欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (12): 3166-3178.doi: 10.3724/SP.J.1006.2022.13078

• 耕作栽培·生理生化 • 上一篇    下一篇

不同氮肥水平下丛枝菌根真菌对玉米籽粒灌浆期磷和钾吸收的影响

田明慧(), 杨硕, 杜嘉琪, 张晨曦, 何堂庆, 张学林()   

  1. 河南农业大学农学院 / 省部共建小麦玉米作物学国家重点实验室 / 作物生长发育调控教育部重点实验室, 河南郑州 450046
  • 收稿日期:2021-09-16 接受日期:2022-05-05 出版日期:2022-12-12 网络出版日期:2022-05-12
  • 通讯作者: 张学林
  • 作者简介:E-mail: TMH613@163.com
  • 基金资助:
    河南省自然科学基金项目(182300410013);国家重点研发计划项目(2018YFD0200605);河南农业大学科技创新基金(30500712)

Effects of arbuscular mycorrhizal fungi on phosphorus and potassium absorption at grain filling stage under different nitrogen fertilizer input in maize

TIAN Ming-Hui(), YANG Shuo, DU Jia-Qi, ZHANG Chen-Xi, HE Tang-Qing, ZHANG Xue-Lin()   

  1. Agronomy College, Henan Agricultural University / State Key Laboratory of Wheat and Maize Crop Science / Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Zhengzhou 450046, Henan, China
  • Received:2021-09-16 Accepted:2022-05-05 Published:2022-12-12 Published online:2022-05-12
  • Contact: ZHANG Xue-Lin
  • Supported by:
    Natural Science Foundation of Henan Province(182300410013);National Key Research and Development Program of China(2018YFD0200605);Science and technology innovation fund of Henan Agricultural University(30500712)

摘要:

明确不同氮肥水平下丛枝菌根真菌(Arbuscular Mycorrhizal Fungi, AMF)对灌浆期玉米籽粒磷、钾吸收的影响, 为农田合理配施生物肥料、提高养分吸收利用提供理论依据。2020年6月至10月夏玉米生育期, 在郑州与商丘2个试验点设置氮肥用量(N1: 180 kg N hm-2; N2: 270 kg N hm-2)和丛枝菌根真菌(M0: 不接种AMF菌剂; M1: 接种AMF菌剂)双因素试验, 测定玉米灌浆期籽粒粒重、植株生物量、根系特性、植株磷和钾含量及其累积量。结果表明, 2个试验点氮肥用量和AMF均显著影响灌浆期玉米籽粒百粒重、灌浆速率、根系特性和植株各器官磷、钾含量及其累积量。其中, 籽粒磷累积量随着灌浆期呈逐渐增加趋势, 钾累积量呈先增加后降低趋势。与N1相比, N2处理百粒重和灌浆速率均值分别增加8.4%和7.8%; 磷累积量和钾累积量平均增加58%和79%。与M0相比, 郑州和商丘2个试验点不同氮肥条件下M1处理的籽粒百粒重、灌浆速率、籽粒磷累积量和钾累积量均显著提高, 其中在商丘试验点的促进作用更大。2个试验点低氮和高氮条件下, 接种AMF均能提高根长、根表面积、根体积、根直径和根尖数。本研究表明, 在不同氮肥条件下玉米生育期接种丛枝菌根真菌均能够提高灌浆速率、改善根系吸收能力, 增加灌浆期玉米磷、钾累积量, 其中在低养分地区和低氮条件下的促进作用更大。

关键词: 丛枝菌根真菌, 灌浆期, 氮肥用量, 养分吸收, 根系特性

Abstract:

