欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (02): 256-263.doi: 10.3724/SP.J.1006.2012.00256

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆叶片性状QTL的定位及Meta分析

仕相林1,孙亚男1,王家麟1,刘春燕1,2,陈庆山1,*,胡国华2,3,*   

  1. 1 东北农业大学研究生学院, 黑龙江哈尔滨 150030; 2黑龙江省农垦科研育种中心, 黑龙江哈尔滨 150090; 3国家大豆工程技术研究中心, 黑龙江哈尔滨 150050
  • 收稿日期:2011-04-25 修回日期:2011-10-12 出版日期:2012-02-12 网络出版日期:2011-12-01
  • 通讯作者: 胡国华, E-mail: Hugh757@vip.163.com, 0451-55199475; 陈庆山, E-mail: qshchen@126.com, 0451-55191945
  • 基金资助:

    本研究由国家现代农业产业体系(CARS-04-02A),国家公益性行业(农业)科研专项(200903003),黑龙江省重大科技攻关项目(GA09B103)和黑龙江省高校青年学术骨干支持计划项目(1152G007)资助。

Mapping and Meta-Analysis of QTLs for Leaf Traits in Soybean

SHI Xiang-Lin1,SUN Ya-Nan1,WANG Jia-Lin1,LIU Chun-Yan1,2,CHEN Qing-Shan1,*,HU Guo-Hua2,3,*   

  1. 1 Graduate College of Northeast Agricultural University, Harbin 150030, China; 2 The Crop Research and Breeding Center of Land-Reclamation, Harbin 150090, China; 3 The National Research Center of Soybean Engineering and Technology, Harbin 150050, China
  • Received:2011-04-25 Revised:2011-10-12 Published:2012-02-12 Published online:2011-12-01
  • Contact: 胡国华, E-mail: Hugh757@vip.163.com, 0451-55199475; 陈庆山, E-mail: qshchen@126.com, 0451-55191945

摘要: 利用Charleston×东农594重组自交系构建SSR遗传图谱,采用WinQTLCartographer Ver. 2.5软件的CIM和MIM分析方法对2006—2010年(F2:14~F2:18)连续5年的大豆叶长、叶宽以及叶柄长数据进行QTL定位,检测到8个与叶长有关的QTL,位于染色体Gm01、02、05、11和18上;9个与叶宽有关的QTL,位于染色体Gm01、03、05、06、11、12和16上;8个与有关叶柄长的QTL,位于染色体Gm01、03、05、06、11、17和18上。2年以上均检测到的叶长QTL为qLL5aqLL5bqLL1aqLL18;叶宽QTL为qLW5aqLW11aqLW11bqLW12;叶柄长QTL为qLSL11b。另外,利用BioMercator2.1的映射功能将国内外常用的大豆图谱上的叶长、叶宽QTL通过公共标记映射整合到大豆公共遗传连锁图谱Soymap2上,将搜集到的35个叶长QTL、37个叶宽QTL和本研究得到的QTL整合分析,最终得到5个大豆叶长的“通用”QTL,位于Gm09、18和19,其置信区间最小可达5.66 cM;4个大豆叶宽的“通用”QTL,位于Gm07、Gm18和Gm19,其置信区间最小可达5.67 cM,为今后对大豆叶片性状QTL精细定位, 提供了有利科学信息。

关键词: 大豆, 叶片性状, QTL定位, 整合分析

Abstract: Leaf length, width and leafstalk length affect the photosynthetic capability of plant and so increasing photosynthetic rate per unit leaf area may improve seed yield in soybean. In this study, we analyzed QTLs data of soybean leaf length, width and leafstalk length from 2006 to 2010with a F2:14–F2:18 of recombination inbred lines (RIL) population derived from a cross between Charleston and Dongnong 594 by mixed linear model approach. Eight QTLs for leaf length(LL) were mapped on the chromosomes Gm01, Gm02, Gm05, Gm11, Gm18 by software WinQTLCartographer Ver. 2.5, nine QTLs were identi?ed for leaf width (LW) on the chromosomes Gm01, Gm03, Gm05, Gm06, Gm11, Gm12, Gm16; eight QTLs were identi?ed for leafstalk length (LSL) on Gm01, Gm03, Gm05, Gm06, Gm11, Gm17, Gm18. qLL5a, qLL5b, qLL1a, and qLL18 for LL, qLW5a, qLW11a, qLW11b, and qLW12 for LW, and qLSL11b for LSL were identi?ed in more than two years. Furthermore, not only 72 QTLs of leaf traits that have been mapped in many different populations and environments were collected but also QTL mapped by WinQTLCartographer Ver. 2.5 were projected and integrated in the reference map with the software BioMercator2.1. In total, the consensus QTLs of five for leaf length and four for leaf width were obtained in soybean, respectively. The minimum confidence interval of leaf length was shrunk to 5.66 cM. These results would provide a basis for fine mapping QTL and cloning genes in soybean.

