作物学报 ›› 2012, Vol. 38 ›› Issue (02): 256-263.doi: 10.3724/SP.J.1006.2012.00256
仕相林1,孙亚男1,王家麟1,刘春燕1,2,陈庆山1,*,胡国华2,3,*
SHI Xiang-Lin1,SUN Ya-Nan1,WANG Jia-Lin1,LIU Chun-Yan1,2,CHEN Qing-Shan1,*,HU Guo-Hua2,3,*
摘要: 利用Charleston×东农594重组自交系构建SSR遗传图谱,采用WinQTLCartographer Ver. 2.5软件的CIM和MIM分析方法对2006—2010年(F2:14~F2:18)连续5年的大豆叶长、叶宽以及叶柄长数据进行QTL定位,检测到8个与叶长有关的QTL,位于染色体Gm01、02、05、11和18上;9个与叶宽有关的QTL,位于染色体Gm01、03、05、06、11、12和16上;8个与有关叶柄长的QTL,位于染色体Gm01、03、05、06、11、17和18上。2年以上均检测到的叶长QTL为qLL5a、qLL5b、qLL1a和qLL18;叶宽QTL为qLW5a、qLW11a、qLW11b和qLW12;叶柄长QTL为qLSL11b。另外,利用BioMercator2.1的映射功能将国内外常用的大豆图谱上的叶长、叶宽QTL通过公共标记映射整合到大豆公共遗传连锁图谱Soymap2上,将搜集到的35个叶长QTL、37个叶宽QTL和本研究得到的QTL整合分析,最终得到5个大豆叶长的“通用”QTL,位于Gm09、18和19,其置信区间最小可达5.66 cM;4个大豆叶宽的“通用”QTL,位于Gm07、Gm18和Gm19,其置信区间最小可达5.67 cM,为今后对大豆叶片性状QTL精细定位, 提供了有利科学信息。
[1]Kokubun M. Soybean cultivar difference in leaf photo-synthetic rate and its relation to seed yield. Jpn J Crop Sci, 1988, 57(4): 743–748 [2]Hu M-X(胡明祥), Li K-M(李开明), Tian P-Z(田佩占), Yu D-Y(于德洋). Breeding for high yield and plant type of soybean. J Jilin Agric Sci (吉林农业科学), 1980, (3): 1–14 (in Chinese)[3]Fu Y-H(傅艳华), Sun S-X(孙淑贤), Peng B(彭宝). Effect of soybean yield and nitrogen uptake by cutting leaves. Crops (作物杂志), 1997, (2): 27–28 (in Chinese)[4]Thompson J A, R L Nelson, Schweitzer L E. Relationships among speci?c leaf weight, photosynthetic rate, and seed yield in soybean. Crop Sci, 1995, 35: 1575–1581[5]Ellis R H, Asumada H, Qi A, Summer?eld R J. Effects of photoperiod and maturity genes on plant growth, partitioning radiation use efficiency, and yield in soyabean [Glycine max (L.) Merrill] ‘Clark’. Ann Bot, 2000, 85: 335–343[6]Mansur L M, K G Lark, H Kross, Oliveira A. Interval mapping of quantitative trait loci for reproductive, morphological, and seed traits of soybean (Glycine max L.). Theor Appl Genet, 1993, 86: 907–913[7]Mansur L M, Orf J H, Chase K, Jarvik T, Cregan P B, Lark K G. Genetic mapping of agronomic traits using recombinant inbred lines of soybean. Crop Sci, 1996, 36: 1327–1336[8]Keim P, Diers B W, Olson T C, Shoemaker R C. RFLP mapping in soybean: association between marker loci and variation in quantitative traits. Genetics, 1990, 126: 735–742[9]Kim H K, Kang S T, Suh D Y. Analysis of quantitative trait loci associated with leaflet types in two recombinant inbred lines of soybean. Plant Breed, 2005, 124: 582–589[10]Song Q J, Marek L F, Shoemaker R C, Lark K G, Concibido V C, Delannay X, Specht J E, Cregan P B. A new integrated genetic linkage map of the soybean. Theor Appl Genet, 2004, 109: 122−128[11]Glass G V. Primary, secondary, and meta-analysis of research. Educatl Res, 1976, 5: 3−8[12]Goffinet B, Gerber S. Quantitative trait loci: a meta-analysis. Genetics, 2000, 155: 463−473[13]Etzel C J, Guerra R. Meta-analysis of genetic-linkage analysis of quantitative-trait loci. Am J Human Genet, 2002, 71: 56−65[14]Chardon F, Virlon B, Moreau L, Falque M, Joets J, Decousset L, Murigneux A, Charcosset A. Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome. Genetics, 2004, 168: 2169−2185[15]Truntzler M, Barriere Y, Sawkins M C, Lespinasse D, Betran J, Charcosset A, Moreau L. Meta-analysis of QTL involved in silage quality of maize and comparison with the position of candidate genes. Theor Appl Genet, 2010, 121: 1465−1482[16]Guo B, Sleper D A, Lu P, Shannon J G, Nguyen H T, Arelli P R. QTLs associated with resistance to soybean cyst nematode in soybean: meta-analysis of QTL location. Crop Sci, 2006, 46: 595−602[17]Sun Y-N(孙亚男), Qi Z-M(齐照明), Shan D-P(单大鹏), Liu C-Y(刘春燕), Hu G-H(胡国华), Chen Q-S(陈庆山). Mapping and meta-analysis of height QTLs in soybean. Mol Plant Breed (分子植物育种), 2010, 4(8): 687−693 (in Chinese with English abstract)[18]Wang X-Z(王贤智), Zhang X-J(张晓娟), Zhou R(周蓉), Sha A-H(沙爱华), Wu X-J(吴学军), Cai S-P(蔡淑平), Qiu D-Z(邱德珍), Zhou X-A(周新安). QTL analysis of seed and pod traits in soybean RIL population. Acta Agron Sin (作物学报), 2007, 33(3): 441−448 (in Chinese with English abstract)[19]Chen Q-S(陈庆山), Zhang Z-C(张忠臣), Liu C-Y(刘春燕), Wang W-Q(王伟权), Li W-B(李文滨). Construction and analysis of soybean genetic map using recombinant inbred line of Charleston×Dongnong 594. Sci Agric Sin (中国农业科学), 2005, 38(7): 1312−1316 (in Chinese with English abstract)[20]Darvasi A, Weinreb A, Minke V, Weller J I, Soller M. Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map. Genetics, 1993, 134: 943−951[21]Darvasi A, Soller M. A simple method to calculate resolving power and confidence interval of QTL map location. Behavior Genet, 1997, 27: 125−132[22]Orf J H, Chase K, Jarvik T, Mansur L M, Cregan P B, Adler F R, Lark K G. Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. Crop Sci, 1999, 39: 1642−1651[23]Wang Z(王珍). Construction of Soybean SSR Based Map and QTL Analysis Important Agronomic Traits. MS Dissertation of Guangxi University, 2004. pp 66−72 (in Chinese with English abstract)[24]Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136: 1457−1468[25]Kao C H, Zeng Z B, Robert D. T. Multiple interval mapping for quantitative trait loci. Genetics, 1999, 152: 1203−1216[26]Jansen R C, Van Ooijien J M, Stam P, Lister C, Dean C. Genotype-by-environment interaction in genetic mapping of multiple quantitative trait loci. Theor Appl Genet, 1995, 91: 33−37 |
[1] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[2] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[3] | 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557. |
[4] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[5] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[6] | 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209. |
[7] | 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800. |
[8] | 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951. |
[9] | 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571. |
[10] | 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596. |
[11] | 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643. |
[12] | 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366. |
[13] | 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395. |
[14] | 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537. |
[15] | 禹桃兵, 石琪晗, 年海, 连腾祥. 涝害对不同大豆品种根际微生物群落结构特征的影响[J]. 作物学报, 2021, 47(9): 1690-1702. |
|