欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (7): 1391-1401.doi: 10.3724/SP.J.1006.2021.02054

• 研究简报 • 上一篇    下一篇

利用东乡普通野生稻染色体片段置换系定位产量相关性状QTL

罗兰1, 雷丽霞1, 刘进2,3, 张瑞华4, 金桂秀4, 崔迪2, 黎毛毛3, 马小定2,*(), 赵正武1,*(), 韩龙植2,*()   

  1. 1重庆师范大学, 重庆 401331
    2中国农业科学院作物科学研究所 / 农作物基因资源与基因改良国家重大科学工程, 北京 100081
    3江西省农业科学院水稻研究所, 江西南昌 330200
    4临沂市农业科学院, 山东临沂 276000
  • 收稿日期:2020-08-13 接受日期:2020-11-13 出版日期:2021-07-12 网络出版日期:2020-12-29
  • 通讯作者: 马小定,赵正武,韩龙植
  • 作者简介:罗兰, E-mail: 1366730598@qq.com;|雷丽霞, E-mail: 2873804227@qq.com
  • 基金资助:
    本研究由国家重点研发计划项目(2016YFD0100101);本研究由国家重点研发计划项目(2016YFD0100301);国家自然科学基金项目(31671664);中国农业科学院科技创新工程项目, 国家农作物种质资源保护项目(2018NWB036-01);中国农业科学院科技创新工程项目, 国家农作物种质资源保护项目(2018NWB036-12-2);国家农作物种质资源平台项目资助(NICGR2018-001)

Mapping QTLs for yield-related traits using chromosome segment substitution lines of Dongxiang common wild rice (Oryza rufipogon Griff.) and Nipponbare (Oryza sativa L.)

LUO Lan1, LEI Li-Xia1, LIU Jin2,3, ZHANG Rui-Hua4, JIN Gui-Xiu4, CUI Di2, LI Mao-Mao3, MA Xiao-Ding2,*(), ZHAO Zheng-Wu1,*(), HAN Long-Zhi2,*()   

  1. 1Chongqing Normal University, Chongqing 401331, China
    2National Key Facility for Crop Gene Resources and Genetic Improvement / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    3Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, Jiangxi, China
    4Linyi Academy of Agricultural Sciences, Linyi 276000, Shandong, China
  • Received:2020-08-13 Accepted:2020-11-13 Published:2021-07-12 Published online:2020-12-29
  • Contact: MA Xiao-Ding,ZHAO Zheng-Wu,HAN Long-Zhi
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2016YFD0100101);This study was supported by the National Key Research and Development Program of China(2016YFD0100301);the National Natural Science Foundation of China(31671664);the CAAS Science and Technology Innovation Program, Protective Program of Crop Germplasm of China(2018NWB036-01);the CAAS Science and Technology Innovation Program, Protective Program of Crop Germplasm of China(2018NWB036-12-2);the National Infrastructure for Crop Germplasm Resources(NICGR2018-001)

摘要:

以东乡普通野生稻和日本晴为亲本构建的染色体片段置换系为研究材料, 2019年分别在北京、山东临沂和江西南昌对分蘖数、穗粒数和粒形等11个产量相关性状进行多环境鉴定, 结合染色体片段置换系基因型数据定位水稻产量相关性状QTL。3个环境共检测到68个QTL, 包括株高4个、穗长5个、分蘖数2个、一次枝梗数7个、一次枝梗粒数8个、二次枝梗数8个、二次枝梗粒数10个、每穗粒数6个、千粒重7个、粒长8个和粒宽3个; LOD值介于2.50~12.66之间, 贡献率变幅为4.67%~27.79%, 15个QTL的贡献率大于15%; 24个QTL与已报道位点/基因位置重叠, 44个QTL为新发现位点; 6个QTL在2个环境能被检测到, 1个QTL qTGW2能在3个环境检测到, 且是还未报道的新位点。最后, 利用BSA法验证了qPH7qPBPP8-2qGW10三个QTL的可靠性。本研究将为后续产量相关性状基因克隆以及进一步解析其遗传基础和分子调控机制奠定基础。

关键词: 普通野生稻, 染色体片段置换系, 产量相关性状, QTL分析

Abstract:

