf7-s CTAGTGACGCCCTGTACC
d003601 arf7-a AGTAATAGACACGCTCGC
ARF8 Zm00001 arf8-s GTAGTTGAAGTGGATAATTGTT
d041056 arf8-a TCTGGAGAAGGCTGATTA
ARF9 Zm00001 arf9-s TCTGAACCTCTGGTATCC
d041056 arf9-a AACAATTATCCACTTCAACTAC
ARF10 Zm00001 arf10-s TGAACTCGAAATCAGCTGC
d042267 arf10-a AACTCCAACCTCCACTTGC
ARF11 Zm00001d arf11-s ATGTTACAGGGAATGGGAATG
043431 arf11-a CAACAGTTTGAGGAGCAGACG
ARF12 Zm00001d arf12-s ATGGTAGACTTGATAGGA
043922 arf12-a CATATTCACAGTTCCAGTA
ARF13 Zm00001d arf13-s CAAGGCAATCACAATCTG
049295 arf13-a CTGTCTGTTCATCCCAAA
ARF14 Zm00001d arf14-s AATGACCGTTCTACTCCAATCA
050781 arf14-a CTATCTCAATGCCAAACAATCT
ARF15 Zm00001d arf15-s ATGAGGTCTTCGCCAGGAT
051172 arf15-a GGACTGTGTCAGCGTCTTG
ARF16 Zm00001d arf16-s AGAACATTGCTGATAGAT
053819 arf16-a TTGTGTATGACCTTGAAT
ARF17 Zm00001d arf17-s CCGTATATCCAAGGGTTTTG
014013 arf17-a ATGTGGGGTCTCTTTATGTCA
ARF18 Zm00001d arf18-s GCAGCAGATGGGGAAGCA
014377 arf18-a AACTCGACCGAACCGACG
ARF19 Zm00001d arf19-s AGAGGACGGCGGCAAGAT
014507 arf19-a TGCTCGCCCTCGGGTAGT
ARF20 Zm00001d arf20-s CCACCAATGAAGCAAGAA
015243 arf20-a GATAGACAACATCTGACACAT
ARF21 Zm00001d arf21-s AACAGAACAGCATTCAGT
014690 arf21-a TGATTCAGTGGAAGAGATG
ARF22 Zm00001d arf22-s GCTTTCCGCCAGCCTCA
016838 arf22-a CCGGTGTCACCACCGATG
基因名
Gene name
基因号
Gene accession
引物名称
Primer name
引物序列
Primer sequence (5°-3°)
ARF23 Zm00001d arf23-s CTGAGAGGACGGTGAGCAA
000358 arf23-a CGCGACAGCCGAGAGGT
ARF24 Zm00001d arf24-s GCCACTTTCAAGTCAGATT
036593 arf24-a TTGGATTGTGCTCTCAGA
ARF25 Zm00001d arf25-s CCCTCTTCTGTTCTTATGTTT
038698 arf25-a TACTTCTTCACGGTTGGT
ARF26 Zm00001d arf26-s GCATTCGCCCTCTTCTGTT
038698 arf26-a AGGCTCGCTTCCATTTACA
ARF27 Zm00001d arf27-s TTCCATCTCAATCCTCAT
039006 arf27-a TCTATCCTCTTTCTTATTCAC
ARF28 GRMZM2 arf28-s TTATGGTTCCAATACAAGAA
G075715 arf28-a CTCATTCCTATTCCTTAGC
ARF29 Zm00001d arf29-s TTCAAGATCAGGGTTCAG
011953 arf29-a GATTCAACCGTCAGAGAA
ARF30 Zm00001d arf30-s CAAGTTCTTCAACATCAG
045026 arf30-a ATCCTGTATTATGGTTCAA
ARF31 Zm00001d arf31-s ACTCGCTGGGAAGAGGGCT
023659 arf31-a CCTTTTGTCTGCTTCACCAC
ARF32 Zm00001d arf32-s AGCTGGTGCGGGGCAAC
025871 arf32-a CCTGCAAGGCCTCAATGAC
ARF33 Zm00001d arf33-s AGTTGAATGCTCTTGGTA
026540 arf33-a GTGAATCTGTGCTTCTTG
ARF34 Zm00001d arf34-s ATGCTGGGTTGTTTGGTT
026590 arf34-a GCGGCTAGAAAGTGGAAT
ARF35 Zm00001d arf35-s ATGATATTGGAGCAGATG
026687 arf35-a AAGAGCATTATGGTGTTC
18S rRNA 18S-s AAACGGCTACCACATCCAAG
18S-a CCTCCAATGGATCCTCGTTA