Understanding the effects of arbuscular mycorrhizal fungi (AMF) on maize grain phosphorus (P) and potassium (K) absorption at grain filling stage with nitrogen (N) fertilizer input could provide a theoretical basis for the rational application of biological fertilizers in farmland and the improvement of nutrient uptake and utilization in farmland. Two factorial pot experiments were established during maize growth periods in Zhengzhou and Shangqiu. The two factors were N fertilizer rates (N1: 180 kg N hm-2; N2: 270 kg N hm-2), and mycorrhizae treatments (M0: no AMF inoculation; M1: AMF inoculation). Maize grain weight, plant biomass, root characteristics, plant P and K content and their accumulation were measured. Both N fertilizer rates and mycorrhizae significantly affected maize 100-kernel weight, grain-filling rate, root characteristics, plant P and K content, and their accumulation in Zhengzhou and Shangqiu, respectively. Grain P accumulation increased gradually at grain filling stage, while grain K accumulation increased first and then decreased. Compared with N1, 100-kernel weight and grain-filling rates for N2 treatment increased by 8.4% and 7.8%, and 58% and 79% for grain P and K accumulation in maize, respectively. Compared with M0 in maize, the presence of M1 in Zhengzhou and Shangqiu significantly increased 100-kernel weight, grain filling rates, grain P accumulation, and K accumulation under two N fertilizer conditions and the increases were higher in Shangqiu than Zhengzhou. Compared with M0, the presence of AMF for M1 treatment increased root length, root surface area, root volume, root diameter, and the number of root tips under the conditions of N1 or N2 input in both Zhengzhou and Shangqiu, respectively. In conclusion, the study showed that the presence of AMF could increase gain P and K accumulation and improve root absorption capacity, and increase the accumulation of P and K at maize grain filling stage, especially in lower nutrient area and lower nitrogen condition.

Key words: arbuscular mycorrhizal fungi, grain filling stage, nitrogen fertilizer rate, nutrient absorption, root characteristics

表1

氮肥用量和丛枝菌根真菌对玉米灌浆期植株生物量及其磷、钾累积量和根系侵染率影响的方差分析"

植株性状
Plant trait
氮肥用量
N fertilizer rate (N)
丛枝菌根真菌
Mycorrhizae (M)
氮肥用量×丛枝菌根真菌
N × M
郑州Zhengzhou 商丘Shangqiu 郑州Zhengzhou 商丘
Shangqiu
郑州Zhengzhou 商丘Shangqiu
生物量Biomass (g plant-1)
籽粒 Grain 93.3*** 1500.9*** 27.6*** 227.5*** 1.8 6.1*
叶 Leaf 249.1*** 131.3*** 26.1*** 69.2*** 0 8.4*
茎 Stem 403.8*** 0.9 98.6*** 190.8*** 1.1 30.9***
根 Root 181.7*** 85.7*** 25.7*** 47.7*** 4.4 0.4
磷累积量P accumulation (mg plant-1)
籽粒 Grain 66.4*** 145.4*** 41.0** 26.3*** 3.8 0
叶 Leaf 11.0** 3.9 8.2* 20.8** 0.2 1.4
茎 Stem 2.8 5.6* 8.1* 3.6 0.2 0.3
根 Root 7.3* 4.3 2.9 19.3** 0 3.9
钾累积量K accumulation (mg plant-1)
籽粒 Grain 179.1*** 234.7*** 68.3*** 47.4*** 1.6 0.7
叶 Leaf 116.0*** 81.8*** 26.5*** 44.7*** 4.6 0
茎 Stem 52.5*** 71.7*** 10.3** 19.0** 0.1 0.2
根 Root 70.5*** 272.0*** 9.1* 67.0*** 1.4 2.9
根系侵染率 Root colonization (%) 0.1 83.8*** 542.5*** 84,067.1*** 0 44.3***

图1

氮肥用量和丛枝菌根真菌对郑州试验点玉米根系侵染率的影响 A、B、C、D分别代表N1M0、N2M0、N1M1、N2M1处理根系侵染率。N1、N2分别代表180 kg N km-2和270 kg N km-2水平; M0、M1分别代表不接种AMF处理和接种AMF处理。"

表2

氮肥用量和丛枝菌根真菌对郑州和商丘玉米根系特性的影响"