In former study, we constructed a chromosome segment substitution lines (CSSLs) of Dongxiang common wild rice (Oryza rufipogon Griff.) in the background of Nipponbare (Oryza sativa L.). In this study, in order to investigate 11 yield-related traits, such as tillering number, grains per panicle and grain shapes, the CSSLs were planted in Beijing, Linyi and Nanchang. The results of quantitative trait loci (QTLs) for yield-related traits showed that a total of 68 QTLs were detected, including 4 QTLs for plant height, 5 QTLs for panicle length, 2 QTLs for tillering number, 7 QTLs for primary branch grain number, 8 QTLs for primary branch grain number, 8 QTLs for secondary branch grain number, 10 QTLs for secondary branch grain number, 6 QTLs for grains per panicle, 7 QTLs for 1000-grain weight, 8 QTLs for grain length and 3 QTLs for grain width. LOD score of the detected QTLs ranged from 2.50 to 12.66. The phenotypic variation explained by these QTLs ranged from 4.67% to 27.79%. There were 15 QTLs with a contribution rate more than 15%, 24 QTLs overlapped with the reported loci or gene position, 44 QTLs newly detected loci. In addition, 6 QTLs were stably detected at two sites, and 1 QTL (qTGW2) as a novel QTL was detected at three sites. Finally, the reliability of the three QTLs of qPH7, qPBPP8-2 and qGW10 was verified by BSA. Our results will be helpful for the subsequent cloning of yield-related trait genes and further analysis of their genetic basis and molecular regulation mechanism.

Key words: common wild rice (Oryza rufipogon Griff.), chromosome segment substitution lines (CSSLs), yield-related traits, QTL analysis

图1

CSSL群体中11个产量相关性状的频率分布 纵坐标表示CSSL数量。蓝色、红色和绿色长柱分别代表CSSL中11个性状在北京、临沂和南昌的频率分布。蓝色、红色和绿色箭头表示日本晴的11个性状在北京、临沂和南昌的表现。"

表1

日本晴及CSSL群体产量相关性状表型统计分析"

性状
Trait
北京Beijing 临沂Linyi 南昌Nanchang
日本晴
Nip
平均值±标准差
Mean±SD
变异系数
CV (%)
幅度
Range
日本晴
Nip
平均值±标准差
Mean±SD
变异系数
CV (%)
幅度
Range
日本晴
Nip
平均值±标准差
Mean±SD
变异系数
CV (%)
幅度
Range
株高 PH (cm) 96.30 108.02±10.07 9.33 87.75-133.75 94.64 103.34±10.95 10.59 80.30-134.82 95.00 100.31±9.76 9.73 70.20-130.00
穗长 PL (cm) 19.68 19.97±1.53 7.68 15.07-24.94 21.59 22.29±2.03 9.10 16.64-26.96 21.74 22.32±2.01 9.01 17.78-28.03
分蘖数 TN 13.00 14.30±2.14 14.96 8.80-20.00 17.21 16.24±2.89 17.78 9.00-24.17 13.60 11.83±1.58 13.38 7.80-15.40
一次枝梗数 PBPP 10.23 10.72±1.42 13.27 7.17-15.17 10.69 10.99±1.56 14.18 8.42-19.67 9.63 10.52±1.50 14.27 6.38-15.75
一次枝梗粒数PBGN 63.42 62.50±11.28 18.04 30.50-00.17 60.60 61.79±8.65 14.00 42.50-84.83 57.38 62.79±10.57 16.84 35.38-111.75
二次枝梗数 SBPP 15.17 12.65±4.25 33.61 5.08-29.75 21.38 20.85±7.13 34.20 6.42-63.00 17.13 18.60±5.21 27.99 9.00-43.75
二次枝梗粒数 SBGN 41.79 33.97±12.04 35.46 11.08-75.17 63.02 59.58±24.91 41.80 13.92-208.17 45.75 53.05±19.48 36.72 20.75-181.63
每穗粒数 GPP 105.21 96.46±16.51 17.11 57.58-156.67 123.63 121.37±30.55 25.17 62.67-288.25 103.13 115.84±24.04 20.75 77.50-258.63
千粒重 TGW (g) 23.81 23.21±1.92 8.28 17.95-28.30 26.58 25.81±1.76 6.82 19.71-30.01 25.68 24.51±2.03 8.26 16.39-28.87
粒长 GL (mm) 6.60 6.74±0.29 4.36 6.21-7.57 6.94 7.04±0.29 4.17 6.34-7.89 6.93 7.07±0.40 5.66 6.27-8.85
粒宽 GW (mm) 3.20 3.22±0.10 3.09 2.92-3.44 3.39 3.34±0.11 3.34 2.97-3.60 3.37 3.31±0.15 4.64 2.49-3.60