图1

玉米ARF家族基因在不同组织器官中的表达水平 R: 根; ST: 茎; L: 叶; S: 幼苗; T: 雄花序; E: 雌花序。图柱上的不同字母代表Duncan’s multiple range tests的显著差异(P < 0.05)。"

图2

利用转录组数据获得的玉米ARF家族基因在不同组织器官中的表达水平 图中每个基因在所有检测组织器官中的表达量设为100%, 颜色的深浅代表表达百分率。"

表2

玉米ARF家族基因启动子区的顺式作用元件"

基因
Gene
元件A
Element A
元件B
Element B
元件C
Element C
ARF1 ABRE1, AuxRR-core1, CGTCA-motif2, P-box2,
TGA-element2, TGACG-motif2
MBS1
ARF2 ABRE3, CGTCA-motif3, P-box1, TGACG-motif3 CAT-box2
ARF3 ABRE3, CGTCA-motif4, GARE-motif1, P-box1, TGACG-motif4 CAT-box2 TCA-element2, LTR1
ARF4 ABRE1, CGTCA-motif1, P-box1, TGACG-motif1 GCN4_motif1 LTR1, MBS1
ARF5 ABRE1, CGTCA-motif1, GARE-motif1, TGA-element1, TGACG-motif1 CAT-box3 TCA-element1, LTR2
ARF6 ABRE2, CGTCA-motif1, TGA-element1, TGACG-motif1 CAT-box2, RY-element1 MBS1
ARF7 ABRE2, CGTCA-motif1, TGA-element1, TGACG-motif1 CAT-box1 LTR3, MBS1
ARF8 ABRE2, CGTCA-motif3, GARE-motif1, TGACG-motif3 LTR1, MBS1, TC-rich repeats1
ARF9 ABRE2, CGTCA-motif3, GARE-motif1, TGACG-motif3 LTR1, MBS1, TC-rich repeats1
ARF10 ABRE1, CGTCA-motif5, TGACG-motif5
ARF11 ABRE2, CGTCA-motif2, TGA-element1, TGACG-motif2 CAT-box2 TCA-element1
ARF12 ABRE1, CGTCA-motif1, TGACG-motif1 CAT-box1 MBS2
ARF13 ABRE2, CGTCA-motif2, P-box1, TGACG-motif2 TC-rich repeats1
ARF14 ABRE2, TGA-element1 TCA-element2
ARF15 CGTCA-motif3, TGA-element1, TGACG-motif3 LTR1, MBS1
ARF16 ABRE1, AuxRR-core1, CGTCA-motif2, TGACG-motif2 CAT-box3
ARF17 ABRE1, CGTCA-motif4, TGA-element1, TGACG-motif4 RY-element1 MBS1, TCA-element1
ARF18 ABRE2, CGTCA-motif1, P-box1, TGACG-motif1 MBS1
ARF19 P-box1 CAT-box1 LTR1, MBS1, TCA-element1
ARF20 ABRE3, CGTCA-motif1, TGA-element1, TGACG-motif1 LTR1, TCA-element1
ARF21 ABRE7, CGTCA-motif2, TGACG-motif2 MBS1
ARF22 ABRE6, CGTCA-motif2, GARE-motif1, TGACG-motif2 CAT-box1
ARF23 ABRE4, AuxRR-core1, CGTCA-motif1, TGA-element2, TGACG-motif1 CAT-box1 LTR1, MBS2, TCA-element1
ARF24 ABRE3, CGTCA-motif2, GARE-motif1, P-box2, TGACG-motif2 MBS1, TCA-element1
ARF25 ABRE1, CGTCA-motif1, P-box1, TGACG-motif1 CAT-box3 LTR1, TC-rich repeats1
ARF26 ABRE1, CGTCA-motif1, P-box1, TGACG-motif1 CAT-box3 LTR1, TC-rich repeats1
ARF27 ABRE4, GARE-motif1 RY-element1
ARF28 ABRE1, CGTCA-motif2, GARE-motif1, TGACG-motif2 CAT-box2 MBS2, TCA-element2
ARF29 ABRE3, AuxRR-core1, CGTCA-motif1, TGACG-motif1 CAT-box1 LTR1
ARF30 ABRE6, CGTCA-motif4, TGACG-motif4 circadian1 MBS2, TC-rich repeats1
ARF31 ABRE1, CGTCA-motif2, TGACG-motif2 circadian1 LTR2
ARF32 ABRE5, CGTCA-motif1, TGACG-motif1 CAT-box1, GCN4_motif1, RY-element3 TCA-element1
ARF33 ABRE4, CGTCA-motif3, GARE-motif1, TGA-element1, TGACG-motif3 CAT-box4, RY-element1
ARF34 ABRE1, GARE-motif1, TGA-element1 CAT-box2 LTR1
ARF35 ABRE3 MBS1

