欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (7): 1205-1214.doi: 10.3724/SP.J.1006.2021.01074

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

大麦籽粒β-葡聚糖含量的全基因组关联分析

耿腊1, 黄业昌2, 李梦迪1, 谢尚耿1, 叶玲珍1,3,*(), 张国平1   

  1. 1浙江大学作物科学研究所, 浙江杭州 310058
    2温州科技职业学院, 浙江温州 325000
    3浙江大学新农村发展研究院, 浙江杭州 310058
  • 收稿日期:2020-08-23 接受日期:2020-12-01 出版日期:2021-07-12 网络出版日期:2020-12-30
  • 通讯作者: 叶玲珍
  • 基金资助:
    本研究由浙江省自然科学基金项目(LGN20C130007);国家自然科学基金项目(31701411);国家现代农业产业技术体系建设专项资助(CARS-05)

Genome-wide association study of β-glucan content in barley grains

GENG La1, HUANG Ye-Chang2, LI Meng-Di1, XIE Shang-Geng1, YE Ling-Zhen1,3,*(), ZHANG Guo-Ping1   

  1. 1Institute of Crop Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
    2Wenzhou Vocational College of Science and Technology, Wenzhou 325000, Zhejiang, China
    3New Rural Development Institute, Zhejiang University, Hangzhou 310058, Zhejiang, China
  • Received:2020-08-23 Accepted:2020-12-01 Published:2021-07-12 Published online:2020-12-30
  • Contact: YE Ling-Zhen
  • Supported by:
    This study was supported by the Science and Technology Program of Zhejiang Province(LGN20C130007);the National Natural Science Foundation of China(31701411);the China Agriculture Research System(CARS-05)

摘要:

β-葡聚糖是大麦籽粒的一个重要品质性状, 其含量高低影响大麦啤用、饲用和食用品质。虽然有关大麦β-葡聚糖合成的相关基因已有报道, 但关于大麦籽粒β-葡聚糖积累的遗传调控机制仍不十分清楚。本研究以前期收集的全球119份大麦基因型为材料, 种植在土壤与气候条件有一定差异的两试点, 利用混合线性模型(MLM)和一般线性模型(GLM)对不同大麦材料籽粒β-葡聚糖含量进行GWAS分析。结果表明, 大麦籽粒β-葡聚糖含量的基因型差异显著, 其在2个环境下的广义遗传力为73.9%。利用MLM和GLM模型分别检测到8个和40个显著位点, 合并2个模型重叠位点后共得到44个显著位点, 其中HORVU5Hr1G022710基因在2个模型、2个地点均被鉴定到, 故被认为是与β-葡聚糖含量显著相关的候选基因。2个模型中最佳等位基因数与β-葡聚糖含量均呈显著正相关。此外, 基于基因注释, 共鉴定到10个与糖合成、转运及分解相关的酶类基因, 这些基因可能与籽粒中β-葡聚糖的合成、积累和分解紧密相关。本研究结果为阐明β-葡聚糖的遗传调控机制提供了新的视角, 亦为大麦籽粒β-葡聚糖的遗传改良奠定了一定的理论基础。

关键词: 大麦, β-葡聚糖;, 全基因组关联分析, SNP位点, 最佳等位基因

Abstract:

β-glucan is an important trait in barley, as its content greatly affects the quality in the applications of malting, feeding, and food. Although the genes associated with β-glucan synthesis have been reported, genetic regulation of β-glucan accumulation in barley grains is still unclear. In this study, genome-wide association study (GWAS) with mixed linear model (MLM) and general linear model (GLM) was performed to analyze the grain β-glucan content of 119 barley germplasms collected from worldwide previously, which were planted at two plots with certain differences in soil and climate conditions. The results showed β-glucan content in barley grains was significantly different in genotypes and the heritability of β-glucan was 73.9% in two environments. There were eight and 40 loci for grain β-glucan content detected by MLM and GLM, respectively. A total of 44 loci were obtained by combining the same loci of the two models. HORVU5Hr1G022710 gene identified in both models and sites was considered as a putative candidate gene significantly associated with β-glucan content. Significantly positive correlation was detected between grain β-glucan content and the number of favorable alleles in both models. In addition, 10 enzymatic genes related to sugar synthesis, transport and decomposition were identified based on gene annotations. These genes may significantly relate to β-glucan synthesis, accumulation and hydrolysis. The results provided a new insight into the genetic regulation of β-glucan accumulation and laid a foundation for the genetic improvement breeding of barley seed β-glucan.

Key words: barley, β-glucan;, genome-wide association study (GWAS), SNP loci, favorable allele

图1

119份大麦材料在长兴(A)和慈溪(B)的β-葡聚糖含量分布以及2个地点的β-葡聚糖含量相关性(C) **表示在0.01水平差异显著。** Significant differences at P = 0.01."

