欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (09): 1498-1505.doi: 10.3724/SP.J.1006.2010.01498

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆脂肪酸含量的QTL分析

苗兴芬1,2,朱命喜1,徐文平2,丁俊杰4,于凤瑶5,于永梅2,杜升伟1,刘春燕3,陈庆山1,3,*,胡国华1,3,*   

  1. 1东北农业大学农学院,黑龙江哈尔滨150030;2黑龙江农业职业技术学院,黑龙江佳木斯154007;3黑龙江农垦科研育种中心,黑龙江哈尔滨150090;4黑龙江省农科院合江分院,黑龙江佳木斯154007;5黑龙江省红兴隆科研所,黑龙江友谊155811
  • 收稿日期:2009-11-04 修回日期:2010-04-20 出版日期:2010-09-12 网络出版日期:2010-06-11
  • 通讯作者: 陈庆山,E-mail:qshchen@sohu.com;胡国华,E-mail:hugh757@vip.163.com
  • 基金资助:
    本研究由国家转基因生物新品种培育重大专项“大豆导入系构建及有利隐蔽基因挖掘”(2009ZX08009-013B),国家转基因专项重点项目“多抗、高蛋白、高油转基因大豆种质创制(2009ZX08004-009B)和黑龙江省教育厅项目(115350033)资助。

QTL Analysis of Fatty acids Contents in Soybean

MIAO Xing-Fen1,2,ZHU Ming-Xi1,XU Wen-Ping2,DING Jun-Jie4,YU Feng-Yao5,YU Yong-Mei2,DU Sheng-Wei1,Chun-Yan3,CHEN Qing-Shan1,3,*,HU Guo-Hua1,3,*   

  1. 1 College of Agriculture, Northeast Agricultural University, Harbin 150030, China; 2 Heilongjiang Agriculture College of Vocational Technology, Jiamusi 154007, China; 3 Land Reclamation Research & Breeding Centre of Heilongjiang, Harbin 150090, China; 4 Jiamusi Branch, Heilongjiang Academy of Agricultural Sciences, Jiamusi 154007, China; 5 Hongxinglong Research Institute of General Bureau of Land Reclamation Heilongjian, Youyi 155811, China
  • Received:2009-11-04 Revised:2010-04-20 Published:2010-09-12 Published online:2010-06-11
  • Contact: CHEN Qing-Shan,E-mail:qshchen@sohu.com;胡国华,E-mail:hugh757@vip.163.com

摘要: 利用Charleston(♀)×东农594(♂)的F14和F15代永久自交系群体154个单株后代,在两年3点条件下用气相色谱法测得其籽粒5种脂肪酸的含量,利用Win QTL Cartographer 2.5复合区间作图法(CIM)进行QTL分析。结果共检测到47个相关的QTL,分布在13个连锁群上。多年多点同时检测到的QTL共有13个,其中控制软脂酸性状的2个,包括qPal-C2-2qPal-A1-1;控制硬脂酸性状的4个,包括qSt-B1-1qSt-B1-2qSt-D1a-1qSt-C2-1;控制油酸性状3个,包括qOle-B2-1qOle-G-1qOle-H-1;控制亚油酸性状的有2个,包括qLin-C2-1qLin-H-1;控制亚麻酸性状的4个,包括qLino-B1-1qLino-C2-1qLino-D1b-1qLino-J-1。这些QTL的一致性较高,为特异脂肪酸含量标记辅助育种奠定了基础。大豆脂肪酸含量的主效QTL数量不多, 效应大的不多, 可能还受许多未能检测出来的微效基因控制。

关键词: 大豆, 脂肪酸, QTL分析

Abstract: Soybean, Glycine max (L.) Merr., is one of the main plant oil sources. Most researches have focused on the improvement of oil content. However, improving fatty acid composition is the main aspect of soybean breeding now. This study aimed at mapping QTLs conferring fatty acids contents in soybean on the genetic map which had been constructed in our lab to provide a reference of soybean oil quality breeding. Five kinds of fatty acid contents of 154 F14 and F15 lines devisedqSt-B1-1, qSt-B1-2, qSt-D1a-1 and qSt-C2-1;three for related with oleic acid content, i.e. qOle-B2-1, qOle-G-1, and qOle-H-1; two for related with linoleic acid content, i.e. qLin-C2-1 and qLin-H-1, and four for linolenic acid content, i.e. qLino-B1-1,qLino-C2-1, qLino-D1b-1, and qLino-J-1. These stable QTLs pave a way for specific fatty acid contents breeding by marker-assisted selection. The number of main-effect QTLs with large effect conferring the contents of fatty acids appeared not as many as expected, it may also subject to a number of the micro-effect genes which failed to detect. from a cross of Charleston (♀) × Dongnong 594 (♂) were measured by GC at three locations in two years. The QTLs of fatty acids contents were analyzed with method of composite interval mapping (CIM) by Win QTL Cartographer 2.5. In total, 47 related QTLs distributed on the 13 linkage groups were obtained. Seventeen QTLs were detected in different years or different sites, including two for palmitic acid content, i.e. qPal-C2-2 and qPal-A1-1; four for stearic acid content, i.e.