图2

北京、临沂和南昌3个地点检测到的产量性状相关QTL在染色体上的分布 检测到的QTL具体信息如表2所示。每个标记的物理位置显示在染色体的左侧, 标记名称显示在染色体的右侧。绿色字符表示在2个地点都能检测到的QTL, 蓝色表示在3个地点都能检测到的QTL。"

表2

北京、临沂和南昌3地产量相关性状QTL分析"

性状
Trait
位点
QTL
染色体
Chr.
标记名称
Marker
北京Beijing 临沂Linyi 南昌Nanchang
阈值
LOD value
贡献率
PVE (%)
加性效应
Additive
阈值
LOD value
贡献率
PVE (%)
加性效应
Additive
阈值
LOD value
贡献率
PVE (%)
加性效应
Additive
株高PH qPH2 2 DX-C2-13 5.87 20.74 6.06 2.63 10.90 4.17
qPH5 5 DX-C5-10 3.54 11.80 6.54
qPH7 7 Indel-c7-1 2.93 9.86 5.91
qPH8 8 DX-C8-12 2.80 8.99 5.52
穗长PL qPL1 1 01-009 3.06 9.17 0.61
qPL2-1 2 DX-C2-13 5.48 17.36 0.86
qPL2-2 2 02-067 3.26 12.87 1.06 3.37 11.88 1.07
qPL5 5 05-028 3.39 10.42 2.08
qPL10 10 DX-S10-1 2.66 8.06 0.94
分蘖数TN qTN1-1 1 DX-C1-2 3.03 10.96 -1.31
qTN1-2 1 010-060 3.89 13.32 -1.70
一次枝梗数PBPP qPBPP1-1 1 DX-C1-6 2.77 9.25 1.03
qPBPP1-2 1 DX-C1-10 2.68 8.34 2.33
qPBPP3 3 DX-C3-8 3.08 9.86 -0.69
qPBPP5 5 DX-C5-3 3.48 11.23 1.05
qPBPP8-1 8 DX-C8-11 4.23 6.79 -1.41
qPBPP8-2 8 DX-C8-12 7.98 13.99 1.36
一次枝梗数PBPP qPBPP8-3 8 DX-S8-14 5.43 18.54 1.23
一次枝梗粒数PBGN qPBGN1-1 1 DX-C1-3 3.00 9.85 4.05
qPBGN1-2 1 DX-C1-10 3.74 12.29 -17.18
qPBGN1-3 1 01-046 4.10 17.32 4.94
qPBGN3 3 DX-C3-28 2.61 8.18 -5.57
qPBGN8-1 8 DX-C8-11 4.70 7.45 -10.34
qPBGN8-2 8 DX-C8-12 9.27 16.35 10.25
qPBGN8-3 8 DX-S8-14 2.90 9.33 6.36
qPBGN11 11 DX-S11-10 3.11 9.86 6.12
二次枝梗数SBPP qSBPP1 1 DX-C1-7 3.26 8.86 3.50
qSBPP2-1 2 DX-C2-1 5.52 15.83 10.49
qSBPP2-2 2 DX-C2-2 9.46 23.99 7.76
qSBPP2-3 2 02-057 5.26 12.01 2.71