地点
Location
取样时间
Sampling time
处理
Treatment
根系侵染率
Root colonization
(%)
根长
Root length
(cm plant-1)
根表面
Root surface area
(cm2 plant-1)
根体积
Root volume
(cm3 plant-1)
根直径
Root diameter
(mm plant-1)
根尖数
Root tips
郑州
Zhengzhou
R1 N1M0 32,512±73 b 7920±14 c 113.6±0.5 a 0.70±0.001 a 138,719±400 c
N1M1 31,131±191 c 8750±11 a 106.6±0.1 b 0.67±0.002 b 145,387±319 b
N2M0 29,230±192 d 7976±26 c 101.3±0.2 c 0.68±0.002 b 135,043±204 d
N2M1 34,560±229 a 8644±29 b 106.8±0.1 b 0.71±0.003 a 156,511±113 a
R5 N1M0 5.1±2.5 c 54,224±311 c 7973±18 d 95.7±0.1 d 0.51±0.003 c 137,150±152 c
N1M1 95.3±2.1 a 57,440±228 b 8508±34 c 99.2±0.3 c 0.55±0.005 b 139,509±679 c
N2M0 14.3±2.3 b 58,024±434 b 10,795±50 b 131.8±0.4 b 0.54±0.002 b 201,404±2982 a
N2M1 91.0±2.8 a 60,563±64 a 11,649±15 a 140.3±0.3 a 0.58±0.005 a 184,768±1664 b
商丘
Shangqiu
R1 N1M0 37,610±71 b 7075±8 c 93.6±0.3 a 0.57±0.004 a 100,900±426 c
N1M1 37,983±101 c 7248±11 a 91.4±0.2 b 0.56±0.002 b 117,597±596 b
N2M0 32,810±295 d 5906±22 c 87.8±0.4 c 0.59±0.001 b 87,988±292 d
N2M1 34,006±299 a 6348±28 b 98.6±0.1 b 0.61±0.003 a 100,642±26 a
R5 N1M0 12.1±4 b 26,072±165 c 5021±21 d 79.8±0.2 d 0.63±0.001 c 80,854±757 c
N1M1 85.0±4.6 a 32,894±138 b 6278±10 c 99.1±0.2 c 0.63±0.007 b 106,007±690 c
N2M0 22.3±3.6 b 32,037±144 b 6081±29 b 96.3±0.7 b 0.63±0.003 b 103,627±796 a
N2M1 79.1±3.9 a 33,328±185 a 6241±21 a 103.5±1.0 a 0.66±0.007 a 92,706±148 b

图2

氮肥用量和丛枝菌根真菌对郑州(A和C)和商丘(B和D)玉米灌浆期百粒重和灌浆速率的影响 处理同图1。"

图3

氮肥用量和丛枝菌根真菌对郑州(A、C、E和G)和商丘(B、D、F和H)玉米灌浆期籽粒磷、钾含量及其累积量的影响 处理同图1。"

图4

氮肥用量和丛枝菌根真菌对郑州(A、C和E)和商丘(B、D和F)玉米灌浆期根、茎、叶磷含量的影响 处理同图1。"

图5

氮肥用量和丛枝菌根真菌对郑州(A、C和E)和商丘(B、D和F)玉米灌浆期根、茎、叶磷累积量的影响 处理同图1。"

图6

氮肥用量和丛枝菌根真菌对郑州(A、C和E)和商丘(B、D和F)玉米灌浆期根、茎、叶钾含量的影响 处理同图1。"

图7

氮肥用量和丛枝菌根真菌对郑州(A、C和E)和商丘(B、D和F)玉米灌浆期根、茎、叶钾累积量的影响 处理同图1。"

表3

玉米籽粒粒重、籽粒磷和钾累积量与百粒重、灌浆速率、根系侵染率及根系特性的皮尔逊相关系数"

