欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (7): 1383-1390.doi: 10.3724/SP.J.1006.2021.04171

• 研究简报 • 上一篇    下一篇

生物菌肥与无机肥配施对藜麦农艺性状、产量性状及品质的影响

邓妍1, 王娟玲2,*(), 王创云1, 赵丽1, 张丽光1, 郭虹霞1, 郭红霞3, 秦丽霞2, 王美霞1   

  1. 1山西农业大学农学院, 山西太原 030031
    2山西农业大学, 山西太原 030031
    3山西大学, 山西太原 030031
  • 收稿日期:2020-07-27 接受日期:2020-12-01 出版日期:2021-07-12 网络出版日期:2021-04-26
  • 通讯作者: 王娟玲
  • 作者简介:E-mail: dengyan-666@163.com
  • 基金资助:
    本研究由山西省农业科学院博士后专项(YCX2018D2BH2);山西省深度贫困县科技精准扶贫专项(2020FP-05);中国农业科学院科技创新工程协同创新项目(CAAS-XTCX20190025);山西农谷建设科研专项资助(SXNGJSKYZX201704)

Effects of combined application of bio-bacterial fertilizer and inorganic fertilizer on agronomic characters, yield, and quality in quinoa

DENG Yan1, WANG Juan-Ling2,*(), WANG Chuang-Yun1, ZHAO Li1, ZHANG Li-Guang1, GUO Hong-Xia1, GUO Hong-Xia3, QIN Li-Xia2, WANG Mei-Xia1   

  1. 1Agricultural College, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
    2Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
    3Shanxi University, Taiyuan 030031, Shanxi, China
  • Received:2020-07-27 Accepted:2020-12-01 Published:2021-07-12 Published online:2021-04-26
  • Contact: WANG Juan-Ling
  • Supported by:
    This study was supported by the Post-Doctoral Research Project of Shanxi Academy of Agricultural Sciences(YCX2018D2BH2);the Science and Technology Precision Poverty Alleviation in Deep Poverty-stricken County of Shanxi Province(2020FP-05);the Science and Technology Innovation Project Collaborative Innovation Project of Chinese Academy of Agricultural Sciences(CAAS-XTCX20190025);the Special Research Project of Shanxi Agricultural Valley Construction(SXNGJSKYZX201704)

摘要:

为探索适宜晋北地区推广应用的藜麦栽培管理模式, 实现藜麦产量和品质提升, 本试验选用当地自有品种华青1号, 采用单因素完全随机设计, 以有机肥和无机肥配施比例为变量, 设常规施肥CK (有机肥0 kg hm -2, 尿素和磷酸二胺各450 kg hm -2)、有机肥和无机肥配施比例T1 (有机肥1500 kg hm -2, 尿素和磷酸二胺各225 kg hm -2)、T2 (有机肥2250 kg hm -2, 尿素和磷酸二胺各225 kg hm -2)、T3 (有机肥3000 kg hm -2, 尿素和磷酸二胺各225 kg hm -2) 4个处理, 分析藜麦生育进程、农艺性状的差异, 揭示藜麦产量和品质同步提升的农学性状, 探求藜麦高产优质适宜的有机无机配施比例。结果表明, 生物菌肥与无机肥配施可增加土壤表层有机质含量, 降低碱解氮和有效磷含量及土壤pH, 显著增加速效钾含量, 且随生物菌肥施用量的增加, 土壤中有机质、碱解氮、有效磷和速效钾含量提高, pH降低; 与常规施肥CK相比, 配施生物菌肥能够缩短藜麦生育期, 提高成熟期藜麦株高、茎秆直径和茎秆强度, 从而降低倒伏率; 增加藜麦分枝数、千粒重, 提高了产量; 可增加蛋白质和脂肪含量, T2处理表现明显; 降低淀粉含量, 以T2处理最低, 但与其他两处理间差异不显著; 生物菌肥与无机肥配施可提高植株对肥料的利用, 随生物菌肥施用量的增加, 氮肥利用效率、磷肥利用效率及氮磷肥偏生产力先升后降, 均以T2处理最高。相关分析结果表明, 藜麦籽粒产量与千粒重的关系最密切, 籽粒蛋白质含量与产量、千粒重、分枝数和茎秆强度也呈正相关, 籽粒淀粉含量与千粒重呈负相关。因此, 本试验条件下, 晋北地区有机无机配施量为氮磷肥各225 kg hm -2配施生物有机菌肥2250 kg hm -2时利于藜麦实现产量品质同步提升。