图3

玉米ARF家族基因在不同逆境胁迫下的表达水平 A: 冷胁迫处理; B: 热胁迫处理; C: NaCl胁迫处理; D: 渗透胁迫处理。"

[1] 吴蓓, 吴建勇, 蔡刘体, 李运合, 黄学林. 生长素反应因子. 植物生理学通讯, 2005,41:273-278.
Wu B, Wu J Y, Cai L T, Li Y H, Huang X L. Auxin response factor. Plant Physiol Commun, 2005,41:273-278 (in Chinese).
[2] Abel S, Theologis A. Early genes and auxin action. Plant Physiol, 1996,111:9.
[3] Ulmasov T, Hagen G, Guifoyle T J. Dimerization and DNA binding of auxin response factors. Plant J, 1999,19:309-319.
[4] Liu Z B, Hagen G, Guifoyle T J. A G-box-binding protein from soybean binds to the E1 auxin-response element in the soybean GH3 promoter and contains a proline-rich repression domain. Plant Physiol, 1997,115:397-407.
[5] Wang D, Pei K, Fu Y, Sun Z, Li S, Liu H, Tang K, Han B, Tao Y Z. Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa). Gene, 2007,394:13-24.
[6] Singh V K, Rajkumar M S, Garg R, Jain M. Genome-wide identification and co-expression network analysis provide insights into the roles of auxin response factor gene family in chickpea. Sci Rep, 2017,7:10895.
pmid: 28883480
[7] Die J V, Gil J, Millan T. Genome-wide identification of the auxin response factor gene family in Cicer arietinum. BMC Genomics, 2018,19:301.
[8] Zhou X, Wu X, Li T, Jia M, Liu X, Zou Y, Liu Z X, Wen F. Identification, characterization, and expression analysis of auxin response factor (ARF) gene family in Brachypodium distachyon. Funct Integr Genomic, 2018,18:709-724.
[9] Xu Z, Ji A, Song J, Chen S. Genome-wide analysis of auxin response factor gene family members in medicinal model plant Salvia miltiorrhiza. Biol Open, 2016,5:848-857.
[10] Wang S, Hagen G, Guilfoyle T J. ARF-Aux/IAA interactions through domain III/IV are not strictly required for auxin- responsive gene expression. Plant Signal Behav, 2013,8:e24526.
[11] Remington D L, Vision T J, Guilfoyle T J, Reed J W. Contrasting modes of diversification in the Aux/IAA and ARF gene families. Plant Physiol, 2004,135:1738-1752.
[12] Hardtke C S, Berleth T. The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J, 1998,17:1405-1411.
[13] Harper R M, Stowe-Evans E L, Luesse D R, Muto H, Tatematsu K, Watahiki M K, Yamamoto K, Liscum E. The NPH4 locus encodes the auxin response factor ARF7, a conditional regulator of differential growth in aerial Arabidopsis tissue. Plant Cell, 2000,12:757-770.
[14] Okushima Y, Overvoorde P J, Aeima K, Alonso J M, Chan A, Chang C, Ecker J R, Hughes B. Lui A, Nguyen D. Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell, 2005,17:444-463.
[15] Wilmoth J C, Wang S, Tiwari S B, Joshi A D, Hagen G, Guifoyle T J, Alonso J M, Ecker J R, Reed J W. NPH4/ARF7 and ARF19 promote leaf expansion and auxin-induced lateral root formation. Plant J, 2005,43:118-130.
pmid: 15960621
[16] Nagpal P, Ellis C M, Weber H, Ploense S E, Barkawi L S, Guilfoyle T J, Hagen G, Alonso J M, Cohen J D, Farmer E E. Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development, 2005,132:4107-4118.
[17] Faivre-rampant O, Cardle L, Marshall D, Viola R, Taylor M A. Changes in gene expression during meristem activation processes in Solanum tuberosum with a focus on the regulation of an auxin response factor gene. J Exp Bot, 2004,55:613-622.
[18] Waller F, Furuya M, Nick P. OsARF1, an auxin response factor from rice, is auxin-regulated and classifies as a primary auxin responsive gene. Plant Mol Biol, 2002,50:415-425.
[19] Jones B, Frasse P, Olmos E, Zegzouti H, Li Z G, Latche A, Pech J C, Bouzayen M. Down-regulation of DR12, an auxin response factor homolog, in the tomato results in a pleiotropic phenotype including dark green and blotchy ripening fruit. Plant J, 2002,32:603-613.
[20] Liu Y, Jiang H Y, Chen W J, Qian Y X, Ma Q, Cheng B J, Zhu S W. Genome-wide analysis of the auxin response factor (ARF) gene family in maize (Zea mays). Plant Growth Regul, 2011,63:225-234.
