欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (02): 264-274.doi: 10.3724/SP.J.1006.2012.00264

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

不同生态环境下稻米淀粉RVA谱特征值的QTL定位分析

杨亚春,倪大虎,宋丰顺,李莉,陆徐忠,李泽福,杨剑波*   

  1. 安徽省农业科学院水稻研究所, 安徽合肥230031
  • 收稿日期:2011-05-25 修回日期:2011-09-12 出版日期:2012-02-12 网络出版日期:2011-11-07
  • 通讯作者: 杨剑波, E-mail: yjianbo@263.net, Tel: 0551-2160212
  • 基金资助:

    本研究由国家转基因生物新品种培育重大专项(2009ZX08001-13B),国家自然科学基金项目(31071401)和国际合作项目(2008DFA31840)资助。

Identification of QTL for Rice Starch RVA Profile Properties under Different Ecological Sites

YANG Ya-Chun, NI Da-Hu, SONG Feng-Shun, LI Li, LU Xu-Zhong, LI Ze-Fu,YANG Jian-Bo*   

  1. Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
  • Received:2011-05-25 Revised:2011-09-12 Published:2012-02-12 Published online:2011-11-07
  • Contact: 杨剑波, E-mail: yjianbo@263.net, Tel: 0551-2160212

摘要: 利用2个直链淀粉含量相似的水稻品种93-11和日本晴为亲本, 采取单粒传法创建由190个家系组成的重组自交系群体, 并构建了包含202个SSR、CAPs和STS标记的遗传连锁图谱。采用复合区间作图法, 在3个不同生态环境下(陵水、合肥和怀远)对RVA谱特征值(峰值黏度、热浆黏度、崩解值、冷胶黏度、消减值、峰值时间、起浆温度和回复值)的8个特征性状进行了定位分析。共定位到57个QTL, 单个性状QTL数目在1~14个之间, 说明RVA谱特征值是多基因控制的数量性状。13个QTL在3个不同环境中被2次或3次检测到, 其中qCPV-3qCPV-10bqSBV-10bqCSV-3bqCSV-10b(贡献率分别为, 26.9%、29.5%、29.7%、25.2%、28.3%)被3次检测到, 稳定性较高。16个QTL具有一因多效性, 单个QTL位点控制的性状一般在2~6个之间, 第10染色体RM25032~RM1375区段控制峰值黏度、热浆黏度、冷胶黏度、消减值、峰值时间和回复值等6个性状。

关键词: 水稻, RVA谱特征值, 数量性状, QTL稳定性, QTL多效性

Abstract: Two rice varieties with similar apparent amylose content, Nipponbare (japonica) and 93-11 (indica), were used as parents to establish a recombinant inbred lines population consisting of 190 lines by single seed descent method. The genetic linkage map was constructed with 202 SSR, CAPs and STS markers. Quantitative trait loci (QTLs) were identified for eight rice starch RVA profile properties including peak paste viscosity(PKV), hot paste viscosity(HPV), cool paste viscosity(CPV), breakdown viscosity(BDV), setback viscosity(SBV), consistence viscosity(CSV), peaktime (PeT), pasting temperature (PaT) by composite interval mapping method in three different ecological sites (Lingshui, Hefei, and Huaiyuan). A total of 57 QTLs were identified, with 1 to 14 for each trait, indicating that rice starch RVA profile properties were controlled by multiple genes. Thirteen stable QTLs were detected at two or three sites, among which qCPV-3, qCPV-10b, qSBV-10b, qCSV-3b,and qCSV-10b (explaining, 26.9%, 29.5%, 29.7%, 25.2%, and 28.3% of variance) were detected in all the three sites. Sixteen QTLs were found to have pleiotropy with a single QTL controlling two to six traits (RVA profile properties), the interval RM25032–RM1375 on chromosome 10 controlling six traits (PKV, HPV, CPV, SBV, PaT and CSV).