关键词: 藜麦, 生物菌肥, 农艺性状, 产量, 品质

Abstract:

To explore the suitable cultivation and management model of quinoa in northern Shanxi province, and therefore improve the yield and quality of quinoa, an experiment was conducted with cultivar Huaqing 1 as plant material. The effects of varied proportion of organic and inorganic fertilizer on the growth process of quinoa, agronomic traits, yield, and quality were studied using single factor completely random design. There were three treatments including T1 (1500 kg hm -2 organic fertilizer, 225 kg hm -2 each for urea and diamine phosphate), T2 (2250 kg hm -2 organic fertilizer, 225 kg hm -2 each for urea and diamine phosphate), and T3 (3000 kg hm -2 organic fertilizer, 225 kg hm -2 each for urea and diamine phosphate), conventional fertilization (0 kg hm -2 organic fertilizer, 450 kg hm -2 each for urea and diamine phosphate) was the control. The results showed that the combined biological bacterial fertilizer and inorganic fertilizer could increase the content of organic matter, available nitrogen, phosphorus, and potassium in soil, and decrease the pH of soil. Compared with CK, the combined biological fertilizer could effectively shorten the growth period, and increase plant height, stem diameter and stem strength at mature stage, thus reduce lodging rate. Also, combined biological fertilizer treatment promoted the branches and 1000-grain weight of quinoa, and improved quinoa yield, protein content and fat content, and the above favorite effects were obviously showed in T2 treatment. Starch content was the lowest in T2 treatment, but there was no significant differences among the three treatments. With the increase application of bacterial fertilizer, nitrogen use efficiency, phosphorus fertilizer use efficiency and partial productivity of nitrogen and phosphorus fertilizer was firstly increased and then decreased. Among three groups, the above index was the highest in T2 treatment. Correlation analysis showed that the relationship between the yield and 1000-grain weight was the most correlated, and protein content in grains was positively correlated with yield, 1000-grain weight, branch number, and stem strength, but negatively correlated with lodging rate. In conclusion, under the condition of current experiment, the suitable nitrogen application rate for quinoa was the combination of urea (225 kg hm -2), diamine phosphate (225 kg hm -2) and inorganic fertilizer (2250 kg hm -2).

Key words: quinoa (Chenopodium quinoa Willd.), bio-bacterial fertilizer, agronomic characters, yield, quality

表1

生物菌肥与无机肥配施对土壤肥力的影响"

年份
Year
处理
Treatment
有机质
Organic matter
(g kg-1)
碱解氮
Alkaline hydrolysis nitrogen (mg kg-1)
有效磷
Available P
(mg kg-1)
速效钾
Available K
(mg kg-1)
pH
2018 CK 5.99 c 98.05 a 43.55 a 88.55 c 8.70 a
T1 6.24 c 80.74 c 32.27 b 97.77 b 8.22 ab
T2 7.14 b 82.31 c 35.81 b 105.81 ab 7.94 ab
T3 7.77 a 86.77 b 37.24 b 112.74 a 7.74 b
2019 CK 6.14 d 101.20 a 44.70 a 89.70 c 8.65 a
T1 6.95 c 80.44 c 33.70 b 102.20 b 8.20 a
T2 7.53 b 83.78 b 35.28 b 108.28 ab 8.03 a
T3 7.90 a 88.70 b 38.94 b 118.44 a 7.94 a

表2

生物菌肥与无机肥配施对藜麦生育期的影响"