[21] Grennan A K. Genevestigator. Facilitating web-based gene expression analysis. Plant Physiol, 2006,141:1164-1166.
[22] Lescot M, Dehais P G, Marchal K, Moreau Y, Peer Y V, Rouze P, Rombauts S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucl Acids Res, 2002,30:325-327.
[23] Galli M, Liu Q, Moss B L, Malcomber S, Li W, Gaines C, Federici S, Roshkovan J, Meeley R, Nemhauser J L, Gallavotti A. Auxin signaling modules regulate maize inflorescence architecture. Proc Natl Acad Sci USA, 2015,112:13372-13377.
[24] Xing H Y, Pudake R N, Guo G G, Xing G F, Hu Z R, Zhang Y R, Sun Q X, Ni Z F. Genome-wide identification and expression profiling of auxin response factor (ARF) gene family in maize. BMC Genomics, 2011,12:178.
[25] Ulmasov T, Hagen G, Guilfoyle T J. Activation and repression of transcription by auxin response factors. Proc Natl Acad Sci USA, 1999,96:5844-5849.
pmid: 10318972
[26] Matthes M S, Best N B, Robil J M, Malcomber S, Gallavotti A, Mcsteen P. Auxin evodevo: conservation and diversification of genes regulating auxin biosynthesis, transport, and signaling. Mol Plant, 2019,12:298-320.
[27] Liu Z, Miao L, Huo R, Song X, Johnson C, Kong L, Sundaresan V, Yu X L. ARF2-ARF4 and ARF5 are essential for female and male gametophyte development in Arabidopsis. Plant Cell Physiol, 2018,59:179-189.
pmid: 29145642
[28] Hardtke C S, Berleth T. The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J, 1998,17:1405-1411.
[29] Wenzel C L, Schuetz M, Yu Q, Mattsson J. Dynamics of MONOPTEROS and PIN-FORMED1 expression during leaf vein pattern formation in Arabidopsis thaliana. Plant J, 2007,49:387-398.
[30] Wu M F, Tian Q, Reed J W. Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development, 2006,133:4211-4218.
pmid: 17021043
[31] 王垒, 陈劲枫, 娄丽娜, 娄群峰. 黄瓜ARF家族序列特征及部分成员在果实发育早期的表达分析. 园艺学报, 2011,4:717-724.
Wang L, Chen J F, Lou L N, Lou Q F. Sequence characteristics of ARF gene family of cucumber and an expression analysis of some members during early development of fruits. Acta Hortic Sin, 2011,4:717-724 (in Chinese with English abstract).
[32] Galli M, Khakhar A, Lu Z, Chen Z, Sen S, Joshi T, Nemhauser J L, Schmitz R J, Gallavotti A. The DNA binding landscape of the maize AUXIN RESPONSE FACTOR family. Nat Commun, 2018,9:4526.
doi: 10.1038/s41467-018-06977-6 pmid: 30375394
[33] 王佳伟, 蔡文娟, 王凌健, 毛颖波, 陈晓亚. 生长素响应因子ARF10和16控制拟南芥根冠发育. 见: 中国遗传学会植物遗传与基因组学专业委员会2005年学术研讨会论文摘要集, 2005. p 15.
Wang J W, Cai W J, Wang L J, Mao Y B, Chen X Y. Auxin response factors ARF10 and 16 control root crown development in Arabidopsis thaliana. In: Genetics Society of China in plant Genetics and Genomics Professional Committee Conference Abstract Set, 2005. p 15 (in Chinses).
[34] Ha C V, Le D T, Nishiyama R, Watanabe Y, Sulieman S, Tran U T, Mochida K, Dong N V, Yamaguchi-Shinozaki K, Shinozaki K, Tran L S. The auxin response factor transcription factor family in soybean: genome-wide identification and expression analyses during development and water stress. DNA Res, 2013,20:511-524.
pmid: 23810914
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[4] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[7] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[8] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[9] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[10] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[11] 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190.
[12] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[13] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[14] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[15] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!