Key words: Soybean [Glycine max (L.) Merr.], Leaf traits, QTL mapping, Meta-analysis

[1]Kokubun M. Soybean cultivar difference in leaf photo-synthetic rate and its relation to seed yield. Jpn J Crop Sci, 1988, 57(4): 743–748

[2]Hu M-X(胡明祥), Li K-M(李开明), Tian P-Z(田佩占), Yu D-Y(于德洋). Breeding for high yield and plant type of soybean. J Jilin Agric Sci (吉林农业科学), 1980, (3): 1–14 (in Chinese)

[3]Fu Y-H(傅艳华), Sun S-X(孙淑贤), Peng B(彭宝). Effect of soybean yield and nitrogen uptake by cutting leaves. Crops (作物杂志), 1997, (2): 27–28 (in Chinese)

[4]Thompson J A, R L Nelson, Schweitzer L E. Relationships among speci?c leaf weight, photosynthetic rate, and seed yield in soybean. Crop Sci, 1995, 35: 1575–1581

[5]Ellis R H, Asumada H, Qi A, Summer?eld R J. Effects of photoperiod and maturity genes on plant growth, partitioning radiation use efficiency, and yield in soyabean [Glycine max (L.) Merrill] ‘Clark’. Ann Bot, 2000, 85: 335–343

[6]Mansur L M, K G Lark, H Kross, Oliveira A. Interval mapping of quantitative trait loci for reproductive, morphological, and seed traits of soybean (Glycine max L.). Theor Appl Genet, 1993, 86: 907–913

[7]Mansur L M, Orf J H, Chase K, Jarvik T, Cregan P B, Lark K G. Genetic mapping of agronomic traits using recombinant inbred lines of soybean. Crop Sci, 1996, 36: 1327–1336

[8]Keim P, Diers B W, Olson T C, Shoemaker R C. RFLP mapping in soybean: association between marker loci and variation in quantitative traits. Genetics, 1990, 126: 735–742

[9]Kim H K, Kang S T, Suh D Y. Analysis of quantitative trait loci associated with leaflet types in two recombinant inbred lines of soybean. Plant Breed, 2005, 124: 582–589

[10]Song Q J, Marek L F, Shoemaker R C, Lark K G, Concibido V C, Delannay X, Specht J E, Cregan P B. A new integrated genetic linkage map of the soybean. Theor Appl Genet, 2004, 109: 122−128

[11]Glass G V. Primary, secondary, and meta-analysis of research. Educatl Res, 1976, 5: 3−8

[12]Goffinet B, Gerber S. Quantitative trait loci: a meta-analysis. Genetics, 2000, 155: 463−473

[13]Etzel C J, Guerra R. Meta-analysis of genetic-linkage analysis of quantitative-trait loci. Am J Human Genet, 2002, 71: 56−65

[14]Chardon F, Virlon B, Moreau L, Falque M, Joets J, Decousset L, Murigneux A, Charcosset A. Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome. Genetics, 2004, 168: 2169−2185

[15]Truntzler M, Barriere Y, Sawkins M C, Lespinasse D, Betran J, Charcosset A, Moreau L. Meta-analysis of QTL involved in silage quality of maize and comparison with the position of candidate genes. Theor Appl Genet, 2010, 121: 1465−1482

[16]Guo B, Sleper D A, Lu P, Shannon J G, Nguyen H T, Arelli P R. QTLs associated with resistance to soybean cyst nematode in soybean: meta-analysis of QTL location. Crop Sci, 2006, 46: 595−602

[17]Sun Y-N(孙亚男), Qi Z-M(齐照明), Shan D-P(单大鹏), Liu C-Y(刘春燕), Hu G-H(胡国华), Chen Q-S(陈庆山). Mapping and meta-analysis of height QTLs in soybean. Mol Plant Breed (分子植物育种), 2010, 4(8): 687−693 (in Chinese with English abstract)

[18]Wang X-Z(王贤智), Zhang X-J(张晓娟), Zhou R(周蓉), Sha A-H(沙爱华), Wu X-J(吴学军), Cai S-P(蔡淑平), Qiu D-Z(邱德珍), Zhou X-A(周新安). QTL analysis of seed and pod traits in soybean RIL population. Acta Agron Sin (作物学报), 2007, 33(3): 441−448 (in Chinese with English abstract)

[19]Chen Q-S(陈庆山), Zhang Z-C(张忠臣), Liu C-Y(刘春燕), Wang W-Q(王伟权), Li W-B(李文滨). Construction and analysis of soybean genetic map using recombinant inbred line of Charleston×Dongnong 594. Sci Agric Sin (中国农业科学), 2005, 38(7): 1312−1316 (in Chinese with English abstract)

[20]Darvasi A, Weinreb A, Minke V, Weller J I, Soller M. Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map. Genetics, 1993, 134: 943−951

[21]Darvasi A, Soller M. A simple method to calculate resolving power and confidence interval of QTL map location. Behavior Genet, 1997, 27: 125−132

[22]Orf J H, Chase K, Jarvik T, Mansur L M, Cregan P B, Adler F R, Lark K G. Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. Crop Sci, 1999, 39: 1642−1651

[23]Wang Z(王珍). Construction of Soybean SSR Based Map and QTL Analysis Important Agronomic Traits. MS Dissertation of Guangxi University, 2004. pp 66−72 (in Chinese with English abstract)

[24]Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136: 1457−1468

[25]Kao C H, Zeng Z B, Robert D. T. Multiple interval mapping for quantitative trait loci. Genetics, 1999, 152: 1203−1216

[26]Jansen R C, Van Ooijien J M, Stam P, Lister C, Dean C. Genotype-by-environment interaction in genetic mapping of multiple quantitative trait loci. Theor Appl Genet, 1995, 91: 33−37
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[9] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[10] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[11] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[12] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[13] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[14] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[15] 禹桃兵, 石琪晗, 年海, 连腾祥. 涝害对不同大豆品种根际微生物群落结构特征的影响[J]. 作物学报, 2021, 47(9): 1690-1702.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!