作物学报 ›› 2013, Vol. 39 ›› Issue (06): 1021-1029.doi: 10.3724/SP.J.1006.2013.01021
范冬梅1,马占洲1,刘春燕2,杨振1,曾庆力1,辛大伟1,蒋洪蔚2,邱鹏程3,陈庆山1,4,*,胡国华2,4,*
FAN Dong-Mei1,MA Zhan-Zhou1,LIU Chun-Yan2,YANG Zhen1,ZENG Qing-Li1,XIN Da-Wei1,JIANG Hong-Wei2,QIU Peng-Cheng3,CHEN Qing-Shan1,4,*,HU Guo-Hua2,4,*
摘要:
定位大豆单株粒重QTL、分析QTL间的上位效应及QTL与环境互作效应, 有利于大豆单株粒重遗传机理的深入研究。利用147个F2:14~F2:18 RIL群体, 5年2点多环境下以CIM和MIM方法同时定位大豆单株粒重QTL, 检测到17个控制单株粒重的QTL, 分别位于D1a、B1、B2、C2、F、G和A1连锁群上, 贡献率为6.0%~47.9%;用2种方法同时检测到3个QTL, 即qSWPP-DIa-3、qSWPP-F-1和qSWPP-D1a-5, 贡献率为6.3%~38.3%;2年以上同时检测到4个QTL, 即qSWPP-DIa-1、qSWPP-DIa-2、qSWPP-B1-1和qSWPP-G-1, 贡献率为8.1%~47.9%;利用QTLMapper分析QE互作效应和QTL间上位效应, 7种环境下的数据联合分析得到1个QE互作QTL和4对上位效应QTL, 贡献率和加性效应都较小。在分子标记辅助育种中应该同时考虑主效QTL及各微效QTL之间的互作。
[1]Shan C-Y(单彩云), Wei Y-G(魏玉光), Zhang Y-J(张延军), Li X-H(李晓辉), Nie L(聂录), Dong X-L(董秀兰), Liu C(刘成). Grey correlation degree analysis on main traits of soybean varieties in HeiLongjiang Province. Soybean Sci (大豆科学), 2009, 28(5): 945–948 (in Chinese with English abstract)[2]Hu Z-B(胡振帮), Zhu R-S(朱荣胜), Gao Y-L(高运来), Liu C-Y(刘春燕), Jiang H-W(蒋洪蔚), Han D-W(韩冬伟), Huo G-H(胡国华), Chen Q-S(陈庆山). Grey correlation degree analysis between seed weight per plant and other major agronomic traits with soybean varieties in Heilongjiang Province. J Northeast Agric Univ (东北农业大学学报), 42(11): 57–62 (in Chinese with English abstract)[3]Xu Z-R(徐泽茹), Cao J-F(曹金锋), Wang R-F(王茹芳), Hu T-H(胡铁欢), Lu S-H(卢思慧), Gao G-J(高广居), Wu F-X(吴凤训). Grey relational grade analysis on yield and main agronomic characters of soybean. J Hebei Agric Sci (河北农业科学), 2010, 14(2): 1–2 (in Chinese with English abstract)[4]Keim P, Diers B W, Olson T C, Shoemaker R C. RFLP mapping in soybean: association between marker loci and variation in quantitative traits. Genetics, 1990, 126: 735–742[5]Orf J H, Chase K, Jarvik T, Mansur L M, Cregan P B, Adler F R, Lark K G. Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. Crop Sci, 1999, 39: 1642–1651[6]Wang D, Graef G L, Procopiuk A M, Diers B W. Identification of putative QTL that underlie yield in interspecific soybean backcross populations. Theor Appl Genet, 2004, 108: 458–467[7]Kabelka E A, Diers B W, Fehr W R, LeRoy A R, Baianu I C, You T, Neece D J, Nelson R L. Putative alleles for increased yield from soybean plant introductions. Crop Sci, 2004, 44: 784–791[8]Li D D, Pfeiffer T W, Cornelius P L. Soybean QTL for yield and yield components associated with Glycine soja alleles. Crop Sci, 2008, 48: 571–581 [9]Huang Z-W(黄中文), Zhao T-J(赵团结), Yu D-Y(喻德跃), Chen S-Y(陈受宜), Gai J-Y(盖钧镒). Detection of QTLs of yield re-lated traits in soybean. Sci Agric Sin (中国农业科学), 2009, 42(12): 4155–4165 (in Chinese with English abstract)[10]Sun Y N, Pan J B, Shi X L, Du X Y, Wu Q, Qi Z M, Jiang H W, Xin D W, Liu C Y, Hu G H, Chen Q S. Multi-environment mapping and meta-analysis of 100-seed weight in soybean. Mol Biol Rep, 2012, DOI 10.1007/s11033-012-1808-4[11]Zhou R(周蓉), Wang X-Z (王贤智), Chen H-F(陈海峰), , Zhang X-J(张晓娟), Shan Z-H(单志慧), Wu X-J(吴学军), Cai S-P(蔡淑平), Qiu D-Z(邱德珍), Zhou X-A(周新安), Wu J-S(吴江生). QTL analysis of yield, yield components, and lodging in soybean. Acta Agron Sin (作物学报), 2009, 35(5): 821–830 (in Chinese with English abstract)[12]Qi Z-M(齐照明), Sun Y-N(孙亚男), Chen L-J(陈立君), Guo Q(郭强), Liu C-Y(刘春燕), Hu G-H(胡国华), Chen Q-S(陈庆山). Meta-analysis of 100-seed weight QTLs in soybean. Sci Agric Sin (中国农业科学), 2009, 42(11): 3795–3803 (in Chinese with English abstract)[13]Zhang W K, Wang Y J, Luo G Z, Zhang J S, He C Y, Wu X L, Gai J Y, Chen S Y. QTL mapping of ten agronomic traits on the soybean (Glycine max L. Merr.) genetic map and their association with EST markers. Theor Appl Genet, 2004, 108: 1131–1139[14]Li W X, Zheng D H, Van K, Lee S H, QTL Mapping for