作物学报 ›› 2012, Vol. 38 ›› Issue (02): 275-284.doi: 10.3724/SP.J.1006.2012.00275

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇



  1. 西南大学玉米研究所 / 农业部生物技术与作物品质改良重点实验室,重庆400716
  • 收稿日期:2011-04-14 修回日期:2011-09-10 出版日期:2012-02-12 网络出版日期:2011-11-07
  • 通讯作者: 蔡一林, E-mail: caiyilin1789@yahoo.com.cn, Tel: 023-68250447
  • 基金资助:


QTL Mapping for Anthocyanin and Melanin Contents in Maize Kernel

QIN Hong-Ni,YAN Meng,WANG Zhao-Hui,GUO Ying,WANG Hui,SUN Hai-Yan,LIU Zhi-Zhai,CAI Yi-Lin*   

  1. Maize Research Institute, Southwest University / Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture, Chongqing 400716, China
  • Received:2011-04-14 Revised:2011-09-10 Published:2012-02-12 Published online:2011-11-07
  • Contact: 蔡一林, E-mail: caiyilin1789@yahoo.com.cn, Tel: 023-68250447

摘要: 花色苷和黑色素是黑玉米籽粒中重要而有益的化学成分,深入开展其QTL定位研究,对于色素相关基因的克隆与转化和分子标记辅助育种,具有重要的理论意义和应用价值。本文利用一个黑玉米自交系SDM为共同父本,分别与白玉米自交系木6和黄玉米自交系Mo17杂交,构建2个相关F2:3群体(分别缩写为WD和YD),对玉米籽粒中花色苷含量(ACK)和黑色素含量(MCK)进行QTL分析。结果表明,黑玉米SDM籽粒中的花色苷和黑色素含量均极显著高于木6和Mo17,2种色素含量间呈极显著正相关。2个群体中共检测到17个色素相关的QTL,其中与花色苷含量相关的QTL在2个群体中各4个,分布在第4、第6、第7和第10染色体上,与黑色素含量相关的QTL在WD和YD群体中分别为4个和5个,分布在第1、第2、第6、第7和第10染色体上。2个群体检测到QTL的数量、分布和对表型的贡献率均高度一致,而且解释花色苷含量和黑色素含量变异大的QTL在2个群体中均有成簇分布的现象,主要表现在bin 6.04处的标记区间umc1796~mmc2006内和bin 10.04处的标记区间umc2043~bnlg1028内分别解释表型变异的12.7%~21.3%和8.6%~21.3%。它们可能是一因多效的同一QTL或者是在该区段内紧密连锁的不同QTL。上位性分析表明,2个群体中检测到的上位性QTL的数量、位置和对表型的贡献率差别均较大,WD群体的上位性效应明显大于YD群体,说明上位性效应对遗传背景更加敏感,需要进一步深入研究贡献率大的上位性QTL及其利用。

关键词: 玉米籽粒, 花色苷, 黑色素, QTL分析

Abstract: Anthocyanin and melanin are important and beneficial chemical components in black maize kernel. It is important to comprehensively study the QTL mapping for anthocyanin and melanin, cloning and transfer of pigmentation-related genes and marker assistant breeding. In this paper, two related F2:3 populations derived from crosses of Mu6×SDM (WD) and Mo17×SDM (YD) were used to identify QTLs for anthocyanin and melanin contents in maize kernels. The results showed that the phenotype and QTL identification of two populations were highly consistent. The anthocynian and melanin contents of SDM were significantly higher than those of Mu6 and Mo17. The positive correlation between the two pigment contents in kernel was highly significant. A total of seventeen QTLs were identified, including eight QTLs for ACK and nine QTLs for MCK. For ACK, four QTLs were both detected in two populations, which were distributed on chromosomes 4, 6, 7, and 10. For MCK, four and five QTLs were identified in WD and YD, respectively, which were distributed on chromosomes 1, 2, 6, 7, and 10. The number, distribution and effects of QTLs in two populations were highly consistent, and the major QTLs of ACK and MCK in two populations were both clustered, which were detected in the interval umc1796–mmc2006 (bin 6.04) andumc2043–bnlg1028(bins 10.04) and explained 12.7%–21.3% and 8.6%–21.3% of phenotype variation, respectively. These QTLs which were stable in different genetic backgrounds might be closely linked to each other, or a same pleiotropic QTL which could be used in fine mapping and cloning of pigmentation-related genes in maize. The result of epistasic analysis indicated that the number, position and effects of epistatic QTLs between two populations were much different, and epistasic effects were more obvious for WD than for YD. Some epistatic QTL pairs explaining more than 10% variation of phenotype play an important role in pigment production and should be further studied.