qSBPP4-1 4 DX-C4-12 3.68 8.10 -1.51
qSBPP4-2 4 S4-12-2 5.50 15.75 -5.73
qSBPP6-1 6 DX-C6-2 3.17 13.08 2.93
二次枝梗数SBPP qSBPP6-2 6 S6-9-1 3.09 6.71 2.27
二次枝梗粒数SBGN qSBGN2-1 2 DX-C2-1 12.66 27.79 56.08
qSBGN2-2 2 DX-C2-2 8.56 21.39 20.58
qSBGN2-3 2 02-057 4.33 9.79 6.87
qSBGN3-1 3 DX-S3-16 3.90 6.99 20.08
qSBGN3-2 3 DX-S3-17 4.03 15.34 17.26
qSBGN4-1 4 DX-C4-2 4.93 9.03 -15.61
qSBGN4-2 4 DX-C4-8 2.68 4.67 -11.22
qSBGN4-3 4 DX-C4-12 4.64 10.55 -4.84
qSBGN6-1 6 DX-C6-2 2.85 10.56 9.59
qSBGN6-2 6 S6-9-1 4.21 9.47 7.58
每穗粒数GPP qGPP1 1 01-046 4.39 13.92 14.35
qGPP2 2 DX-C2-1 4.02 14.43 37.54
qGPP4 4 S4-12-2 3.55 12.58 -19.21
qGPP6-1 6 06-013 3.26 13.45 20.53
qGPP6-2 6 06-037 5.14 17.43 14.15
qGPP11 11 DX-S11-10 3.08 9.96 10.70
千粒重TGW qTGW2 2 02-008 4.39 14.36 -2.79 3.26 9.19 -1.98 4.21 10.96 -2.56
qTGW3 3 DX-C3-1 3.27 10.64 1.31
qTGW8-1 8 DX-C8-3 4.07 11.68 -3.14
qTGW8-2 8 DX-S8-14 3.02 8.54 -1.12 3.07 7.86 -1.27
qTGW9-1 9 DX-C9-4 2.90 8.12 1.33
qTGW9-2 9 DX-C9-10 3.02 7.81 -2.15
qTGW12 12 S12-6-3 5.28 14.11 -2.38
粒长GL qGL1 1 DX-C1-18 5.29 16.65 0.42
qGL2 2 02-067 3.13 10.71 0.13 2.86 7.12 0.15
qGL3-1 3 DX-C3-8 3.89 13.44 0.17
qGL3-2 3 indel-c3-12 3.08 9.22 0.12
qGL3-3 3 DX-S3-17 5.75 15.14 0.37
qGL3-4 3 DX-C3-23 4.78 14.90 0.17 5.69 14.95 0.25
qGL4 4 S4-12-2 3.14 10.68 0.18
qGL10 10 DX-C10-8 3.55 8.88 0.20
粒宽GW qGW3 3 DX-S3-17 2.50 10.06 -0.11
qGW8 8 DX-C8-15 4.59 17.86 -0.07 3.53 14.49 -0.07
qGW10 10 DX-C10-10 2.56 10.33 -0.08