表1

119份栽培品种在2个不同环境中的β-葡聚糖含量方差分析"

变异源 Source of variation III型平方和 SS 自由度 DF 均方 MS FF-value R2 (%)
基因型 Genotype 235.00 118 1.98 104.14*** 76.46
环境 Environment 25.13 1 25.13 1325.35*** 8.18
环境×基因型 Genotype × Environment 38.12 118 0.32 16.90*** 12.40
误差 Residual error 9.10 476 0.02 2.96
总计 Total 307.35 713

图2

MLM模型下β-葡聚糖含量的曼哈顿图 A: 长兴β-葡聚糖含量MLM曼哈顿图; B: 慈溪β-葡聚糖含量MLM曼哈顿图。水平线代表显著相关的1E-03阈值。"

表2

MLM模型下β-葡聚糖含量显著相关的SNP位点(-log10(P) > 3)"

标记编号
MTA No.
标记名称
Marker
染色体
Chr.
位置
Position
峰值
-log10(P)
表型贡献率
R2 (%)
环境
Environment
最佳等位基因a
SNP a
最小等位基因频率
MAF
候选基因
Putative candidated
genes
1 M-4172115 2 753357365 3.50 16.98 CHX A/G 0.14 HORVU2Hr1G122510, HORVU2Hr1G122540,
HORVU2Hr1G122560, HORVU2Hr1G122570,
HORVU2Hr1G122580
2 M-3262394 3 640508648 3.16 13.50 CX A/G 0.12 HORVU3Hr1G092890
3 M-3432496 4 629360418 3.07 13.55 CHX C/T 0.14 HORVU4Hr1G084590
4 M-3924095 5 116486105 3.28
3.22
14.20
14.40
CX
CHX
A/G 0.07 HORVU5Hr1G022710
5 M-3263056 6 68979147 3.88 13.65 CHX G/T 0.05 HORVU6Hr1G022070, HORVU6Hr1G022080
6 M-4792001 6 350443314 3.19 15.62 CHX C/G 0.11 HORVU6Hr1G055090
7 M-3911599 7 93157425 3.29 14.13 CHX A/C 0.05 HORVU7Hr1G038040, HORVU7Hr1G038060,
HORVU7Hr1G038070, HORVU7Hr1G038080
8 M-3665085 7 199549260 3.44 14.79 CHX A/G 0.17 HORVU7Hr1G052390, HORVU7Hr1G052400

表3

GLM模型下β-葡聚糖含量显著相关的SNP位点(-lg (P)>4)"