Key words: Soybean, Fatty acids contents, QTL analysis

[1] Cregan P B, Jarvik T, Bush A L, Shoemaker R C, Lark K G, Kahler A L, VanToai T T, Lohnes D O, Chung J, Specht J E. An integrated genetic linkage map of the soybean genome. Crop Sci, 1999, 39: 1464–1490
[2] Song Q J, Marek L F, Shoemaker R C, Lark K G, Concibido V C, Delannay X, Specht J E, Cregan P B. A new integrated genetic linkage map of the soybean. Theor Appl Genet, 2004, 109: 122–128
[3] Li Z L, Wilson R F, Rayford W E, Boerma H R. Molecular mapping genes conditioning reduced palmitic acid content in N87-2122-4 soybean. Crop Sci, 2002, 42: 373–378
[4] Spencer M M, Pantalone V R, Meyer E J. Mapping the Fas locus controlling stearic acid content in soybean. Theor Appl Genet, 2003, 106: 615–619
[5] Hyten D L, Pantalone V R, Sams C E, Saxton A M, Landau-Ellis D, StefaniakT R, Schmidt M E. Seed quality QTL in a prominent soybean population. Theor Appl Genet, 2004, 109: 552–561
[6] Orf J H, Diers B W, Boerma H R. Genetic improvement: conventional and molecular based strategies. In: Soybeans: Improvement, Production, and Uses, 3rd edn. American Society of Agronomy. Inc. USA, 2004. pp 417–450
[7] Panthee D R, Pantalone V R, West D R, Saxton A M, Sams C E. Quantitative trait loci for seed protein and oil concentration, and seed size in soybean. Crop Sci, 2005, 45: 2015–2022
[8] Zheng Y-Z(郑永战), Gai J-Y(盖钧镒), Lu W-G(卢为国), Li W-D(李卫东), Zhong R-B(周瑞宝), Tian S-J(田少君). QTL mapping for fat and fatty acid composition contents in soybean. Acta Agron Sin (作物学报), 2006, (12): 1823–1830 (in Chinese with English abstract)
[9] Lu W-G(卢为国), Gai J-Y(盖钧镒), Zheng Y-Z(郑永战), Li W-D(李卫东). Construction of a genetic linkage map of soybean and mapping QTLs resistant to soybean cyst nematode (Heterodera glycines Ichinohe). Acta Agron Sin (作物学报), 2006, 32(9): 1272–1279 (in Chinese with English abstract)
[10] Shan D-P(单大鹏), Qi Z-M(齐照明), Qiu H-M(邱红梅), Hu G-H(胡国华), Chen Q-S(陈庆山). Epistatic effects of QTLs and QE interaction effects on oil content in soybean. Acta Agron Sin (作物学报), 2008, 34(6): 952–957 (in Chinese with English abstract)
[11] Chen Q-S(陈庆山), Zhang Z-C(张忠臣), Liu C-Y(刘春燕). Construction and analysis of soybean genetic map using recombinant inbred line of Charleston×Dongnong 594. Sci Agric Sin (中国农业科学), 2005, 38(7): 1312–1316 (in Chinese with English abstract)
[12] Wang D-L(王道龙), Zhu J(朱军), Li Z-K(黎志康), Paterson A H. QTLMaper1.6.(2004-12)
[2005-2]. http://ibi.zju.edu.cn/ software/qtlmapper/index.htm
[13] Wang D-L(王道龙), Zhu J(朱军), Li Z-K(黎志康),Paterson A H. Mapping QTLs with epistatic effects and QTL-environment interactions by mixed linear model approaches. Theor Appl Genet, 1999, 99: 1255–1264
[14] McCouch S R, Chen X, Panaud O. Microsatellite markers development mapping and applications in rice genetics and breeding. Plant Mol. Bio, 1997, 35: 89–99
[15] Kang M(康明). Analysis on genetic and molecular marker of oleic acid and linolenic acid in soybean. MS Dissertation of Northeast Agricultural University. 2008 (in Chinese with English abstract)
[16] Yang L(杨柳), Zhang B-B(张彬彬), Han Y-P(韩英鹏), Li W-B(李文滨). QTL analysis of linolenic acid content in soybean. Soybean Sci (大豆科学), 2006, 27(3): 270–273 (in Chinese with English abstract)
[17] Wang X-Y(王晓燕), Zhang C-Y(张彩英), Jia X-Y(贾晓艳). Analysis of fatty acids composition and content in soybean varieties in Hebei province. J Agric Univ Hebei (河北农业大学学报), 2007, 30(2): 15–18 (in Chinese with English abstract) Zhang Y-J(张颖君), Gao H-M(高慧敏), Jiang C-Z(蒋春志). Fast analysis on fatty acids of soybean seed by gas chromatograph. Soybean Sci (大豆科学), 2008, 27(5): 859–862 (in Chinese with English abstract)
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[9] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[10] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[11] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[12] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[13] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[14] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[15] 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!