Key words: Maize kernel, Anthocyanin, Melanin, QTL mapping

[1]Cui L-N(崔丽娜), Gao R-Q(高荣岐), Sun A-Q(孙爱清), Dong S-T(董树亭), Zhang H-R(张华荣). Regularity of carotenoids and anthocyanins accumulation in various genotypes of maize kernel. Acta Agron Sin (作物学报), 2010, 36(5): 818–825 (in Chinese with English abstract)

[2]Holton T A, Cornish E C. Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell, 1995, 7: 1071–1083

[3]Zhao S-Q(赵肃清), Sun Y-M(孙远明), Cai Y-F(蔡燕飞), Zhang H-R(张厚瑞). Advances on research of natural melanin. Guangzhou Food Science and Technology (广州食品工业科技), 17(3): 54–59 (in Chinese with English abstract)

[4]Prota G D, Ischia M, Napolitano A. The Chemistry of melanins and Related Metabolites. The Pigmentary System. Oxford: Oxford University Press, 1998. pp 307–332

[5]Jones K. The potential health benefits of purple corn. Herbal Gram, 2005, 65: 46–49

[6]Wang J-T(王金亭), Sun C-F(孙长峰), Wu G-Q(吴广庆). Advances on research and application of natural phenols pigment. Prog Mod Biomed (现代生物医学进展), 2008, 8(2): 376–379 (in Chinese with English abstract) 

[7]Emerson R A. Genetic correlation and spurious allelemorphism in maize. Annu Rep Nebraska Agric Exp Stn, 1911, 24: 59–90

[8]Hayes H K. Inheritance of a mosaic pericarp pattern color of maize. Genetics, 1917, 2: 261–281

[9]Anderson E G. Pericarp studies in maize: II. The allelomorphism of a series of factors for pericarp color. Genetics, 1924, 9: 442–453

[10]Anderson E G, Eyester W H. Pericarp studies in maize: III. The frequency of mutation in variegated maize pericarp. Genetics, 1927, 13: 111–120

[11]Emerson R A, Anderson E G. The a series of allelomorphs in relation to pigmentation in maize. Genetics, 1932, 17: 503–509

[12]Rhoades M M. The effect of varying gene dosage on aleurone color in maize. Genetics, 1936, 23: 347–354

[13]Sourdille P, Baud S, Leroy P. RFLP markers and genes affecting anthocyanin pigmentation in maize (Zea mays L.). Euphytica, 1996, 91: 21–30

[14]Brown A F, Juvik J A, Pataky J K. Quantitative trait loci in sweet corn associated with partial resistance to Stewart’s wilt, northern corn leaf blight, and common rust. Phytopathology, 2001, 91: 293–300

[15]Sun L-L(孙凌玲), Lin X-E(林兴娥), Xie H-L(谢慧玲), Fu Z-Y(付志远), Tang J-H(汤继华). The tagging molecular markers for red silk gene in maize inbred line K12. J Henan Agric Univ (河南农业大学学报), 2007, 41(5): 480–482 (in Chinese with English abstract)

[16]Lee E A, Young J A, Azizi F, Jay S, Schaafsma A W. Phenotypic and genotypic characterization of purple kernel streak in white food corn. Crop Sci, 2009, 49: 1235–1241

[17]Zhang J-X(张建霞), Zhang Y(张燕), Sun Z-J(孙志健), Hu X-S(胡小松), Wu J-H(吴继红), Liao X-J(廖小军). Summary of resource distribution and qualitative and quantitative analysis methods of anthocyanin. Food Sci (食品科学), 2009, 30(5): 263–268 (in Chinese with English abstract)

[18]Xu J-R(徐金瑞), Zhang M-W(张名位), Liu X-H(刘兴华), Liu Z-X(刘章雄), Zhang R-F(张瑞芬), Sun L(孙玲), Qiu L-J(邱丽娟). Correlation between antioxidation, and content of total phenolics and anthocyanin in black soybean accessions. Sci Agric Sin (中国农业科学), 2006, 39(8): 1545–1552 (in Chinese with English abstract)

[19]Qu C-M(曲存民), Fu F-Y(付福友), Liu L-Z(刘列钊), Wang J-F(王家丰), Mao L-J(毛丽佳), Yuan X-Y(原小燕), Chen L(谌利), Li J-N(李加纳). QTL mapping of embryonic pigment components in Brassica napus. Acta Agron Sin (作物学报), 2009, 35(2): 286–294 (in Chinese with English abstract)

[20]Chen D H, Ronald P C. A rapid DNA minipreparation method suitable for AFLP and other PCR applications. Plant Mol Biol Rep, 1999, 17: 53–57

[21]Stam P. Construction of integrated genetic linkage maps by means of a new computer package: JoinMap. Plant J, 1993, 3: 739–744

[22]Wang J-K (王建康). Inclusive composite interval mapping of quantitative trait genes. Acta Agron Sin (作物学报), 2009, 35(2): 1–7 (in Chinese with English abstract)