图3

次级分离群体株高、一次枝梗数和粒宽性状的频率分布和?(SNP-index)曼哈顿图 A: qPH7位点次级分离群体中株高的频率分布; B: 株高极端混池?(SNP-index)曼哈顿图; C: qPBPP8-2位点次级分离群体中一次枝梗数的频率分布; D: 一次枝梗数极端混池?(SNP-index)曼哈顿图; E: qGW10位点次级分离群体中粒宽的频率分布; F: 粒宽极端混池?(SNP-index)曼哈顿图。蓝色和红色箭头分别表示日本晴和对应染色体片段置换系3个性状的表现。"

[1] 郭韬, 余泓, 邱杰, 李家洋, 韩斌, 林鸿宣. 中国水稻遗传学研究进展与分子设计育种. 中国科学: 生命科学, 2019,49:1185-1212.
Guo T, Yu H, Qiu J, Li J Y, Han B, Lin H X. Advances in rice genetics and breeding by molecular design in China. Sci Sin (Vitae), 2019,49:1185-1212 (in Chinese).
[2] 吴比, 胡伟, 邢永忠. 中国水稻遗传育种历程与展望. 遗传, 2018,40:841-857.
Wu B, Hu W, Xing Y Z. The history and prospect of rice genetic breeding in China. Hereditas, 2018,40:841-857 (in Chinese with English abstract).
[3] Yan S, Zou G H, Li S J, Wang H, Liu H Q, Zhai G W, Guo P, Song H M, Yan C J, Tao Y Z. Seed size is determined by the combinations of the genes controlling different seed characteristics in rice. Theor Appl Genet, 2011,123:1173-1181.
doi: 10.1007/s00122-011-1657-x pmid: 21805338
[4] Monna L, Kitazawa N, Yoshino R, Lisa M, Suzuki J, Masuda H, Maehara Y, Tanji M, Sato M, Nasu S, Minobe Y. Positional cloning of rice semidwarfing gene, sd-1: rice “green revolution gene” encodes a mutant enzyme involved in gibberellin synthesis. DNA Res, 2002,9:11-17.
doi: 10.1093/dnares/9.1.11 pmid: 11939564
[5] Spielmeyer W, Ellis M H, Chandler P M. Semidwarf ( sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci USA, 2002,99:9043-9048.
doi: 10.1073/pnas.132266399 pmid: 12077303
[6] Li X Y, Qian Q, Fu Z M, Wang Y H, Xiong G S, Zeng D L, Wang X Q, Liu X F, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li J Y. Control of tillering in rice. Nature, 2003,422:618-621.
doi: 10.1038/nature01518 pmid: 12687001
[7] Zhou F, Lin Q B, Zhu L H, Ren Y L, Zhou K N, Shabek N, Wu F Q, Mao H B, Dong W, Gan L, Ma W W, Gao H, Chen J, Yang C, Wang D, Tan J J, Zhang X, Guo X P, Wang J L, Jiang L, Liu X, Chen W Q, Chu J F, Yan C Y, Ueno K, Ito S, Asami T, Cheng Z J, Wang J, Lei C L, Zhai H Q, Wu C Y, Wang H Y, Zheng N, Wan J M. D14-SCF D3-dependent degradation of D53 regulates strigolactone signaling. Nature, 2013,504:406-410.
doi: 10.1038/nature12878 pmid: 24336215
[8] Jiang L, Liu X, Xiong G S, Liu H H, Chen F L, Wang L, Meng X B, Liu G F, Yu H, Yuan Y D, Yi W, Zhao L H, Ma H L, He Y Z, Wu Z S, Melcher K, Qian Q, Xu H.E, Wang Y H, Li J Y. DWARF 53 acts as a repressor of strigolactone signaling in rice. Nature, 2013,504:401-405.
doi: 10.1038/nature12870 pmid: 24336200
[9] Ishikawa S, Maekawa M, Arite T, Onishi K, Takamure I, Kyozuka J. Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant Cell Physiol, 2005,46:79-86.
doi: 10.1093/pcp/pci022 pmid: 15659436
[10] Zou J H, Chen Z X, Zhang S Y, Zhang W P, Jiang G H, Zhao X F, Zhai W X, Pan X B, Zhu L H. Characterizations and fine mapping of a mutant gene for high tillering and dwarf in rice ( Oryza sativa L.). Planta, 2005,222:604-612.
doi: 10.1007/s00425-005-0007-0 pmid: 16021500
[11] Huang X, Qian Q, Liu Z, Liu Z B, Sun H Y, He S Y, Luo D, Xia G M, Chu C C, Li J Y, Fu X D. Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet, 2009,41:494-497.