器官
Plant organ
参数
Parameter
粒重
Grain weight
(g plant-1)
籽粒磷累积量
Grain P accumulation
(mg plant-1)
籽粒钾累积量
Grain K accumulation (mg plant-1)
郑州
Zhengzhou
商丘
Shangqiu
郑州
Zhengzhou
商丘
Shangqiu
郑州
Zhengzhou
商丘
Shangqiu
籽粒Grain 百粒重 100-grain weight (g) 0.946** 0.637** 0.917** 0.638** 0.965** 0.661**
灌浆速率 Grain-filling rate (g d-1 100-kernel-1) 0.808** 0.683** 0.727** 0.685** 0.811** 0.695**
根系Root 侵染率 Root colonization (%) 0.445 0.388 0.586* 0.406 0.513* 0.428
根长Length (cm plant-1) 0.797** 0.096 0.877** 0.137 0.825** 0.143
根表面积Surface area (cm2 plant-1) 0.977** -0.115 0.938** -0.074 0.962** -0.066
根直径Diameter (mm plant-1) 0.909** 0.794** 0.832** 0.792** 0.894** 0.811**
根体积 Volume (cm3 plant-1) 0.895** 0.815** 0.927** 0.825** 0.854** 0.845**
根尖数Tips 0.876** -0.126 0.792** -0.055 0.880** -0.073
[1] Zacher A, Baum C, de Mol F, Dehmer K J, Gerowitt B. Mixed growth with weeds promotes mycorrhizal colonization and increases the plant-availability of phosphorus under maize (Zea mays L.). Agronomy, 2021, 11: 1304.
doi: 10.3390/agronomy11071304
[2] Majeed A, Mehdi S M, Niaz A, Mahmood A, Ehsan-Ul-Haq, Ahmad N, Javid S, Mehmood A. Influence of P-enriched compost application on economics and P use efficiency of a maize- wheat rotation system. Crop J, 2018, 6: 651-658.
doi: 10.1016/j.cj.2018.05.007
[3] Doubková P, Vlasáková E, Sudová R. Arbuscular mycorrhizal symbiosis alleviates drought stress imposed on Knautia arvensis plants in serpentine soil. Plant Soil, 2013, 370: 149-161.
doi: 10.1007/s11104-013-1610-7
[4] Raghothama K G, Karthikeyan A S. Phosphate acquisition. Plant Soil, 2005, 274: 37-49.
doi: 10.1007/s11104-004-2005-6
[5] Xu Z Y, Ban Y H, Jiang Y H, Zhang X L, Liu X Y. Arbuscular mycorrhizal fungi in wetland habitats and their application in constructed wetland: a review. Pedosphere, 2016, 26: 592-617.
doi: 10.1016/S1002-0160(15)60067-4
[6] Dong H Z, Kong X Q, Li W J, Tang W, Zhang D M. Effects of plant density and nitrogen and potassium fertilization on cotton yield and uptake of major nutrients in two fields with varying fertility. Field Crops Res, 2010, 119: 106-113.
doi: 10.1016/j.fcr.2010.06.019
[7] Cao M J, Yu H Q, Yan H K, Jiang C J. Difference in tolerance to potassium deficiency between two maize inbred lines. Plant Prod Sci, 2007, 10: 42-46.
doi: 10.1626/pps.10.42
[8] 展文洁, 刘剑钊, 梁尧, 袁静超, 张洪喜, 刘松涛, 蔡红光, 任军. 不同耕作方式对玉米根系特性及养分吸收转运的影响. 植物营养与肥料学报, 2020, 26: 817-825.
Zhan W J, Liu J Z, Liang Y, Yuan J C, Zhang H X, Liu S T, Cai H G, Ren J. Effects of different cultivation methods on maize root characteristics and nutrient absorption and translocation. J Plant Nutr Fert, 2020, 26: 817-825. (in Chinese with English abstract)
[9] 黄婷苗, 郑险峰, 侯仰毅, 李晓, 王朝辉. 秸秆还田对冬小麦产量和氮、磷、钾吸收利用的影响. 植物营养与肥料学报, 2015, 21: 853-863.
Huang T M, Zheng X F, Hou Y Y, Li X, Wang Z H. Yield and N, P and K uptake and utilization of winter wheat affected by straw return to soil. Plant Nutr Fert Sci, 2015, 21: 853-863. (in Chinese with English abstract)
[10] 侯云鹏, 孔丽丽, 蔡红光, 刘慧涛, 高玉山, 王永军, 王立春. 东北半干旱区滴灌施肥条件下高产玉米干物质与养分的积累分配特性. 中国农业科学, 2019, 52: 3559-3572.
Hou Y P, Kong L L, Cai H G, Liu H T, Gao Y S, Wang Y J, Wang L C. Dry matter and nutrient accumulation and distribution characteristics of high-yield corn under drip irrigation and fertilization in the semi-arid area of northeast China. Sci Agric Sin, 2019, 52: 3559-3572. (in Chinese with English abstract)