major agronomic traits across two years in soybean (Glycine max L. Merr.). J Crop Sci Biotech , 2008, 11: 171–90[15]Wang Z(王珍). Construction of Soybean SSR Based Map and QTL Analysis Important Agronomic Traits. MS Thesis of Guangxi University, 2004 (in Chinese with English abstract) [16]Zhu X-L(朱晓丽). Constructing of Genetic Linkage Map and QTL Mapping of Important Agronomic Traits in Two Soybean Populations. MS Thesis of Northeast Agricultural University, 2006 (in Chinese with English abstract)[17]Jing H-X(荆慧贤). QTL analysis of Quality and Yield related Traits in Soybean. MS Thesis of Hebei Normal Univerisity, 2008 (in Chinese with English abstract)[18]Wang X(汪霞), Xu Y(徐宇), Li G-J(李广军), Li H-N(李河南), Gen W-Q(艮文全), Zhag Y-M(章元明). Mapping quantitative trait loci for 100-seed weight in soybean (Glycine max L. Merr.). Acta Agron Sin (作物学报), 2010, 36(10): 1674–1682 (in Chinese with English abstract)[19]Yan Z-L(杨竹丽), Li G-Q(李贵全). The QTL analysis of important agronomic traits on a RIL population from a cross between Jinda 52 and Jinda 57. Acta Agric Boreali Sin (华北农学报), 2010, 25(2): 88–92 (in Chinese with English abstract)[20]Chen Q-S(陈庆山), Zhang Z-C(张忠臣), Liu C-Y(刘春燕), Xin D-W(辛大伟), Shan D-P(单大鹏), Qiu H-M(邱红梅), Shan C-Y(单彩云). QTL analysis of major agronomic traits in soybean. Sci Agric Sin (中国农业科学), 2007, 6(4): 399–405 (in Chinese with English abstract)[21]Jiang C-Z(蒋春志), Pei C-J(裴翠娟), Jing H-X(荆慧贤), Zhang M-C(张孟臣), Wang T(王涛), Di R(邸锐), Liu B-Q(刘兵强), Yan L(闫龙). QTL analysis of soybean Quality and Related character. Acta Agric Boreali Sin (华北农学报), 2011, 26(5): 127–130 (in Chinese with English abstract)[22]Mian M A R, Bailey M A, Tamulonis J P, Shipe E R, Carter T E Jr, Parrott W A, Ashley D A, Hussey R S, Boerma H R. Molecular markers associated with seed weight in two soybean populations. Theor Appl Genet, 1996, 93: 1011–1016[23]Campbell B T, Baenziger P S, Gill K S, Eskridge K M, Budak H, Erayman M, Dweikat I, Yen Y. Identification of QTLs and Environmental interactions associated with agronomic traits on chromosome 3A of wheat. Crop Sci, 2003, 43:1493–1505[24]Hu X(胡霞), Shi Y-M(石瑜敏), Jia Q(贾倩), Xu QQ(徐琴), Wang Y(王韵), Chen K(陈凯), Sun R(孙勇), Zhu L-H(朱苓华), Xu J-L(徐建龙), Li Z-K(黎志康). Analyses of QTLs for rice panicle and milling quality traits and their interaction with environment. Acta Agron Sin (作物学报). 2011, 37(7): 1175−1185 (in Chinese with English abstract)[25]Bateson W. Mendel's Principles of Heredity. Cambridge: Cambirdge University Press.1909[26]Eshed Y, Zamir D. Less-than-additive epistatic interactions of quantitative trait loci in tomato. Genetics, 1996, 143: 1807−1817[27]Yu S B, Li J X, Xu C G, Tan Y F, Gao Y J, Li X H, Zhang Q. Importance of epistasis as the genetic basis of heterosis in anelite rice hybrid. Proc Natl Acad Sci USA, 1997, 94: 9226–9231[28]Wang D L, Zhu J, Li Z K, Paterson A H. Mapping QTLs with epistatic effects and QTL-environment interactions by mixed linear model approaches. Theor Appl Genet, 1999, 99: 1255−1264[29]Jansen R C, Van Ooijien J M, Stam P. Genotype-by-environment interaction in genetic mapping of multiple quantitative trait loci. Theor Appl Genet, 1995, 91: 33−37[30]Veronica C, Pablo F R, Valeria B, Gerardo L. Cervigni, Ruben M, Carlos A J, Viviana C E. Mapping of main and epistatic effect QTLs associated to grain protein and gluten strength using a RIL population of durum wheat. J Appl Genet, 2011, 52: 287–298[31]Gao Y-M(高用明), Zhu J(朱军), Song Y-S(宋佑胜), He C-X(何慈信), Shi C-H(石春海), Xing Y-Z(邢永忠). Use of permanent F2 population to analyze epistasis and their inter-action effects with environments for QTLs controlling heading date in rice. Acta Agron Sin (作物学报), 2004, 30(9): 849−854 (in Chinese with English abstract)[32]Shan Q-P(单大鹏), Qi Z-M(齐照明), Qiu H-M(邱红梅), Shan C-Y(单彩云), Liu C-Y(刘春燕), Hu G-H(胡国华), Chen Q-S(陈庆山). Epistatic effects of QTLs and QE interaction effects on oil content in soybean. Acta Agron Sin (作物学报), 2008, 34(6): 952–957 (in Chinese with English abstract)[33]Zhao Z-M(赵芳明), Zhang G-Q(张桂权), Zeng R-Z(曾瑞珍), Yang Z-L(杨正林), Ling Y-H(凌英华), Sang X-C(桑贤春), He G-H(何光华). Analysis of epistatic and additive effects of QTLs for grain shape using single segment substitution lines in rice (Oryza sativa L.) Acta Agron Sin (作物学报), 2011, 37(3): 469–476 (in Chinese with English abstract)[34]Chen Q-S(陈庆山), Zhang Z-C(张忠臣), Liu C-Y(刘春燕), Wang W-Q(王伟权), Li W-B(李文滨). Construction and analysis of soybean genetic map using recombinant inbred line of Charleston × Dongnong 594. Sci Agric Sin (中国农业科学), 2005, 38(7): 1312–1316 (in Chinese with English abstract)[35]McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genet Newslett, 1997, 14: 11–13[36]Li J-Q(李杰勤), Zhang Q-J(张启军), Ye S-P(叶少平), Zhao B(赵兵), Liang Y-S(梁永书), Peng Y(彭勇), Wu F-Q(吴发强), Wang S-Q(王世全), Li P(李平). Comparative research on four mapping methods of QTLs. Acta Agron Sin (作物学报), 2005, 11: 1473–1477[37]Kao C H, Zeng Z B, Teasdaler R D. Multiple interval mapping for quantitative trait loci. 1999, 152: 203–216[38]Fulton T M, Beck-Bunn T, Emmatty D, Eshed Y, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley S D. QTL analysis of an advanced backcross of Lycopersicon peruvianum to the cultivated tomato and comparisons with QTLs found in other wild species. Theor Appl Genet, 1997, 95: 5–6, 881–894[39]Guzman P S, Diers B W, Neece D J, Martin S K St, LeRoy A R, Grau C R, Hughes T J, Nelson R L. QTL associated with yield in three backcross-derived populations of soybean. Crop Sci, 2007, 47: 111–122[40]Liao C Y, Wu P, Hu B, Yi K K. Effects of genetic background and environment on QTL and epistasis for rice (Oryza sativa L.) panicle number. Theor Appl Genet, 2001, 103: 104–111[41]Jiang L-R(江良荣), Wang W(王伟), Huang J-X(黄建勋), Hang R-Y(黄荣裕), Zheng J-S(郑景生), Huang Y-M(黄育民), Wang H-C(王侯聪). Analysis of epistatic and QE interaction effects of QTLs for gain shape in rice. Mol Plant Breed (分子植物育种). 2009, 7(4): 690–698 (in Chinese with English abstract)[42]Chase K, Adler F R, Lark K G. Epistat: A computer program for identifying and testing interactions between pairs of quantitative trait loci. Theor Appl Genet, 94: 724–730[43]Liu G F, Yang J, Xu H M, Zhu J. Influence of epistasis and QTL × environment interaction on heading date of rice (Oryza sativa L.). J Genet Genom, 2007, 34: 608–615[44]Li Z, Pinson S R, Park W D, Paterson A H, Stansel J W. Epistasis for three grain yield components in rice (Oryza sativa L.). Genetics, 1997, 145: 453–465 |
[1] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[2] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[3] | 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557. |
[4] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[5] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[6] | 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209. |
[7] | 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800. |
[8] | 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951. |
[9] | 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571. |
[10] | 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596. |
[11] | 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643. |
[12] | 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366. |
[13] | 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537. |
[14] | 禹桃兵, 石琪晗, 年海, 连腾祥. 涝害对不同大豆品种根际微生物群落结构特征的影响[J]. 作物学报, 2021, 47(9): 1690-1702. |
[15] | 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752. |
|