Key words: Rice, RVA profile properties, Quantitative trait locus, QTL stability, QTL pleiotropy

[1]Shu Q-Y(舒庆尧), Wu D-X(吴殿星), Xia Y-W(夏英武), Gao M-W(高明尉), Anna M C. Relationship between RVA profile character and eating quality in Oryza sativa L. Sci Agric Sin (中国农业科学), 1998, 31(3): 25–29 (in Chinese with English abstract)

[2]Wu D-X(吴殿星), Shu Q-Y(舒庆尧), Xia Y-W(夏英武). Rapid identification of starch viscosity property of early indica rice varieties with different apparent amylose content by RVA profile. Chin J Rice Sci (中国水稻科学), 2001, 15(1): 57–59 (in Chinese with English abstract)

[3]Jia L(贾良), Ding X-Y(丁雪云), Wang P-R(王平荣), Deng X-J(邓晓建). Rice RVA profile characteristics and correlation with the physical/chemical quality. Acta Agron Sin (作物学报), 2008, 34(5): 790–794 (in Chinese with English abstract)

[4]Cai Y-X(蔡一霞), Wang W(王维), Zhu Z-W(朱智伟), Zhang Z-J (张祖建), Yang J-C(杨建昌), Zhu Q-S(朱庆森). The physiochemical characteristics of amylopectin and their relationships to pasting properties of rice flour in different varieties. Sci Agric Sin (中国农业科学), 2006, 39(6): 1122–1129 (in Chinese with English abstract)

[5]Bao J S, Harold C, He P, Zhu L H. Analysis of quantitative trait loci for starch properties of rice based on an RIL population. Acta Bot Sin, 2003, 45(8): 986–994

[6]Bao J S, Wu Y R, Hu B, Wu P, Cui H R, Shu Q Y. QTL for rice grain quality based on a DH population derived from parents with similar apparent amylose content. Euphytica, 2002, 128: 317–324

[7]Bao J S, Xia Y W. Genetic control of paste viscosity characteristics in indica rice. Theor Appl Genet, 1999, 98: 1120–1124

[8]Bao J S, Zheng X W, Xia Y W, He P, Shu Q Y, Lu X, Chen Y, Zhu L H. QTL mapping for the paste viscosity characteristics in rice (Oryza sativa L.). Theor Appl Genet, 2000, 100: 280–284

[9]Zhang Q-F(张巧凤), Zhang Y-D(张亚东), Zhu Z(朱镇), Zhao L(赵凌), Zhao Q-Y(赵庆勇), Xu L(许凌), Wang C-L(王才林). Analysis of inheritance and QTLs of rice starch viscosity (RVA Profile) characteristics. Chin J Rice Sci (中国水稻科学), 2007, 21(6): 592–598 (in Chinese with English abstract)

[10]Gravois K A. Genetic and genotype ×environment effects for rough rice and head rice yield. Crop Sci, 1991, 31: 907–911

[11]Gravois K A, Webb B D. Inheritance of long grain rice amylograph viscosity characteristics. Euphytica, 1997, 97: 25–29

[12]Rogers S O, Bendch A J. Extraction of DNA from plant tissues. Plant Mol Biol Man, 1988, 6: 1–10

[13]McCouch S R, Cho Y G, Yano M. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11–13

[14]Lee M H, Hettiarachchy N S, McNew R W. Physicochemical properties of calcium fortified rice. Cereal Chem, 1995, 72: 352–355

[15]Jane J, Chen Y Y, Lee L F. Effects of amylopectin branch length and amylose content on the gelatinization and pasting properties of starch. Cereal Chem, 1999, 76(5): 629–637

[16]Han X Z, Hamaber B R. Amylopectin fine structure and rice starch paste breakdown. J Cereal Sci, 2001, 34: 279–284

[17]Jiang H W, Dian W M, Wu P. Effect of high temperature on fine structure of amylopectin in rice endosperm by reducing the activity of the starch branching enzyme. Phytochemistry, 2003, 63: 53–59

[18]Cai Y-X(蔡一霞), Wang W(王维), Zhang Z-J(张祖建), Xia G-H(夏广宏), Zhang H-X(张洪熙), Yang J-C(杨建昌), Zhu Q-S(朱庆森). Comparative studies on cooking quality and RVA Profile of several rice varieties under water-and-Dry cultivation. Acta Agron Sin (作物学报), 2003, 29(4): 508–513 (in Chinese with English abstract)

[19]Wei M-G(魏蒙关). QTL Analysis for Stover Yield and Quality Traits and Their Genetic Relationship Using Two Connected F2:3 Populations in Maize. PhD Dissertation of Henan Agriculture University, 2009 (in Chinese with English abstract)