[11] Stamford N P, Felix F, Oliveira W, Silva E, Carolina S, Rnaud T, Freitas A. Interactive effectiveness of microbial fertilizer enriched in N on lettuce growth and on characteristics of an Ultisol of the rainforest region. Sci Hortic, 2019, 247: 242-246.
doi: 10.1016/j.scienta.2018.12.028
[12] Sukarno N, Smith F A, Smith S E, Scott E S. The effect of fungicides on vesicular-arbuscular mycorrhizal symbiosis: II. The effects on area of interface and efficiency of P uptake and transfer to plant. New Phytol, 1996, 132: 583-592.
doi: 10.1111/j.1469-8137.1996.tb01877.x pmid: 33863139
[13] Wang Q Q, Sheng J D, Wang Y J, Chen K, Lambers H, Wang X R. The relative contribution of indigenous and introduced arbuscular mycorrhizal fungi and rhizobia to plant nutrient acquisition in soybean/maize intercropping in unsterilized soils. Appl Soil Ecol, 168: 104124.
[14] 张学林, 李晓立, 何堂庆, 张晨曦, 田明慧, 吴梅, 周亚男, 郝晓峰, 杨青华. 丛枝菌根真菌对玉米籽粒产量和氮素吸收的影响. 作物学报, 2021, 47: 1603-1615.
doi: 10.3724/SP.J.1006.2021.03050
Zhang X L, Li X L, He T Q, Zhang C X, Tian M H, Wu M, Zhou Y N, Hao X F, Yang Q H. Effects of arbuscular mycorrhizal fungi on grain yield and nitrogen uptake in maize. Acta Agron Sin, 2021, 47: 1603-1615. (in Chinese with English abstract)
[15] Hu J L, Lin X G, Wang J H, Dai J, Cui X C, Chen R R, Zhang J B. Arbuscular mycorrhizal fungus enhances crop yield and P-uptake of maize (Zea mays L.): a field case study on a sandy loam soil as affected by long-term P-deficiency fertilization. Soil Biol Biochem, 2009, 41: 2460-2465.
doi: 10.1016/j.soilbio.2009.09.002
[16] Tuffen F, Eason W R, Scullion J. The effect of earthworms and arbuscular mycorrhizal fungi on growth of and 32P transfer between Allium porrum plants. Soil Biol Biochem, 2002, 34: 1027-1036.
doi: 10.1016/S0038-0717(02)00036-6
[17] Tisseranta E, Malbreil M, Martin F. Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc Natl Acad Sci USA, 2014, 111: 563.
[18] Chandrasekaran M, Boughattas S, Hu S J, Sang-Hyon O, Sa T M. A meta-analysis of arbuscular mycorrhizal effects on plants grown under salt stress. Mycorrhiza, 2014, 24: 611-625.
doi: 10.1007/s00572-014-0582-7 pmid: 24770494
[19] Hisse I R, D’Andrea K E, Otegui M E. Source-sink relations and kernel weight in maize inbred lines and hybrids: responses to contrasting nitrogen supply levels. Field Crops Res, 2019, 230: 151-159.
doi: 10.1016/j.fcr.2018.10.011
[20] 王晓慧, 张磊, 刘双利, 曹玉军, 魏雯雯, 刘春光, 王永军, 边少锋, 王立春. 不同熟期春玉米品种的籽粒灌浆特性. 中国农业科学, 2014, 47: 3557-3565.
Wang X H, Zhang L, Liu S L, Cao Y J, Wai W W, Liu C G, Wang Y J, Bian S F, Wang L C. Grain filling characteristics of spring maize varieties in different maturity periods. Sci Agric Sin, 2014, 47: 3557-3565. (in Chinese with English abstract)
[21] 李璐璐, 明博, 高尚, 谢瑞芝, 侯鹏, 王克如, 李少昆. 夏玉米籽粒脱水特性及与灌浆特性的关系. 中国农业科学, 2018, 51: 1878-1889.
Li L L, Ming B, Gao S, Xie R Z, Hou P, Wang K R, Li S K. Study on grain dehydration n characters of summer maize and its relationship with grain filling. Sci Agric Sin, 2018, 51: 1878-1889. (in Chinese with English abstract)
[22] Liu X M, Gu W R, Li C F, Li J, Wei S. Effects of nitrogen fertilizer and chemical regulation on spring maize lodging characteristics, grain filling and yield formation under high planting density in Heilongjiang province, China. J Integr Agric, 2021, 20: 511-526.
doi: 10.1016/S2095-3119(20)63403-7