doi: 10.1038/ng.352 pmid: 19305410
[12] Ashikari M, Sakakibara H, Lin S Y, Yamamoto T, Takashi T, Nishimura A, R. Angeles E, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production. Science, 2005,309:741-745.
doi: 10.1126/science.1113373 pmid: 15976269
[13] Wu Y, Wang Y, Mi X F, Shan J X, Li X M, Xu J L, Lin H X. The QTL GNP1 encodes GA20ox1, which increases grain number and yield by increasing cytokinin activity in rice panicle meristems. PLoS Genet, 2016,12:e1006386.
[14] Jin J, Hua L, Zhu Z, Tan L B, Zhao X H, Zhang W F, Liu F X, Fu Y C, Cai H W, Sun X Y, Gua P, Xie D X, Sun C Q. GAD1 encodes a secreted peptide that regulates grain number, grain length, and awn development in rice domestication. Plant Cell, 2016,28:2453-2463.
doi: 10.1105/tpc.16.00379 pmid: 27634315
[15] Huo X, Wu S, Zhu Z, Liu F X, Fu Y C, Cai H W, Sun X Y, Gu P, Xie D X, Tan L B, Sun C Q. NOG1 increases grain production in rice. Nat Commun, 2017,8:1497.
doi: 10.1038/s41467-017-01501-8 pmid: 29133783
[16] Fan C C, Yu S B, Wang C R, Xing Y Z. A causal C-A mutation in the second exon of GS3 highly associated with rice grain length and validated as a functional marker. Theor Appl Genet, 2009,118:465-472.
doi: 10.1007/s00122-008-0913-1 pmid: 19020856
[17] Song X J, Huang W, Shi M, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet, 2007,39:623-630.
doi: 10.1038/ng2014 pmid: 17417637
[18] Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B, Onishi A, Miyagawa H, Katoh E. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet, 2013,45:707-711.
doi: 10.1038/ng.2612 pmid: 23583977
[19] Li Y B, Fan C C, Xing Y Z, Jiang Y H, Luo L J, Sun L, Shao D, Xu C J, Li X H, Xiao J H, He Y Q, Zhang Q F. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet, 2011,43:1266-1269.
doi: 10.1038/ng.977 pmid: 22019783
[20] Wang S K, Wu K, Yuan Q B, Liu X, Liu Z B, Lin X Y, Zeng R Z, Zhu H T, Dong G J, Qian Q Zhang G Q, Fu X D. Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet, 2012,44:950-954.
doi: 10.1038/ng.2327 pmid: 22729225
[21] Wang Y X, Xiong G S, Hu J, Jiang L, Yu H, Xu J, Fang Y X, Zeng L J, Xu E, Xu J, Ye W J, Meng X B, Liu R F, Chen H Q, Jing Y H, Wang Y H, Zhu X D, Li J Y, Qian Q. Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat Genet, 2015,47:944-948.
doi: 10.1038/ng.3346 pmid: 26147619
[22] Zhao D S, Li Q F, Zhang C Q, Zhang C, Yang Q Q, Pan L X, Ren X Y, Lu J, Gu M H, Liu Q Q. GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality. Nat Commun, 2018,9:1240.
doi: 10.1038/s41467-018-03616-y pmid: 29588443
[23] Ma X D, Han B, Tang J H, Zhang J N, Cui D, Geng L Y, Zhou H Y, Li M M, Han L Z. Construction of chromosome segment substitution lines of Dongxiang common wild rice (Oryza rufifipogon Griff) in the background of the japonica rice cultivar Nipponbare(Oryza sativa L.). Plant Physiol Biochem, 2019,144:274-282.
doi: 10.1016/j.plaphy.2019.09.041 pmid: 31593900
[24] 崔国庆, 王世明, 马福盈, 汪会, 向朝中, 李云峰, 何光华, 张长伟, 杨正林, 凌英华, 赵芳明. 水稻高秆染色体片段代换系Z1377的鉴定及重要农艺性状QTL定位. 作物学报, 2018,44:1477-1484.