标记编号
MTA No.
标记名称
Marker
染色体
Chr.
位置
Positon
峰值
-lg (P)
表型贡献率
R2 (%)
环境
Environment
最佳等位基因
SNP a
最小等位基因频率
MAF
候选基因
Putative candidate genes
1 M-3256305 1 20684690 6.55
4.18
21.39
14.56
CHX
CX
C/T 0.235 HORVU1Hr1G009320,
HORVU1Hr1G009330
2 M-3432526 1 443440212 4.89
4.08
14.79
12.24
CHX
CX
A/G 0.050 HORVU1Hr1G061160, HORVU1Hr1G061160
3 M-3259980 2 40851287 4.89 19.40 CX A/G 0.143 HORVU2Hr1G017350
4 M-5249622 2 41956883 4.10 15.89 CX C/G 0.286 HORVU2Hr1G017400
5 M-29425925 2 42674382 4.45 17.86 CX C/T 0.235 HORVU2Hr1G017470
6 M-3259183 2 752978172 4.79
4.18
19.75
16.80
CHX
CX
C/T 0.370 HORVU2Hr1G122270, HORVU2Hr1G122280
HORVU2Hr1G122300, HORVU2Hr1G122310
HORVU2Hr1G122320
7 M-3918521 3 27028266 4.42 19.16 CX A/G 0.168 HORVU3Hr1G012510, HORVU3Hr1G012520
HORVU3Hr1G012530, HORVU3Hr1G012550
8 M-4014347 3 597391541 4.56 13.78 CHX G/T 0.076 HORVU3Hr1G082030
9 M-3917069 3 601025304 4.23 15.20 CX C/T 0.067 HORVU3Hr1G082940, HORVU3Hr1G082980
10 M-3262394 3 640508648 5.48 19.22 CX A/G 0.124 HORVU3Hr1G092890
11 M-3258241 4 594473630 4.56 16.27 CHX C/G 0.092 HORVU4Hr1G074460, HORVU4Hr1G074470
12 M-3398576 5 103430100 4.55 13.72 CHX C/T 0.092 HORVU5Hr1G021420, HORVU5Hr1G021430
13 M-3924095 5 116486105 5.68
5.03
20.83
18.82
CHX
CX
A/G 0.067 HORVU5Hr1G022710
14 M-4330916 5 554243179 4.58 16.84 CHX G/T 0.370 HORVU5Hr1G077910, HORVU5Hr1G077920
HORVU5Hr1G077930, HORVU5Hr1G077940
15 M-3257651 5 569528889 4.94 18.77 CHX A/C 0.092 HORVU5Hr1G083170, HORVU5Hr1G083210
HORVU5Hr1G083240, HORVU5Hr1G083260
16 M-3272118 5 573026756 4.53 13.80 CHX A/G 0.092 HORVU5Hr1G084630, HORVU5Hr1G084650
17 M-3923379 5 573026822 4.66 14.19 CHX A/G 0.092 HORVU5Hr1G084630, HORVU5Hr1G084650
18 M-4000027 5 573026822 4.55 13.72 CHX A/G 0.092 HORVU5Hr1G084630, HORVU5Hr1G084650
19 M-3254699 5 573766812 5.23 15.85 CHX C/T 0.080 HORVU5Hr1G085020
20 M-5255433 5 596702361 5.60 16.99 CHX C/G 0.403 HORVU5Hr1G094660, HORVU5Hr1G094670
HORVU5Hr1G094680, HORVU5Hr1G094690
HORVU5Hr1G094700, HORVU5Hr1G094710
21 M-3255521 5 597561678 4.79 16.99 CHX C/T 0.395 HORVU5Hr1G095040, HORVU5Hr1G095050
HORVU5Hr1G095080, HORVU5Hr1G095090
22 M-3254781 5 597650244 4.55 14.12 CHX G/T 0.387 HORVU5Hr1G095060, HORVU5Hr1G095090
HORVU5Hr1G095100, HORVU5Hr1G095110
HORVU5Hr1G095120
23 M-3264230 5 646301855 4.48 16.04 CX G/T 0.059 HORVU5Hr1G115310, HORVU5Hr1G115320
HORVU5Hr1G115340
24 M-3265903 6 17194598 4.67 17.25 CHX C/T 0.303 HORVU6Hr1G009620, HORVU6Hr1G009670
HORVU6Hr1G009690, HORVU6Hr1G009700
25 M-3261129 6 42557400 6.03 21.68 CHX A/G 0.361 HORVU6Hr1G017720, HORVU6Hr1G017740
26 M-4185933 6 48980591 4.47
4.82
15.96
17.11
CHX
CX
A/G 0.051 HORVU6Hr1G018830
27 M-3257746 6 49613603 4.31 15.55 CHX A/C 0.420 HORVU6Hr1G018930, HORVU6Hr1G018950
28 M-3263056 6 68979147 6.08 18.45 CHX G/T 0.050 HORVU6Hr1G022070, HORVU6Hr1G022080
29 M-3920842 6 264916265 4.64 16.9 CHX A/G 0.050 HORVU6Hr1G045550, HORVU6Hr1G045590
HORVU6Hr1G045600
30 M-3257940 6 545380415 4.30 17.26 CHX A/G 0.353 HORVU6Hr1G081290, HORVU6Hr1G081310
31 M-3662578 7 3735940 6.55
4.68
22.93
17.46
CHX
CX
A/G 0.303 HORVU7Hr1G001750, HORVU7Hr1G001760
HORVU7Hr1G001790, HORVU7Hr1G001800
32 M-3262082 7 4764013 5.25
5.12
19.29
18.53
CHX
CX
G/T 0.387 HORVU7Hr1G002490, HORVU7Hr1G002500
HORVU7Hr1G002530
33 M-4016281 7 4834039 4.74
4.64
18.97
18.67
CHX
CX
A/G 0.336 HORVU7Hr1G002530, HORVU7Hr1G002540
HORVU7Hr1G002550, HORVU7Hr1G002560
HORVU7Hr1G002570
34 M-3256657 7 7391399 4.44 20.21 CX A/C 0.328 HORVU7Hr1G005200
35 M-6284081 7 21620741 5.41 16.70 CHX C/T 0.050 HORVU7Hr1G016920
36 M-3911599 7 93157425 4.68 16.66 CHX A/C 0.050 HORVU7Hr1G038040, HORVU7Hr1G038060
HORVU7Hr1G038070, HORVU7Hr1G038080
37 M-9772928 7 636164939 4.71
4.36
16.73
15.64
CHX
CX
C/T 0.076 HORVU7Hr1G112900, HORVU7Hr1G112910
HORVU7Hr1G112920, HORVU7Hr1G112930
HORVU7Hr1G112940, HORVU7Hr1G112950
38 M-4015782 7 636588717 5.84 20.31 CHX C/T 0.479 HORVU7Hr1G113200, HORVU7Hr1G113210
HORVU7Hr1G113230, HORVU7Hr1G113270
HORVU7Hr1G113290, HORVU7Hr1G113300
HORVU7Hr1G113320
39 M-3258181 7 641059108 5.15 18.14 CHX A/G 0.437 HORVU7Hr1G115230, HORVU7Hr1G115240
HORVU7Hr1G115250, HORVU7Hr1G115260
HORVU7Hr1G115270, HORVU7Hr1G115280
40 M-5333232 7 641079051 4.65 16.74 CHX G/T 0.370 HORVU7Hr1G115230, HORVU7Hr1G115240
HORVU7Hr1G115250, HORVU7Hr1G115260
HORVU7Hr1G115270, HORVU7Hr1G115280

图3

GLM模型下β-葡聚糖含量的曼哈顿图 A: 长兴β-葡聚糖含量GLM曼哈顿图; B: 慈溪β-葡聚糖含量GLM曼哈顿图。水平线代表显著相关的1E-04阈值。"

图4

最佳等位基因个数和β-葡聚糖含量的线性回归分析 A: MLM模型结果; B: GLM模型结果。"