年份
Year
处理Treatment 播种期
Sowing date (month/day)
出苗期
Seeding stage (month/day)
分枝期
Branch stage (month/day)
开花期
Flowering stage (month/day)
成熟期
Mature stage (month/day)
生育期
Growth period
(d)
2018 CK 5/22 6/2 7/1 8/1 9/15 116
T1 5/22 6/1 6/29 7/26 9/11 112
T2 5/22 5/31 6/26 7/25 9/8 109
T3 5/22 6/1 6/27 7/27 9/10 111
2019 CK 6/20 7/3 8/3 9/1 9/28 100
T1 6/20 7/2 8/1 8/29 9/25 97
T2 6/20 7/1 7/28 8/26 9/23 95
T3 6/20 7/2 7/28 8/27 9/25 97

图1

生物菌肥与无机肥配施对藜麦成熟期农艺性状的影响 处理同表1。柱上标以不同小写字母表示在0.05水平差异显著。"

图2

生物菌肥与无机肥配施对藜麦产量性状的影响 处理同表1。柱上标以不同小写字母表示在0.05水平差异显著。"

表3

有机无机肥配施对藜麦品质的影响(2018-2019)"

年份
Year
处理
Treatment
蛋白质Protein 脂肪Fat 淀粉Amylum
值Value 标准误SE 值Value 标准误SE 值Value 标准误SE
2018 CK 13.55 b 0.47 5.26 b 0.10 54.65 a 0.42
T1 14.27 ab 0.12 5.32 ab 0.08 54.17 b 0.20
T2 15.81 a 0.59 5.36 a 0.02 54.03 b 0.77
T3 15.74 a 0.19 5.28 a 0.07 54.20 b 0.19
2019 CK 14.20 b 0.14 5.22 b 0.15 54.40 a 0.51
T1 15.70 b 0.09 5.29 b 0.08 53.64 b 0.15
T2 16.28 a 0.19 5.42 a 0.03 53.46 b 0.34
T3 15.94 a 0.14 5.34 a 0.05 53.58 b 0.97

图3

藜麦产量和农艺性状、品质性状间的关系 图中气泡与数字对称, *表示在P < 0.05水平显著, **表示在P < 0.01水平显著。X1: 株高; X2: 茎秆直径; X3: 茎秆强度; X4: 倒伏率; X5: 分枝数; X6: 千粒重; X7: 产量; X8: 蛋白质含量; X9: 脂肪含量; X10: 淀粉含量。"

表4

生物菌肥与无机肥配施对藜麦肥料利用的影响"