Cui G Q, Wang S M, Ma F Y, Wang H, Xiang C Z, Li Y F, He G H, Zhang C W, Yang Z L, Ling Y H, Zhao F M. Identification of rice chromosome segment substitution line Z1377 with increased plant height and QTL mapping for agronomic important traits. Acta Agron Sin, 2018,44:1477-1484 (in Chinese with English abstract).
[25] Wang J K, Wan X Y, Crossa J, Crouch J, Weng J F, Zhai H Q, Wan J M. QTL mapping of grain length in rice ( Oryza sativa L.) using chromosome segment substitution lines. Genet Res, 2006,88:93-104.
doi: 10.1017/S0016672306008408 pmid: 17125584
[26] 马小定, 唐江红, 张佳妮, 崔迪, 李慧, 黎毛毛, 韩龙植. 东乡野生稻与日本晴多态性标记的开发. 作物学报, 2019,45:316-321.
Ma X D, Tang J H, Zhang J N, Cui D, Li H, Li M M, Han L Z. Development of molecular markers polymorphic between Dongxiang wild rice and Geng rice cultivar ‘Nipponbare’. Acta Agron Sin, 2019,45:316-321 (in Chinese with English abstract).
[27] Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009,25:1754-1760.
doi: 10.1093/bioinformatics/btp324 pmid: 19451168
[28] McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, Depristo M A. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genom Res, 2010,20:1297-1303.
[29] Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano L M, Kamoun S, Terauchi R. QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J, 2013,74:174-183.
doi: 10.1111/tpj.12105 pmid: 23289725
[30] Liu J H, Shen J Q, Xu Y, Li X H, Xiao J H, Xiong L Z. Ghd2, a CONSTANS-like gene, confers drought sensitivity through regulation of senescence in rice. J Exp Bot, 2016,67:5785-5798.
doi: 10.1093/jxb/erw344 pmid: 27638689
[31] 王仁晓, 李培金, 陈红旗, 闵绍楷, 李家洋, 朱旭东. 水稻顶节间长度控制基因(EUI1)的精细定位. 遗传学报, 2005,32:955-959.
Wang R X, Li P J, Chen H Q, Yan S K, Li J Y, Zhu X D. Fine localization of rice EUI1 gene controlling elongation of the uppermost internode. Acta Genet Sin, 2005,32:955-959 (in Chinese with English abstract).
[32] Zhang Y Y, Zhu Y Y, Peng Y, Yan D W, Li Q, Wang J J, Wang L Y, He Z H. Gibberellin homeostasis and plant height control by EUI and a role for gibberellin in root gravity responses in rice. Cell Res, 2008,18:412-421.
doi: 10.1038/cr.2008.28 pmid: 18268540
[33] Zha X J, Luo X J, Qian X Y, He G M, Yang M F, Li Y, Yang J S. Over-expression of the rice LRK1 gene improves quantitative yield components. Plant Biotechnol J, 2009,7:611-620.
doi: 10.1111/j.1467-7652.2009.00428.x pmid: 19619185
[34] Moncada P, Martínez C P, Borrero J, Chatel M, Gauch Jr H, Guimaraes E, Tohme J, McCouch S R,. Quantitative trait loci for yield and yield components in an Oryza sativa × Oryza rufipogon BC2F2 population evaluated in an upland environment. Theor Appl Genet, 2001,102:41-52.
[35] Thomson M J, Tai T H, McClung A M, Lai X H, Hinga M E, Lobos K B, Xu Y, Martinez C P, McCouch S R. Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor Appl Genet, 2003,107:479-493.
doi: 10.1007/s00122-003-1270-8 pmid: 12736777
[36] Suh J P, Ahn S N, Cho Y C, Kang K H, Choi I S, Kim Y G, Suh H S, Hwang H G. Mapping of QTLs for yield traits using an advanced backcross population from a cross between Oryza sativa and O. glaberrima. Korean J Breed, 2005,37:214-220.