图5

11个候选基因转录本表达的热图和注释 基因在各个生长发育期的转录表达值以对数进行标准化后的取值范围是-2.5~2.5, 红色表示高表达, 蓝色表示低表达, 灰色表示无表达。"

附表1信息:

119份大麦栽培品种的信息,长兴和慈溪的β-葡聚糖含量,该含量是三个重复的平均值,以及在两种模型下的最佳等位基因个数。"

品种名 类型 β-葡聚糖含量(%)
β-glucan content (%)
最佳等位基因个数
Number of favorable alleles
长兴(CHX) 慈溪(CX) 均值 MLM GLM
X1 西藏野生、半野生 2.86% 3.23% 3.04% 4 5
X5 西藏野生、半野生 2.39% 2.92% 2.65% 4 6
X10 西藏野生、半野生 2.69% 3.53% 3.11% 5 20
X15 西藏野生、半野生 3.46% 4.33% 3.90% 5 21
X20 西藏野生、半野生 3.39% 4.38% 3.89% 5 19
X25 西藏野生、半野生 3.26% 2.95% 3.11% 0 10
X30 西藏野生、半野生 3.94% 3.44% 3.69% 5 11
X36 西藏野生、半野生 2.42% 2.75% 2.59% 4 3
X40 西藏野生、半野生 3.16% 3.93% 3.54% 4 23
X45 西藏野生、半野生 3.08% 2.98% 3.03% 4 3
X51 西藏野生、半野生 3.84% 3.80% 3.82% 4 18
X55 西藏野生、半野生 3.86% 4.21% 4.03% 4 30
X60 西藏野生、半野生 3.62% 3.68% 3.65% 4 22
X65 西藏野生、半野生 3.22% 3.30% 3.26% 4 22
X70 西藏野生、半野生 3.14% 3.81% 3.48% 5 17
X76 西藏野生、半野生 3.91% 3.92% 3.92% 4 23
X80 西藏野生、半野生 3.24% 2.75% 3.00% 4 3
X85 西藏野生、半野生 3.04% 3.08% 3.06% 4 17
X90 西藏野生、半野生 3.21% 3.64% 3.43% 4 15
X95 西藏野生、半野生 3.58% 4.05% 3.81% 4 23
X100 西藏野生、半野生 2.83% 3.71% 3.27% 4 27
X104 西藏野生、半野生 3.18% 3.48% 3.33% 4 19
X110 西藏野生、半野生 3.21% 3.51% 3.36% 6 18
X116 西藏野生、半野生 2.91% 3.48% 3.19% 4 15
X120 西藏野生、半野生 2.30% 2.28% 2.29% 2 5
X124 西藏野生、半野生 3.71% 4.54% 4.13% 4 25
X130 西藏野生、半野生 3.30% 3.71% 3.50% 4 21
X135 西藏野生、半野生 2.59% 1.98% 2.29% 2 5
X140 西藏野生、半野生 2.07% 2.76% 2.42% 4 3
X145 西藏野生、半野生 3.78% 4.20% 3.99% 4 23
X150 西藏野生、半野生 2.87% 3.51% 3.19% 4 17
X155 西藏野生、半野生 3.11% 3.31% 3.21% 5 18
X159 西藏野生、半野生 4.75% 5.35% 5.05% 6 30
X165 西藏野生、半野生 3.16% 3.76% 3.46% 5 17
X170 西藏野生、半野生 2.34% 2.99% 2.66% 4 3
X180 西藏野生、半野生 2.81% 2.58% 2.69% 3 7
X185 西藏野生、半野生 2.66% 3.90% 3.28% 4 14
X189 西藏野生、半野生 2.47% 2.80% 2.64% 4 6
X54 西藏野生、半野生 3.18% 3.91% 3.55% 4 20
X82 西藏野生、半野生 3.48% 4.05% 3.76% 4 21
X32 西藏野生、半野生 3.73% 4.11% 3.92% 5 23
X127 西藏野生、半野生 2.88% 3.54% 3.21% 4 15
X173 西藏野生、半野生 4.72% 4.80% 4.76% 4 21
X8 西藏野生、半野生 3.11% 3.05% 3.08% 4 5
处麦1号 国内栽培品种 3.54% 3.11% 3.33% 4 8
仙居早78 国内栽培品种 2.76% 3.35% 3.05% 3 4
浙皮1号 国内栽培品种 2.27% 2.87% 2.57% 3 8
白茎二棱 国内栽培品种 2.82% 3.48% 3.15% 4 15
新登蒙古麦 国内栽培品种 3.01% 3.60% 3.31% 2 7
农大3号 国内栽培品种 2.51% 2.91% 2.71% 3 3
农大5号 国内栽培品种 3.10% 3.61% 3.36% 4 10
早熟3号 国内栽培品种 3.05% 3.47% 3.26% 4 9
舟麦1号 国内栽培品种 1.95% 2.33% 2.14% 3 4
奉矮2号 国内栽培品种 2.14% 2.94% 2.54% 3 4
宜山大麦 国内栽培品种 1.99% 2.30% 2.15% 3 3