年份
Year
处理
Treatment
氮素利用效率
N use efficiency
(kg kg-1)
氮肥偏生产力
Partial productivity of N fertilizer (kg kg-1)
磷素利用效率
P use efficiency
(kg kg-1)
磷肥偏生产力
Partial productivity of P fertilizer (kg kg-1)
2018 CK 34.06 c 7.62 c 61.20 c 7.62 c
T1 39.21 c 15.92 b 76.27 b 15.92 b
T2 54.85 a 16.88 a 106.54 a 16.88 a
T3 45.78 b 16.43 a 86.75 b 16.43 a
2019 CK 31.94 c 7.83 c 59.36 c 7.83 c
T1 38.70 b 16.25 b 71.24 b 16.25 b
T2 54.65 a 17.41 a 102.99 a 17.41 a
T3 44.74 b 16.83 b 80.30 b 16.83 b
[1] Pasko P, Barton H, Zagrodzki P, Izewska A, Krosniak M, Gawlik M, Gorinstein S. Effect of diet supplemented with quinoa seeds on oxidative status in plasma and selected tissues of high fructose-fed rats. Plant Foods Human Nutr, 2010,65:146-151.
[2] Repo-Carrasco R, Espinoza C, Jacobsen S E. Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kaniwa( Chenopodium pallidicaule). Food Rev Int, 2003,19:179-189.
[3] White P L, Alvistur E, Diaz C, Visas E, White H S, Collazos C. Nutrient content and protein quality of quinoa and cafiihua, edible seed products of the Andes mountains. Agric Food Chem, 1955,3:351-355.
[4] Jacobsen S E, Mujica A, Jensen C R. The resistance of quinoa ( Chenopodium quinoa Willd.) to adverse abiotic factors. Food Rev Int, 2003,19:99-109.
[5] 李娜娜, 丁汉凤, 郝俊杰, 宮永超, 蒲艳艳, 裴艳婷, 刘保民, 田茜, 郭秀秀. 藜麦在中国的适应性种植及发展展望. 中国农学通报, 2017,33(10):31-36.
Li N N, Ding H F, Hao J J, Gong Y C, Pu Y Y, Pei Y T, Liu B M, Tian Q, Guo X X. The adaptive planting and development prospect of quinoa in China. Chin Agric Sci Bull, 2017,33(10):31-36 (in Chinese with English abstract).
[6] 周海涛, 刘浩, 么杨, 杨修仕, 高文杰, 杨才, 任贵兴. 藜麦在张家口地区试种的表现与评价. 植物遗传资源学报, 2014,15:222-227.
Zhou H T, Liu H, Yao Y, Yang X S, Gao W J, Yang C, Ren G X. Evaluation of agronomic and quality characters of Quinoa cultivated in Zhangjiakou. J Plant Genet Resour, 2014,15:222-227 (in Chinese with English abstract).
[7] 马文彪. 吕梁山北段高寒山区藜麦高产栽培技术. 中国农业信息, 2015, ( 8):76-77.
Ma W B. High yield cultivation of Chenopodium album in Alpine mountainous area of northern Luliang Mountain. China Agric Inf, 2015, ( 8):76-77 (in Chinese).
[8] 张体付, 戚维聪, 顾闽峰, 张晓林, 李坦, 赵涵. 藜麦EST-SSR的开发及通用性分析. 作物学报, 2016,42:492-500.
Zhang T F, Qi W C, Gu M F, Zhang X L, Li T, Zhao H. Exploration and transferability evaluation of EST-SSRs in quinoa. Acta Agron Sin, 2016,42:492-500 (in Chinese with English abstract).
[9] 娄庭, 龙怀玉, 杨丽娟, 陈宝鸿, 周水亮, 穆真. 在过量施氮农田中减氮和有机无机配施对土壤质量及作物产量的影响. 中国土壤与肥料, 2010, ( 2):11-15.
Lou T, Long H Y, Yang L J, Chen B H, Zhou Y L, Mu Z. The effect of fertilizer ratio and rate on soil quality and crop yields in the farmland of excessive use of nitrogenous fertilizers. Soil Fert Sci China, 2010, ( 2):11-15 (in Chinese with English abstract).
[10] 张淑香, 张文菊, 沈仁芳, 徐明岗. 我国典型农田长期施肥土壤肥力变化与研究展望. 植物营养与肥料学报, 2015,21:1389-1393.
Zhang S X, Zhang W J, Shen R F, Xu M G. Variation of soil quality in typical farmlands in China under long-term fertilization and research expedition. J Plant Nutr Fert, 2015,21:1389-1393 (in Chinese with English abstract).