[37] Che R H, Tong H N, Shi B H, Liu Y Q, Fang S R, Liu D P, Xiao Y H, Hu B, Liu L C, Wang H R, Zhao M F, Chu C C. Control of grain size and rice yield by GL2-mediated Brassinosteroid responses. Nat Plants, 2015,2:15195.
doi: 10.1038/nplants.2015.195 pmid: 27250747
[38] Duan P G, Ni S, Wang J M, Zhang B L, Xu R, Wang Y X, Chen H Q, Zhu X D, Li Y H. Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice. Nat Plants, 2015,2:15203.
doi: 10.1038/nplants.2015.203 pmid: 27250749
[39] Sun P Y, Zhang W H, Wang Y H, He Q, Shu F, Liu H, Wang J, Wang J M, Yuan L P, Deng H F. OsGRF4 controls grain shape, panicle length and seed shattering in rice. J Integr Plant Biol, 2016,58:836-847.
doi: 10.1111/jipb.12473
[40] Yu J P, Xiong H Y, Zhu X Y, Zhang H L, Li H H, Miao J L, Wang W S, Tang Z S, Zhang Z Y, Yao G X, Zhang Q, Pan Y H, Wang X, Rashid M A.R, Li J J, Gao Y M, Li Z K, Yang W C, Fu X D, Li Z C. OsLG3 contributing to rice grain length and yield was mined by Ho-LAMap. BMC Biol, 2017,15:28.
doi: 10.1186/s12915-017-0365-7 pmid: 28385155
[41] Zhang X J, Wang J F, Huang J, Lan H X, Wang C L, Yin C F, Wu Y Y, Tang H J, Qian Q, Li J Y, Zhang H S. Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice. Proc Natl Acad Sci USA, 2012,109:21534-21539.
doi: 10.1073/pnas.1219776110 pmid: 23236132
[42] Guo T, Chen K, Dong N Q, Shi C L, Ye W W, Gao J P, Shan J X, Lin H X. GRAIN SIZE AND NUMBER1 negatively regulates the OsMKKK10-OsMKK4-OsMPK6 cascade to coordinate the trade-off between grain number per panicle and grain size in rice. Plant Cell, 2018,30:871-888.
[1] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[2] 王小雷, 李炜星, 曾博虹, 孙晓棠, 欧阳林娟, 陈小荣, 贺浩华, 朱昌兰. 基于染色体片段置换系对水稻粒形及千粒重QTL检测与稳定性分析[J]. 作物学报, 2020, 46(10): 1517-1525.
[3] 李超,李志坤,谷淇深,杨君,柯会锋,吴立强,王国宁,张艳,吴金华,张桂寅,阎媛媛,马峙英,王省芬. 海岛棉CSSLs分子评价及纤维品质、产量性状QTL定位[J]. 作物学报, 2018, 44(8): 1114-1126.
[4] 崔国庆,王世明,马福盈,汪会,向朝中,李云峰,何光华,张长伟,杨正林,凌英华,赵芳明. 水稻高秆染色体片段代换系Z1377的鉴定及重要农艺性状QTL定位[J]. 作物学报, 2018, 44(10): 1477-1484.
[5] 孙爱伶,伍洪铭,陈高明,张天雨,曹鹏辉,刘世家,江玲,万建民. 控制普通野生稻种子休眠性QTL的定位[J]. 作物学报, 2018, 44(01): 15-23.
[6] 佘东,刘强明,李大露,梁银凤,刘二宝,党小景,洪德林. 利用II-32B/A7444组合CSSL群体定位水稻7个穗部性状QTL[J]. 作物学报, 2017, 43(05): 658-668.
[7] 张玲,李晓楠,王伟,杨生龙,李清,王嘉宇. 水稻株型相关性状的QTL分析[J]. 作物学报, 2014, 40(12): 2128-2135.
[8] 范冬梅,马占洲,刘春燕,杨振,曾庆力,辛大伟,蒋洪蔚,邱鹏程,陈庆山,胡国华. 多种环境下大豆单株粒重QTL的定位与互作分析[J]. 作物学报, 2013, 39(06): 1021-1029.
[9] 杨庆文,黄娟. 中国普通野生稻遗传多样性研究进展[J]. 作物学报, 2013, 39(04): 580-588.
[10] 张伟强,库丽霞,张君,韩赞平,陈彦惠. 玉米出籽率、籽粒深度和百粒重的QTL分析[J]. 作物学报, 2013, 39(03): 455-463.
[11] 付央,苑冬冬,胡文静,蔡彩平,郭旺珍. 陆地棉背景下海岛棉第18染色体片段置换系的培育及相关农艺性状QTL定位[J]. 作物学报, 2013, 39(01): 21-28.
[12] 赵芳明,张桂权,曾瑞珍,杨正林,凌英华,桑贤春,何光华. 利用单片段代换系研究水稻产量相关性状QTL加性及上位性效应[J]. 作物学报, 2012, 38(11): 2007-2014.
[13] 覃鸿妮, 晏萌, 王召辉, 郭莹, 王辉, 孙海燕, 刘志斋, 蔡一林. 玉米籽粒中花色苷和黑色素含量的QTL分析[J]. 作物学报, 2012, 38(02): 275-284.
[14] 丁安明, 李君, 崔法, 赵春华, 马航运, 王洪刚. 利用小麦关联RIL群体定位产量相关性状QTL[J]. 作物学报, 2011, 37(09): 1511-1524.
[15] 冯跃, 翟荣荣, 曹立勇, 林泽川, 魏兴华, 程式华. 不同施氮水平下水稻株高与抽穗期的QTL比较分析[J]. 作物学报, 2011, 37(09): 1525-1532.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!