海安大麦 国内栽培品种 3.45% 3.76% 3.60% 4 8
早矮白 国内栽培品种 3.17% 3.09% 3.13% 3 9
余杭糯大麦 国内栽培品种 2.57% 2.43% 2.50% 1 7
崇穗刺毛大麦 国内栽培品种 2.36% 2.58% 2.47% 1 4
义乌二棱 国内栽培品种 2.54% 2.76% 2.65% 3 4
浙农12 国内栽培品种 3.32% 3.43% 3.37% 5 16
牛古特 国内栽培品种 3.19% 3.41% 3.30% 3 8
盐66 国内栽培品种 2.59% 2.97% 2.78% 3 6
岗2 国内栽培品种 2.80% 2.52% 2.66% 2 4
光芒二棱 国内栽培品种 2.99% 3.75% 3.37% 3 18
海紫2号 国内栽培品种 2.45% 2.90% 2.68% 1 6
衢州裸麦 国内栽培品种 3.40% 3.05% 3.23% 1 6
御岛裸 国内栽培品种 3.00% 3.21% 3.11% 1 5
大罗锤 国内栽培品种 3.11% 2.90% 3.01% 2 8
天台白四棱 国内栽培品种 2.94% 2.73% 2.84% 2 8
安吉芒毛大麦 国内栽培品种 2.81% 2.81% 2.81% 2 7
黄青裸 国内栽培品种 3.96% 3.72% 3.84% 5 19
六棱黑麦稞 国内栽培品种 3.05% 3.02% 3.03% 3 6
香川裸1号 国内栽培品种 3.39% 3.20% 3.30% 0 7
嵊县江颈四棱大麦 国内栽培品种 3.06% 3.82% 3.44% 2 4
如皋早六棱 国内栽培品种 2.82% 2.75% 2.79% 1 8
农大2号 国内栽培品种 3.53% 2.85% 3.19% 3 5
甬87-031 国内栽培品种 2.61% 2.12% 2.37% 3 6
秀87-8 国内栽培品种 2.30% 2.55% 2.43% 3 4
早熟7号 国内栽培品种 2.57% 2.54% 2.55% 3 4
无芒六棱 国内栽培品种 3.13% 2.86% 3.00% 1 6
春风皮大麦 国内栽培品种 3.27% 4.08% 3.68% 5 21
肚里黄 国内栽培品种 2.76% 3.31% 3.03% 4 24
丰产二棱 国内栽培品种 3.04% 3.37% 3.20% 3 9
玉环洋大麦 国内栽培品种 3.13% 3.29% 3.21% 1 7
永加仰天冲 国内栽培品种 2.84% 3.07% 2.96% 2 7
秀87-6 国内栽培品种 2.80% 2.69% 2.74% 2 3
浙农14 国内栽培品种 3.24% 3.84% 3.54% 3 19
矮脚二棱 国内栽培品种 3.23% 3.04% 3.13% 2 5
岗33 国内栽培品种 3.09% 3.64% 3.37% 2 15
戈贝纳 国内栽培品种 2.93% 3.09% 3.01% 3 14
浙农白壳 国内栽培品种 2.66% 2.61% 2.63% 4 11
矮早3 国内栽培品种 2.74% 2.71% 2.72% 3 3
红光二棱 国内栽培品种 2.95% 3.65% 3.30% 2 7
奉矮二棱 国内栽培品种 2.95% 3.28% 3.12% 2 3
中熟1号 国内栽培品种 2.59% 4.13% 3.36% 4 8
浙皮2号 国内栽培品种 3.02% 3.73% 3.37% 3 6
不知梅雨 国内栽培品种 2.75% 3.67% 3.21% 3 16
沪麦1号 国内栽培品种 3.41% 3.66% 3.53% 5 16
Gairdner 国外栽培品种 2.71% 3.46% 3.08% 3 16
Metcalfe 国外栽培品种 3.19% 3.04% 3.11% 4 17
harington 国外栽培品种 3.33% 4.35% 3.84% 2 8
triumph 国外栽培品种 1.66% 2.88% 2.27% 4 13
boluke 国外栽培品种 2.72% 2.87% 2.80% 4 14
Franklin 国外栽培品种 3.25% 4.13% 3.69% 2 12
Yerong 国外栽培品种 2.67% 4.10% 3.38% 5 25
morex 国外栽培品种 3.83% 3.91% 3.87% 3 20
Vlamingh 国外栽培品种 3.22% 3.86% 3.54% 4 12
Golden Promise 国外栽培品种 2.33% 2.70% 2.51% 4 12
藏青320 国内栽培品种 5.48% 6.49% 5.98% 7 24
haruna nijo 国外栽培品种 2.40% 2.72% 2.56% 3 9
ZU9 国内栽培品种 3.10% 3.46% 3.28% 2 7
花30 国内栽培品种 3.28% 3.71% 3.50% 3 7
单二 国内栽培品种 3.09% 3.19% 3.14% 2 8
Tadmor 国外栽培品种 2.80% 4.11% 3.45% 4 20
Mikamogold 国外栽培品种 2.53% 3.20% 2.86% 3 5
日本二条2号 国外栽培品种 2.08% 2.86% 2.47% 3 7
拉一把 国内栽培品种 3.48% 4.26% 3.87% 3 8
Ticn 国外栽培品种 3.76% 4.98% 4.37% 6 27