[11] Gu B J, Ju X T, Chang J, Ge Y, Vitousek P M. Integrated reactive nitrogen budgets and future trends in China. PNAS, 2015,112:8792-8797.
doi: 10.1073/pnas.1510211112 pmid: 26124118
[12] 任永峰. 内蒙古阴山北麓藜麦生长发育、水肥利用和产量形成特性研究. 中国农业大学博士学位论文, 北京, 2018.
Ren Y F. Characterization of the Growth and Development, Water and Fertilizer Utilization and Yield Formation of Quinoa in the Northern Yunshan Mountain of Inner Mongolia. PhD Dissertation of China Agricultural University, Beijing, China, 2018 (in Chinese with English abstract).
[13] 康小华, 沈宝云, 王海龙, 张俊莲, 胡静, 郭谋子, 李志龙, 陈霞珍, 马绍丽, 袁海丽. 不同氮肥施用量及基追比对藜麦产量及经济性状的影响. 农学学报, 2017,7(12):34-37.
Kang X H, Shen B Y, Wang H L, Zhang J L, Hu J, Guo M Z, Li Z L, Chen X Z, Ma S L, Yuan H L. Effects of nitrogen fertilizer application rate and ratio of base to topdressing on yield and economic characters of quinoa. J Agric, 2017,7(12):34-37 (in Chinese with English abstract).
[14] 谢军, 赵亚南, 陈轩敬, 李丹萍, 徐春丽, 王珂, 张跃强, 石孝均. 有机肥氮替代化肥氮提高玉米产量和氮素吸收利用效率. 中国农业科学, 2016,49:3934-3943.
Xie J, Zhao Y N, Chen X J, Li D P, Xu C L, Wang K, Zhang Y Q, Shi X J. Nitrogen of organic manure replacing chemical nitrogenous fertilizer improve maize yield and nitrogen uptake and utilization efficiency. Sci Agric Sin, 2016,49:3934-3943 (in Chinese with English abstract).
[15] 张婧, 王平, 刘淑英, 康慧玲, 王瑞. 有机无机肥配施对甘肃省秦王川灌区蚕豆产量、养分吸收量及肥料利用率的影响. 干旱区资源与环境, 2017,31(1):154-159.
Zhang J, Wang P, Liu S Y, Kang H L, Wang R. Effects of organic and chemical fertilization on dry biomass, grain yield, nutrient uptake and fertilizer utilization efficiency of faba bean in northwest hemi-dry-land. J Arid Land Resour Environ, 2017,31(1):154-159 (in Chinese with English abstract).
[16] 张绪成, 于显枫, 王红丽, 侯慧芝, 方彦杰, 马一凡. 半干旱区减氮增钾、有机肥替代对全膜覆盖垄沟种植马铃薯水肥利用和生物量积累的调控. 中国农业科学, 2016,49:852-864.
Zhang X C, Yu X F, Wang H L, Hou H Z, Fang Y J, Ma Y F. Regulations of reduced chemical nitrogen, potassium fertilizer application and organic manure substitution on potato water fertilizer utilization and biomass assimilation under whole field plastics mulching and ridge-furrow planting system on semi-arid area. Sci Agric Sin, 2016,49:852-864 (in Chinese with English abstract).
[17] 赵隽, 董树亭, 刘鹏, 张吉旺, 赵斌. 有机无机肥长期定位配施对冬小麦群体光合特性及籽粒产量的影响. 应用生态学报, 2015,26:2362-2370.
Zhao J, Dong S T, Liu P, Zhang J W, Zhao B. Effects of long-term mixed application of organic and inorganic fertilizers on canopy apparent photosynthesis and yield of winter wheat. Chin J Appl Ecol, 2015,26:2362-2370 (in Chinese with English abstract).
[18] Liang B, Zhao W, Yang X Y, Zhou J B. Fate of nitrogen-15 as influenced by soil and nutrient management history in a 19-year wheat-maize experiment. Field Crops Res, 2013,144:126-134.
[19] 郝明德, 来璐, 王改玲, 党廷辉. 黄土高原塬区旱地长期施肥对小麦产量的影响. 应用生态学报, 2003,14:1893-1896.
Hao M D, Lai L, Wang G L, Dang T H. Effects of long-term fertilization on wheat yield on Loess Plateau. Chin J Appl Ecol, 2003,14:1893-1896 (in Chinese with English abstract).
[20] 莫淑勋, 钱菊芳, 钱承梁. 猪粪等有机肥料中磷素养分循环再利用的研究. 土壤学报, 1991,28:309-316.
Mo S X, Qian J F, Qian C L. Study on the recycling and reuse of phosphorus in pig manure and other organic fertilizers. Acta Pedol Sin, 1991,28:309-316 (in Chinese with English abstract).