[23] Gonzalez-Dugo1 V, Durand J, Gastal F. Water deficit and nitrogen nutrition of crops: a review. Agron Sustain Dev, 2010, 30: 529-544.
doi: 10.1051/agro/2009059
[24] Jia Q M, Sun L F, Mou H Y, Ali S, Liu D H, Zhang Y, Zhang P, Ren X L, Jia Z K. Effects of planting patterns and sowing densities on grain-filling, radiation use efficiency and yield of maize (Zea mays L.) in semi-arid regions. Agric Water Manage, 2018, 201: 287-298.
doi: 10.1016/j.agwat.2017.11.025
[25] Zare-Maivan H, Khanpour-Ardestani N, Ghanati F. Influence of mycorrhizal fungi on growth, chlorophyll content, and potassium and magnesium uptake in maize. J Plant Nutr, 2017, 40: 2026-2032.
doi: 10.1080/01904167.2017.1346119
[26] Koske B E, Gemma J N. A modified procedure for staining roots to detect VA mycorrhizas. Mycol Prog, 1989, 4: 486-488.
[27] Gambín B L, Borrás L, Oteguim E. Kernel water relations and duration of grain filling in maize temperate hybrids. Field Crops Res, 2006, 101: 1-9.
doi: 10.1016/j.fcr.2006.09.001
[28] Giovannetti M, Mosse B. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol, 1980, 84: 489-500.
doi: 10.1111/j.1469-8137.1980.tb04556.x
[29] Jin X N, Fu Z Y, Lyu P Q, Peng Q, Ding D, Li W H, Tang J H. Identification and characterization of microRNAs during maize grain filling. PLoS One, 2015, 10: e0125800.
[30] Maillard A, Diquélou S, Billard V, Laîné P, Garnica M, Prudent M, Garcia-Mina J, Yvin J, Ourry A. Leaf mineral nutrient remobilization during leaf senescence and modulation by nutrient deficiency. Front Plant Sci, 2015, 6: 317.
doi: 10.3389/fpls.2015.00317 pmid: 26029223
[31] Veneklaas E J, Lambers H, Bragg J, Finnegan P M, Lovelock C E, Plaxton W C, Price C A, Scheible W, Shane M W, White P J, Raven J A. Opportunities for improving phosphorus-use efficiency in crop plants. New Phytol, 2012, 195: 306-320.
doi: 10.1111/j.1469-8137.2012.04190.x pmid: 22691045
[32] Sha Z M, Watanabe T, Chu Q N, Oka N, Osaki M, Shinano T. A Reduced phosphorus application rate using a mycorrhizal plant as the preceding crop maintains soybean seeds' nutritional quality. J Agric Food Chem, 2019, 67: 32-42.
doi: 10.1021/acs.jafc.8b05288
[33] 江尚焘, 王火焰, 周健民, 陈照明, 刘晓伟, 贾云生. 磷肥施用方式及类型对冬小麦产量和磷素吸收的影响. 应用生态学报, 2016, 27: 1503-1510.
doi: 10.13287/j.1001-9332.201605.034
Jiang S D, Wang H Y, Zhou J M, Chen Z M, Liu X W, Jia Y S. Effects of phosphate fertilizer application methods and types on winter wheat yield and phosphorus absorption. Chin J Appl Ecol, 2016, 27: 1503-1510. (in Chinese with English abstract)
[34] Real-Santillan R O, Del-Val E, Cruz-Ortega R, Contreras- Cornejo H A, Gonzalez-Esquivel C E, Larsen J. Increased maize growth and P uptake promoted by arbuscular mycorrhizal fungi coincide with higher foliar herbivory and larval biomass of the Fall Armyworm Spodoptera frugiperda. Mycorrhiza, 2019, 29: 615-622.
[35] Zhang L, Xu M G, Liu Y, Zhang F S, Hodge A, Feng G. Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium. New Phytol, 2016, 210: 1022-1032.
doi: 10.1111/nph.13838 pmid: 27074400
[36] de Vries J, Evers J B, Kuyper T W, van Ruijven J, Mommer L. Mycorrhizal associations change root functionality: a 3D modelling study on competitive interactions between plants for light and nutrients. New Phytol, 2021, 231: 1171-1182.
doi: 10.1111/nph.17435
[37] Hodge A, Fitter A H. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proc Natl Acad Sci USA, 2010, 107: 13754-13759.