[23]Stuber C W, Edwards M D, Wendel J F. Molecular marker-facilitated investigations of quantitative traits loci in maize: II. Factors influencing yield and its component traits. Crop Sci, 1987, 27: 639–648

[24]Goodman C D, Casati P, Walbot V. A multidrug resistance–associated protein involved in anthocyanin transport in Zea mays. Plant Cell, 2004, 16: 1812–1826

[25]Liao C Y, Wu P, Hu B, Yi K K. Effects of genetic background and environment on QTL and epistasis for rice (Oryza sativa L.) panicle number. Theor Appl Genet, 2001, 103: 104–111
[1] 罗兰, 雷丽霞, 刘进, 张瑞华, 金桂秀, 崔迪, 黎毛毛, 马小定, 赵正武, 韩龙植. 利用东乡普通野生稻染色体片段置换系定位产量相关性状QTL[J]. 作物学报, 2021, 47(7): 1391-1401.
[2] 杨晓梦, 李霞, 普晓英, 杜娟, Muhammad Kazim Ali, 杨加珍, 曾亚文, 杨涛. 大麦重组自交系群体籽粒总花色苷含量和千粒重QTL定位[J]. 作物学报, 2020, 46(01): 52-61.
[3] 许玉超,侯喜林,徐玮玮,沈露露,张仕林,刘世拓,胡春梅. 紫色不结球白菜花色苷合酶基因BrcANS的克隆与表达分析[J]. 作物学报, 2016, 42(06): 850-859.
[4] 张玲,李晓楠,王伟,杨生龙,李清,王嘉宇. 水稻株型相关性状的QTL分析[J]. 作物学报, 2014, 40(12): 2128-2135.
[5] 范冬梅,马占洲,刘春燕,杨振,曾庆力,辛大伟,蒋洪蔚,邱鹏程,陈庆山,胡国华. 多种环境下大豆单株粒重QTL的定位与互作分析[J]. 作物学报, 2013, 39(06): 1021-1029.
[6] 张伟强,库丽霞,张君,韩赞平,陈彦惠. 玉米出籽率、籽粒深度和百粒重的QTL分析[J]. 作物学报, 2013, 39(03): 455-463.
[7] 冯跃, 翟荣荣, 曹立勇, 林泽川, 魏兴华, 程式华. 不同施氮水平下水稻株高与抽穗期的QTL比较分析[J]. 作物学报, 2011, 37(09): 1525-1532.
[8] 李灿东, 蒋洪蔚, 刘春燕, 郭泰, 王志新, 吴秀红, 郑伟, 邱鹏程, 张闻博, 宋英博, 栾奕娜, 陈庆山, 胡国华. 大豆耐旱选择群体QTL定位[J]. 作物学报, 2011, 37(04): 603-611.
[9] 谭巍巍, 李永祥, 王阳, 刘成, 刘志斋, 彭勃, 王迪, 张岩, 孙宝成, 石云素, 宋燕春, 杨德光, 王天宇, 黎裕. 在干旱和正常水分条件下玉米穗部性状QTL分析[J]. 作物学报, 2011, 37(02): 235-248.
[10] 彭勃, 王阳, 李永祥, 刘成, 张岩, 刘志斋, 谭巍巍, 王迪, 孙宝成, 石云素, 宋燕春, 王天宇, 黎裕. 玉米籽粒产量与产量构成因子的关系及条件QTL分析[J]. 作物学报, 2010, 36(10): 1624-1633.
[11] 印志同,宋海娜,孟凡凡,许晓明,喻德跃. 大豆光合气体交换参数的QTL分析[J]. 作物学报, 2010, 36(1): 92-100.
[12] 苗兴芬,朱命喜,徐文平,丁俊杰,于凤瑶,于永梅,杜升伟,刘春燕,陈庆山,胡国华. 大豆脂肪酸含量的QTL分析[J]. 作物学报, 2010, 36(09): 1498-1505.
[13] 崔丽娜,高荣岐,孙爱清,董树亭,张华永. 不同基因型玉米籽粒类胡萝卜素与花色苷色素积累规律[J]. 作物学报, 2010, 36(05): 818-825.
[14] 潘存红,李爱宏,陈宗祥,吴林波,戴正元,张洪熙,黄年生,陈夕军,张亚芳,左示敏,潘学彪. 水稻黑条矮缩病抗性QTL分析[J]. 作物学报, 2009, 35(12): 2213-2217.
[15] 肖炳光;卢秀萍;焦芳蝉;李永平;孙玉合;郭兆奎. 烤烟几种化学成分的QTL初步分析[J]. 作物学报, 2008, 34(10): 1762-1769.
Full text



No Suggested Reading articles found!