附表2:

11个候选基因在不同发育时期和组织转录本表达值的对数值作为标准化值。"

候选基因
putative candidate genes
EMB ROO1 LEA INF2 NOD CAR5 CAR15 ETI LEM LOD PAL EPI RAC ROO2 SEN
HORVU5Hr1G022710
Transcriptionfactor MYB21
NE NE NE NE NE NE NE -1.198 -0.620 0.577 -0.946 NE NE -1.276 NE
HORVU4Hr1G074470
glycerol-3-phosphate acyltransferase 6
-0.690 -2.088 0.131 -2.060 -1.756 -1.369 NE -0.377 0.721 0.259 0.431 0.777 -0.592 -0.584 -0.113
HORVU5Hr1G077910
beta glucosidase 11
0.018 0.164 1.380 -1.873 1.112 0.606 0.333 0.806 1.673 1.571 1.610 1.011 0.785 -0.463 1.427
HORVU5Hr1G077920
beta glucosidase 11
1.373 1.652 1.819 -0.679 -0.062 0.186 1.491 0.999 2.055 1.603 1.876 1.222 0.986 2.120 2.165
HORVU5Hr1G095080
Beta-glucosidase C
2.261 1.731 1.810 1.414 2.109 2.429 0.990 2.076 2.297 1.813 2.492 1.634 2.012 2.182 0.133
HORVU5Hr1G095060
Beta-glucosidase C
1.879 1.156 0.797 1.198 0.361 1.308 0.900 0.953 0.989 0.575 1.200 0.335 0.933 1.632 -0.812
HORVU5Hr1G095100
Glycosyl hydrolase family protein
1.028 0.609 0.663 0.441 0.786 1.262 0.413 1.321 0.962 1.338 0.862 1.207 0.842 1.372 0.045
HORVU6Hr1G009620
Mannan endo-1,4-beta-mannosidase 7
-1.591 -1.721 -0.460 -0.635 0.073 0.179 -0.111 -1.140 0.204 0.442 0.436 -1.040 -0.066 NE NE
HORVU6Hr1G009690
Glucan endo-1,3-beta-glucosidase 3
0.853 0.537 0.355 -0.265 1.207 -0.004 -0.756 0.771 0.631 1.149 0.756 0.632 0.089 0.310 -0.400
HORVU7Hr1G112930
GDP-L-fucose synthase 1
1.177 1.076 1.125 0.666 1.276 1.161 0.870 0.976 1.049 1.119 1.229 1.034 1.156 1.385 1.036
HORVU7Hr1G112940
GDP-L-fucose synthase 1
-1.267 -1.196 -0.819 -0.847 -0.896 -0.769 -0.460 -0.685 -0.376 -0.395 -0.486 -0.131 -0.529 -1.393 -0.911
NE:无表达
NE : No expression
[1] Havrlentová M, Kraic J. Content of β-D-glucan in cereal grains. J Food Nutr Res-Slov, 2006,45:97-103.
[2] Zhang G, Chen J, Wang J, Ding S. Cultivar and environmental effects on (1→3, 1→4) β-D-glucan and protein content in malting barley. J Cereal Sci, 2001,34:295-301.
[3] Jeroch H, Dänicke S. Barley in poultry feeding: a review. Worlds Poultry Ence J, 1995,51:271-291.
[4] Mcnab J M. Barley β-glucan: an antinutritional factor in poultry feeding. Nutr Res Rev, 1992,5:45-60.
[5] Kerckhoffs D A J M, Hornstra G, Mensink R P. Cholesterol-lower ing effect of beta-glucan from oat bran in mildly hypercholesterolemic subjects may decrease when beta-glucan is incorporated into bread and cookies. Am J Clin Nutr, 2003,78:221-227.
doi: 10.1093/ajcn/78.2.221 pmid: 12885701
[6] Pear J R, Kawagoe Y, Schreckengost W E, Delmer D P, Stalker D M. Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase. Proc Natl Acad Sci USA, 1996,93:12637-12642.
doi: 10.1073/pnas.93.22.12637 pmid: 8901635
[7] Doblin M S, Pettolmo F A, Wilson S M, Campbell R, Burton R A, Fincher G B, Newbigin E, Bacic A. A barley cellulose synthase-like CSLH gene mediates (1,3;1,4)-β-D-glucan synthesis in transgenicarabidopsis. Proc Natl Acad Sci USA, 2009,106:5996-6001.
doi: 10.1073/pnas.0902019106 pmid: 19321749
[8] Burton A R. Cellulose synthase-like cslf genes mediate the synthesis of cell wall (1,3;1,4)-β-D-glucans. Science, 2006,311:1940-1942.
doi: 10.1126/science.1122975 pmid: 16574868
[9] Schreiber M, Wright F, Mackenzie K, Hedley P E, Schwerdt J G, Little A, Burton R A, Fincher G B, Marshall D, Waugh R, Halpin C. The barley genome sequence assembly reveals three additional members of the CslF( 1,3;1,4)-beta-glucan synthase gene family. PLoS One, 2014,9:e90888.
pmid: 24595438
[10] Burton R A, Collins H M, Kibble N A J, Smith J A, Shirley N J, Jobling S A, Henderson M, Singh R R, Pettolino F, Wilson S M, Bird A R, Topping D L, Bacic A, Fincher G B. Over-expression of specific HvCslF cellulose synthase-like genes in transgenic barley increases the levels of cell wall (1,3;1,4)-β-D-glucans and alters their fine structure. Plant Biotechnol J, 2011,9:117-135.
doi: 10.1111/j.1467-7652.2010.00532.x pmid: 20497371
[11] Nemeth C, Freeman J, Jones H D, Sparks C, Pellny T K, Wilkinson M D, Dunwell J, Andersson A A M, åman P, Guillon F, Saulnier L, Mitchell R A C, Shewry P R. Down-regulation of the CSLF6 gene results in decreased (1,3;1,4)-β-D-glucan in endosperm of wheat. Plant Physiol, 2010,152:1209-1218.
doi: 10.1104/pp.109.151712 pmid: 20089768
[12] Zhang C, Zhou Z, Yong H, Zhang X, Hao Z, Zhang F, Li M, Zhang D, Li X, Wang Z. Analysis of the genetic architecture of maize ear and grain morphological traits by combined linkage and association mapping. Theor Appl Genet, 2017,130:1011-1029.
doi: 10.1007/s00122-017-2867-7 pmid: 28215025
[13] Tadesse W, Ogbonnaya F C, Jighly A, Sanchez-Garcia M, Sohail Q, Rajaram S, Baum M. Genome-wide association mapping of yield and grain quality traits in winter wheat genotypes. PLoS One, 2015,10:e141339.
[14] Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet, 2010,42:961.
[15] Houston K, McKim S M, Comadran J, Bonar N, Druka I, Uzrek N, Cirillo E, Guzy-Wrobelska J, Collins N C, Halpin C, Hansson M, Dockter C, Druka A, Waugh R. Variation in the interaction between alleles of HvAPETALA2 and microRNA172 determines the density of grains on the barley inflorescence. Proc Natl Acad Sci USA, 2013,110:16675-16680.
doi: 10.1073/pnas.1311681110 pmid: 24065816
[16] Comadran J, Kilian B, Russell J, Ramsay L, Stein N, Ganal M, Shaw P, Bayer M, Thomas W, Marshall D, Hedley P, Tondelli A, Pecchioni N, Francia E, Korzun V, Walther A, Waugh R. Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. Nat Genet, 2012,44:1388-1392.
doi: 10.1038/ng.2447 pmid: 23160098
[17] Ramsay L, Comadran J, Druka A, Marshall D F, Waugh R. INTERMEDIUM-C, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1. Nat Genet, 2011,43:169-172.
doi: 10.1038/ng.745 pmid: 21217754
[18] Houston K, Russell J, Schreiber M, Halpin C, Oakey H, Washington J M, Booth A, Shirley N, Burton R A, Fincher G B. A genome wide association scan for (1,3;1,4)-β-glucan content in the grain of contemporary 2-row Spring and Winter barleys. BMC Genomics, 2014,15:907.
doi: 10.1186/1471-2164-15-907 pmid: 25326272
[19] Narasimhalu P, Kong D, Choo T M, Ho K M, Ferguson T, Therrien M C, May K W, Jui P. Effects of environment and cultivar on total mixed-linkage β-glucan content in eastern and western Canadian barleys (Hordeum vulgare L.). Can J Plant Sci, 1995,75:371-376.
[20] Yalçin E, çelik S, Akar T, Sayim I, Köksel H. Effects of genotype and environment on β-glucan and dietary fiber contents of hull-less barleys grown in Turkey. Food Chem, 2007,101:171-176.
[21] Houston K, Russell J, Schreiber M, Halpin C, Oakey H, Washington J M, Booth A, Shirley N, Burton R A, Fincher G B, Waugh R. A genome wide association scan for (1,3;1,4)-beta-glucan content in the grain of contemporary 2-row Spring and Winter barleys. BMC Genomics, 2014,15:907.
doi: 10.1186/1471-2164-15-907 pmid: 25326272
[22] Mohammadi M, Endelman J B, Nair S, Chao S, Jones S S, Muehlbauer G J, Ullrich S E, Baik B, Wise M L, Smith K P. Association mapping of grain hardness, polyphenol oxidase, total phenolics, amylose content, and β-glucan in US barley breeding germplasm. Mol Breed, 2014,34:1229-1243.
[23] Little A, Schwerdt J G, Shirley N J, Khor S F, Neumann K, O Donovan L A, Lahnstein J, Collins H M, Henderson M, Fincher G B. Revised phylogeny of the cellulose synthase gene superfamily: insights into cell wall evolution. Plant Physiol, 2018,177:1124-1141.
doi: 10.1104/pp.17.01718 pmid: 29780036
[24] Garcia-Gimenez G, Russell J, Aubert M K, Fincher G B, Houston K. Barley grain (1,3;1,4)-β-glucan content: effects of transcript and sequence variation in genes encoding the corresponding synthase and endohydrolase enzymes. Sci Rep(UK), 2019,9:17250.
[25] Oziel A, Hayes P M, Chen F Q, Jones B. Application of quantitative trait locus mapping to the development of winter-habit malting barley. Plant Breed, 2010,115:43-51.
[26] Islamovic E, Obert D E, Oliver R E, Harrison S A, Ibrahim A, Marshall J M, Miclaus K J, Hu G, Jackson E W. Genetic dissection of grain beta-glucan and amylose content in barley (Hordeum vulgare L.). Mol Breed, 2013,31:15-25.
[27] Panozzo J F, Eckermann P J, Mather D E, Moody D B, Black C K, Collins H M, Barr A R, Lim P, Cullis B R. QTL analysis of malting quality traits in two barley populations. Aust J Agric Res, 2007,58:858-866.
[28] Hrmova M, Farkas V, Lahnstein J, Fincher G B. A barley xyloglucan xyloglucosyl transferase covalently links xyloglucan, cellulosic substrates, and (1,3;1,4)-β-D-glucans. J Biol Chem, 2007,282:1295112962.
[29] Hrmova M, Banik M, Harvey A J, Garrett T P J, Fincher G B. Polysaccharide hydrolases in germinated barley and their role in the depolymerization of plant and fungal cell walls. Int J Biol Macromol, 1997,21:67-72.
doi: 10.1016/s0141-8130(97)00043-3 pmid: 9283018
[30] Chen S C, Luchsinger W W. The mechanism of action of malt β-glucanases. VI. Hydrolysis of barley β-D-glucan by endo-β-glucanases from germinated barley. Arch Biochem Biophys, 1964,106:71-77.
[31] Hrmova M, Fincher G B. Dissecting the catalytic mechanism of a plant β-D-glucan glucohydrolase through structural biology using inhibitors and substrate analogues. Carbohyd Res, 2007,342:1613-1623.
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[4] 赵海涵, 练旺民, 占小登, 徐海明, 张迎信, 程式华, 楼向阳, 曹立勇, 洪永波. 水稻协优9308重组自交系群体白叶枯病抗性的全基因组关联分析[J]. 作物学报, 2022, 48(1): 121-137.
[5] 贺军与, 钟伟, 陈云琼, 王卫斌, 熊静蕾, 蒋亚丽, 施辉蒙, 陈升位. 大麦籽粒发育进程中7种黄酮类化合物的积累特性分析[J]. 作物学报, 2021, 47(8): 1624-1630.
[6] 马娟, 曹言勇, 李会勇. 玉米穗轴粗全基因组关联分析[J]. 作物学报, 2021, 47(7): 1228-1238.
[7] 陈灿, 农保选, 夏秀忠, 张宗琼, 曾宇, 冯锐, 郭辉, 邓国富, 李丹婷, 杨行海. 广西水稻地方品种核心种质稻瘟病抗性位点全基因组关联分析[J]. 作物学报, 2021, 47(6): 1114-1123.
[8] 靳义荣, 刘金栋, 刘彩云, 贾德新, 刘鹏, 王雅美. 普通小麦氮素利用效率相关性状全基因组关联分析[J]. 作物学报, 2021, 47(3): 394-404.
[9] 魏丽娟, 申树林, 黄小虎, 马国强, 王曦彤, 杨怡玲, 李洹东, 王书贤, 朱美晨, 唐章林, 卢坤, 李加纳, 曲存民. 锌胁迫下甘蓝型油菜发芽期下胚轴长的全基因组关联分析[J]. 作物学报, 2021, 47(2): 262-274.
[10] 蒋伟, 潘哲超, 包丽仙, 周福仙, 李燕山, 隋启君, 李先平. 马铃薯资源晚疫病抗性的全基因组关联分析[J]. 作物学报, 2021, 47(2): 245-261.
[11] 张帆, 杨茜. 大麦-双季稻轮作体系有机物料与化肥配施对大麦资源利用效率及产量的影响[J]. 作物学报, 2021, 47(12): 2522-2531.
[12] 雷维, 王瑞莉, 王刘艳, 袁芳, 孟丽姣, 邢明礼, 徐璐, 唐章林, 李加纳, 崔翠, 周清元. 甘蓝型油菜容重及其相关性状的全基因组关联分析[J]. 作物学报, 2021, 47(11): 2099-2110.
[13] 谢磊, 任毅, 张新忠, 王继庆, 张志辉, 石书兵, 耿洪伟. 小麦穗发芽性状的全基因组关联分析[J]. 作物学报, 2021, 47(10): 1891-1902.
[14] 徐婷婷, 汪巧玲, 邹淑琼, 狄佳春, 杨欣, 朱银, 赵涵, 颜伟. 基于高通量测序的大麦InDel标记开发及应用[J]. 作物学报, 2020, 46(9): 1340-1350.
[15] 陶爱芬,游梓翊,徐建堂,林荔辉,张立武,祁建民,方平平. 基于黄麻转录组序列SNP位点的CAPS标记开发与验证[J]. 作物学报, 2020, 46(7): 987-996.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!