doi: 10.1073/pnas.1005874107
[38] Mackay J E, Cavagnaro T R, Stover D S M, MacDonald L M, Gronlund M, Jakobsen I. A key role for arbuscular mycorrhiza in plant acquisition of P from sewage sludge recycled to soil. Soil Biol Biochem, 2017, 102: 275-301.
[39] Reich P B. The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto. J Ecol, 2014, 276: 15-22.
[40] 刘颖, 贺静雯, 余杭, 林勇明, 王道杰. 干热河谷优势灌木细根、粗根与叶片养分(C、N、P)含量及化学计量比. 山地学报, 2020, 38: 668-678.
Liu Y, He J W, Yu H, Lin Y M, Wang D J. Architecture and biomass allocation as components of the plastic response of root systems to soil heterogeneity. Mount Res, 2020, 38: 668-678. (in Chinese with English abstract)
[41] Honvault N, Houben D, Nobile C, Firmin S, Lambers H, Faucon M. Tradeoffs among phosphorus-acquisition root traits of crop species for agroecological intensification. Plant Soil, 2021, 461: 137-150.
doi: 10.1007/s11104-020-04584-3
[42] McKay Fletcher D M, Ruiz S, Dias T, Petroselli C, Roose T. Linking root structure to functionality: the impact of root system architecture on citrate-enhanced phosphate uptake. New Phytol, 2020, 227: 376-391.
doi: 10.1111/nph.16554 pmid: 32198932
[43] Ning P, Li S, Yu P, Zhang Y, Li C J. Post-silking accumulation and partitioning of dry matter, nitrogen, phosphorus and potassium in maize varieties differing in leaf longevity. Field Crops Res, 2013, 144: 19-27.
doi: 10.1016/j.fcr.2013.01.020
[44] Peng Y F, Yu P, Zhang Y, Sun G, Ning P, Li X X, Li C J. Temporal and spatial dynamics in root length density of field-grown maize and NPK in the soil profile. Field Crops Res, 2012, 131: 9-16.
doi: 10.1016/j.fcr.2012.03.003
[45] Zhang H Q, Wei S Z, Hu W T, Xiao L M, Tang M. Arbuscular mycorrhizal fungus Rhizophagus irregularis increased potassium content and expression of gene encoding potassium channels in Lycium barbarum. Front Plant Sci, 2017, 8: 440.
[46] Scheloske S, Maetz M, Schneider T, Hildebrandt U, Bothe H, Povh B. Element distribution in mycorrhizal and nonmycorrhizal roots of the halophyte Aster tripolium determined by proton induced X-ray emission. Protoplasma, 2004, 223: 183-189.
pmid: 15221523
[47] Kikuchi Y, Hijikata N, Yokoyama K, Ohtomo R, Handa Y, Kawaguchi M, Saito K, Ezawa T. Polyphosphate accumulation is driven by transcriptome alterations that lead to near-synchronous and near-equivalent uptake of inorganic cations in an arbuscular mycorrhizal fungus. New Phytol, 2014, 204: 638-649.
doi: 10.1111/nph.12937 pmid: 25039900
[48] Olsson P A, Hammer E C, Wallander H, Pallon J. Phosphorus availability influences elemental uptake in the mycorrhizal fungus Glomus intraradices, as revealed by particle-induced X-ray emission analysis. Appl Environ Microb, 2008, 74: 4144-4148.
doi: 10.1128/AEM.00376-08 pmid: 18469133
[49] Kim T, Lee B, Jung W, Kim K, Avice J, Ourry A. De novo protein synthesis in relation to ammonia and proline accumulation in water stressed white clover. Funct Plant Biol, 2004, 31: 847-855.
doi: 10.1071/FP04059
[50] Ruiz-Lozano J M, Porcel R, Bárzana G, Aroca R. Plant Responses to Drought Stress: from Morphological to Molecular Features. Germany: Springer-Verlag, 2012, pp 335-362.
[51] Paola A, Pierre B, Vincenza C, Vincenzo D M, Bruce V. Short term clay mineral release and re-capture of potassium in a Zea mays field experiment. Geoderma, 2016, 264: 54-60.