[21] 董立盛, 孙小娟, 赵生香. 有机无机肥料配施对藜麦产量及土壤肥力的影响. 中国农技推广, 2019, ( 2):52-54.
Dong L S, Sun X J, Zhao S X. Effects of combined application of organic and inorganic fertilizers on yield of quinoa and soil fertility. China Agric Technol Extens, 2019, ( 2):52-54 (in Chinese).
[22] 任贵兴, 杨修仕, 么杨. 中国藜麦产业现状. 作物杂志, 2015, ( 5):1-5.
Ren G X, Yang X S, Yao Y. Current situation of quinoa industry in China. Crops, 2015, ( 5):1-5 (in Chinese with English abstract).
[23] 郭建芳, 武小平, 丁健. 山西藜麦产业现状及发展对策. 农业科技通讯, 2018, ( 11):4-6.
Guo J F, Wu X P, Ding J. Current situation and development countermeasures of quinoa industry in Shanxi province. Bull Agric Sci Technol, 2018, ( 11):4-6 (in Chinese).
[24] Zhao J, Ni T, Li J, Lu Q, Fang Z Y, Huang Q W, Zhang R F, Li R, Shen B, Shen Q R. Effects of organic-inorganic compound fertilizer with reduced chemical fertilizer application on crop yields, soil biological activity and bacterial community structure in a rice-wheat cropping system. Appl Soil Ecol, 2016,99:1-12.
[25] Liu E K, Yan C R, Mei X R, He W Q, So Hwat B, Ding L P, Liu Q, Lin S, Fan T L. Long-term effect of chemical fertilizer, straw, and manure on soil chemical and biological properties in northwest China. Geoderma, 2010,158:173-180.
[26] 宇万太, 姜子绍, 马强, 周桦. 施用有机肥对土壤肥力的影响. 植物营养与肥料学报, 2009,15:1057-1064.
Yu W T, Jiang Z S, Ma Q, Zhou H. Effects of application manure on soil fertility. J Plant Nutr Fert, 2009,15:1057-1064 (in Chinese with English abstract).
[27] 王玉红, 王长松, 陈莉萍, 胡姚凯, 金尤雅. 不同有机肥与无机肥配施对小麦产量、效益及土壤养分的影响. 作物研究, 2016,30:527-530.
Wang Y H, Wang C S, Chen L P, Hu Y K, Jin Y Y. Effects of the combined application of different organic and inorganic fertilizers on wheat yield, benefit and soil nutrient. Crop Res, 2016,30:527-530 (in Chinese with English abstract).
[28] 孙瑞莲, 赵秉强, 朱鲁生, 徐晶, 张夫道. 长期定位施肥对土壤酶活性的影响及其调控土壤肥力的作用. 植物营养与肥料学报, 2003,9:406-410.
Sun R L, Zhao B Q, Zhu L S, Xu J, Zhang F D. Effects of long-term fertilization on soil enzyme activities and its role in adjusting-controlling soil fertility. Plant Nutr Fert Sci, 2003,9:406-410 (in Chinese with English abstract).
[29] Isidora M, Teresa H, Carlos G, Alfredo P. Influence of one or two successive annual applications of organic fertilizers on the enzyme activity of a soil under barley cultivation. Bioresour Technol, 2001,79:147-154.
pmid: 11480923
[30] 木合塔尔·扎热, 哈地尔·依沙克, 赵蕾, 陶秀冬, 史彦江, 吴正保. 有机肥与化肥配施对土壤微生物、土质及骏枣果实品质的影响. 干旱地区农业研究, 2017,35(5):182-188.
Muhtar Z, Abdukadir I, Zhao L, Tao X D, Shi Y J, Wu Z B. Effects of different application proportion of organic manure and chemical fertilizer on fruit quality of Jun jujube, soil microorganism and properties. Agric Res Arid Areas, 2017,35(5):182-188 (in Chinese with English abstract).
[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[8] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[9] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[10] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[11] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!