[20]Jansen R C, Van Ooijen J W, Stam P. Genotype-by-environment interaction in genetic mapping of multiple quantitative trait loci. Theor Appl Genet, 1995, 91: 33–37

[21]Wan X Y, Wan J M, Weng J F, Jiang L, Bi J C, Wang C M, Zhai H Q. Stability of QTLs for rice grain dimension and endosperm chalkiness characteristics across eight environments. Theor Appl Genet, 2005, 110(7): 1334–1346

[22]Ryoo N, Yu C, Park C S, Baik M Y, Park I M, Cho M H, Bhoo S H, An G H, Hahn T R, Seong J. Knockout of a starch synthase gene OsSSIIIa/Flo5 causes white-core floury endosperm in rice (Oryza sativa L.). Plant Cell Rep, 2007,26(7):1083–1095

[23]Wu H-K(吴洪恺), Liang G-H(梁国华), Gu Y-J(顾燕娟), Shan L-L(单丽丽), Wang F(王芳),Han Y-P(韩月膨), Gu M-H(顾铭洪). The effect of the Starch-Synthesizing genes on RVA Profile characteristics in rice (Oryza sativa L.). Acta Agron Sin (作物学报), 2006, 32(11): 1597–1603(in Chinese with English abstract)

[24]Jiang H W, Dian W M, Liu F Y, Wu P. Molecular cloning and expression analysis of three genes encoding Starch Synthase II in rice. Planta, 2004, 218: 1062–1070

[25]Zhang Y-S(张永生), Jang L(江玲), Liu X(刘喜), Liu S-J(刘世家), Chen L-M(陈亮明), Zhai H-C(翟虎渠), Wan J-M(万建民). Analysis of QTLs for starch RVA Profile Properties in the superior rice cultivar Koshihikari. Chin J Rice Sci (中国水稻科学), 2010, 24(2): 137–144 (in Chinese with English abstract)

[26]Xiao J, Li J, Yuan L, Tanksley S D. Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross. Theor Appl Genet, 1996, 92: 230–244

[27]Hittalmani S, Huang N, Courtois B, Venuprasad R, Shashidhar H, Zhuang J Y, Zheng K L, Lui G F, Wang G C, Sidhu J S. Identification of QTL for growth and grain yield-related traits in rice acrossnine locations of Asia. Theor Appl Genet, 2003, 107: 679–690

[28]Bao J-S(包劲松), He P(何平), Xia Y-W(夏英武), Chen Y(陈英), Zhu L-H(朱立煌). RVA Profile of rice starch was controlled by Wx gene. Chin Sci Bull, 1999, 44(18): 1973–1976 (in Chinese)

[29]Shen S-Q(沈圣泉), Zhuang J-Y(庄杰云), Shu Q-Y(舒庆尧), Bao J-S(包劲松), Wu D-X(吴殿星), Xia Y-W(夏英武). Analysis of QTLs with main, epistasis and G×E interaction effects of Starch Paste Viscosity in rice. Acta Agron Sin (作物学报), 2005, 31(10): 1289–1294 (in Chinese with English abstract)

[30]Weng J-F(翁建峰), Wan X-Y(万向元), Wu X-J(吴秀菊), Wang H-L(王海莲), Zhai H-C(翟虎渠), Wan J-M(万建民). Stable expression of QTL for AC and PC of milled rice (Oryza sativa L.) using a CSSL population. Acta Agron Sin (作物学报), 2006, 32(1): 14–19 (in Chinese with English abstract)

[31]Wu C-M(吴长明), Sun C-Q(孙传清), Fu X-L(付秀林), Wang X-K(王象坤), Li Z-C(李自超), Zhang Q(张强). Relationship between quality yield characters or indica-japonica differentiation in rice (Oryza sativa L.). Acta Agron Sin (作物学报), 2003, 29(6): 822–828 (in Chinese with English abstract)
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 王靖天, 张亚雯, 杜应雯, 任文龙, 李宏福, 孙文献, 葛超, 章元明. 数量性状主基因+多基因混合遗传分析R软件包SEA v2.0[J]. 作物学报, 2022, 48(6): 1416-1424.
[5] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[6] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[7] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[8] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[9] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[10] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[11] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[12] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!