doi: 10.1016/j.geoderma.2015.10.005
[52] Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, Chardon F, Gaufichon L, Suzuki A. Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann Bot, 2010, 105: 1141-1157.
doi: 10.1093/aob/mcq028
[53] Wang X B, Cai D X, Hoogmoed W B, Perdok U D, Oenema O. Crop residue, manure and fertilizer in dryland maize under reduced tillage in northern China: I. Grain yields and nutrient use efficiencies. Nutr Cycl Agroecosys, 2007, 79: 1-16.
doi: 10.1007/s10705-007-9113-7
[54] 张学林, 徐钧, 安婷婷, 侯小畔, 李潮海. 不同氮肥水平下玉米根际土壤特性与产量的关系. 中国农业科学, 2016, 49: 2687-2699.
Zhang X L, Xu J, An T T, Hou X P, Li C H. The relationship between maize rhizosphere soil characteristics and yield under different nitrogen fertilizer levels. Sci Agric Sin, 2016, 49: 2687-2699. (in Chinese with English abstract)
[55] Zhu C, Tian G L, Luo G W, Kong Y L, Guo J J, Wang W, Guo S W, Ling N, Shen Q R. N-fertilizer-driven association between the arbuscular mycorrhizal fungal community and diazotrophic community impacts wheat yield. Agric Ecosyst Environ, 2018, 254: 191-201.
doi: 10.1016/j.agee.2017.11.029
[56] Milleret R, Bayon R, Gobat J. Root, mycorrhiza and earthworm interactions: their effects on soil structuring processes, plant and soil nutrient concentration and plant biomass. Plant Soil, 2009, 316: 1-12.
doi: 10.1007/s11104-008-9753-7
[57] 刘婷婷, 刘智蕾, 宋佳媚, 赖雨秋, 于彩莲, 彭显龙. 不同温度与供氮水平下丛枝菌根真菌对水稻养分吸收的影响. 土壤通报, 2019, 50: 885-890.
Liu T T, Liu Z L, Song J M, Lai Y Q, Yu C L, Peng X L. Effects of arbuscular mychorrhizal fungi on rice nutrient uptake under different temperature and nitrogen conditions. Chin J Soil Sci, 2019, 50: 885-890. (in Chinese with English abstract)
[58] 张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风. 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008, 45: 915-924.
Zhang F S, Wang J Q, Zhang W F, Cui Z L, Ma W Q, Chen X P, Jiang R F. Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedol Sin, 2008, 45: 915-924. (in Chinese with English abstract)
[1] 陈冰洁, 张富粮, 杨硕, 李晓立, 何堂庆, 张晨曦, 田明慧, 吴梅, 郝晓峰, 张学林. 不同形态氮肥下丛枝菌根真菌对玉米灌浆期生理特性及产量和品质的影响[J]. 作物学报, 2023, 49(1): 249-261.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[4] 孔垂豹, 庞孜钦, 张才芳, 刘强, 胡朝华, 肖以杰, 袁照年. 不同施肥水平下丛枝菌根真菌对甘蔗生长及养分相关基因共表达网络的影响[J]. 作物学报, 2022, 48(4): 860-872.
[5] 张富粮, 陈冰洁, 杨硕, 李晓立, 何堂庆, 张晨曦, 田明慧, 吴梅, 郝晓峰, 张学林. 丛枝菌根真菌对玉米籽粒氮素吸收和土壤细菌群落组成的影响[J]. 作物学报, 2022, 48(12): 3215-3224.
[6] 张学林, 李晓立, 何堂庆, 张晨曦, 田明慧, 吴梅, 周亚男, 郝晓峰, 杨青华. 丛枝菌根真菌对玉米籽粒产量和氮素吸收的影响[J]. 作物学报, 2021, 47(8): 1603-1615.
[7] 唐健,唐闯,郭保卫,张诚信,张振振,王科,张洪程,陈恒,孙明珠. 氮肥施用量对机插优质晚稻产量和稻米品质的影响[J]. 作物学报, 2020, 46(01): 117-130.
[8] 程乙,刘鹏,刘玉文,庞尚水,董树亭,张吉旺,赵斌,任佰朝. 黄淮海区域现代夏玉米品种产量与养分吸收规律[J]. 作物学报, 2019, 45(11): 1699-1714.
[9] 徐国伟,吕强,陆大克,王贺正,陈明灿. 干湿交替灌溉耦合施氮对水稻根系性状及籽粒库活性的影响[J]. 作物学报, 2016, 42(10): 1495-1505.
[10] 李玉,陈璐,严凯,孙影,殷毅凡,丁秀文,戴其根,张洪程. 1,2,4-三氯苯对2个不同耐性水稻品种光合特性与产量的影响[J]. 作物学报, 2016, 42(02): 255-264.
[11] 吴春红,刘庆,孔凡美,李欢,史衍玺. 氮肥施用量对不同紫甘薯品种产量和氮素效率的影响[J]. 作物学报, 2016, 42(01): 113-122.
[12] 王翠娟,史春余,刘娜,刘双荣,余新地. 结薯数差异显著的甘薯品种生长前期根系特性及根叶糖组分比较[J]. 作物学报, 2016, 42(01): 131-140.
[13] 王劲松,焦晓燕,丁玉川,董二伟,白文斌,王立革,武爱莲. 粒用高粱养分吸收、产量及品质对氮磷钾营养的响应[J]. 作物学报, 2015, 41(08): 1269-1278.
[14] 张凡,睢宁,余超然,刘瑞显,杨长琴,宋光雷,孟亚利,周治国. 小麦秸秆还田和施钾对棉花产量与养分吸收的效应[J]. 作物学报, 2014, 40(12): 2169-2175.
[15] 王亚江,魏海燕*,颜希亭,葛梦婕,孟天瑶,张洪程,戴其根,霍中洋,许轲,费新茹. 光、氮及其互作对超级粳稻产量和氮、磷、钾吸收的影响[J]. 作物学报, 2014, 40(07): 1235-1244.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .