欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (01): 131-140.doi: 10.3724/SP.J.1006.2016.00131

• 耕作栽培·生理生化 • 上一篇    下一篇

结薯数差异显著的甘薯品种生长前期根系特性及根叶糖组分比较

王翠娟1,史春余1,*,刘娜2,刘双荣1,余新地1   

  1. 1 山东农业大学农学院 / 作物生物学国家重点实验室,山东泰安 271018;2 山东农业大学园艺科学与工程学院 / 作物生物学国家重点实验室,山东泰安 271018
  • 收稿日期:2015-04-20 修回日期:2015-09-06 出版日期:2016-01-12 网络出版日期:2015-10-08
  • 通讯作者: 史春余, E-mail: scyu@sdau.edu.cn, Tel: 0538-8246259
  • 基金资助:

    本研究由国家自然科学基金项目(31371577)和山东省薯类创新团队首席专家项目(SDAIT-10-011-01)资助。

Comparison of Root Characteristics and Sugar Components in Root and Leaf at Early Growth Phase of Sweet Potato Varieties with Significant Difference in Valid Storage Root Number

WANG Cui-Juan1,SHI Chun-Yu1,*,LIU Na2,LIU Shuang-Rong1,YU Xin-Di1   

  1. 1 College of Agronomic Sciences, Shandong Agricultural University / State Key Laboratory of Crop Biology, Tai’an 271018, China; 2 Resources of Horticulture Science and Engineering, Shandong Agricultural University / State Key Laboratory of Crop Biology, Tai’an 271018, China
  • Received:2015-04-20 Revised:2015-09-06 Published:2016-01-12 Published online:2015-10-08
  • Contact: 史春余, E-mail: scyu@sdau.edu.cn, Tel: 0538-8246259
  • Supported by:

    This research was supported by the National Natural Science Foundation of China (31371577) and the Potato Innovation Program for Chief Expert of Shandong Province (SDAIT-10-011-01).

摘要:

选用结薯数差异显著的甘薯品种商薯19和济徐23,于2013年和2014年分别在大田和盆栽条件下调查生长前期根系生长发育情况,测定根叶糖组分,分析其变化规律及其与单株有效薯块数形成的关系。结果表明,与济徐23相比较,商薯19发根缓苗迅速,整个生长前期均较为侧重吸收根系建成,且秧苗栽后15 d30 d地上部和整个根系生物量比值(T/TR)相似;而济徐23较早完成不定根的发生(秧苗栽后15 d)和不定根向块根的分化建成(秧苗栽后30 d),封垄期(秧苗栽后45 d)具有较小的地上部和块根生物量比值(T/SR)2个品种在生长前期根叶中蔗糖、己糖代谢和贮藏糖类多聚物的形成具有显著差异,其中商薯19整个生长前期比济徐23的根系蔗糖/己糖比率显著低,在块根分化建成过程中根叶间具有较高的蔗糖浓度梯度,且根系中存在2种低果聚糖(蔗果三糖和蔗果四糖),秧苗栽后3045 d叶片淀粉含量显著低;而济徐23在块根分化建成过程中根系仅有蔗果四糖,且与商薯19比,封垄期根系蔗糖/可溶性总糖比率相似而根系蔗糖/淀粉比率显著低。2013年和2014年的大田试验均表明,封垄期商薯19具有显著多的单株有效薯块数和显著高的单株有效薯块鲜重(F=10.71P=0.0170F=13.97P=0.0212),而收获时商薯19具有显著多的单株有效薯块数和显著高的块根产量(F=353.89P<0.0001F=88.94P<0.0001),济徐23具有显著高的平均单薯鲜重(F=10.32P=0.0124)

关键词: 甘薯, 单株有效薯块数, 根系特性, 糖组分, 产量

Abstract:

Starch sweet potato varieties Shangshu 19 and Jixu 23 differing in valid storage root number per plant significantly were used to investigate root characteristics, sugar components in root and leaf at early growth phase and their relationship with the formation of storage root per plant at top cover stage. The results showed that, Shangshu19 with higher valid storage root number regrew quickly with more new roots after seedling transplanting, developed fiberous roots mainly in the whole early growth phase, and formed a stable rate of top biomass/total root system biomass (T/TR) at 15 and 30 days after planting. Jixu 23 achieved the steady number of adventitious root and valid storage root at 15 and 30 days after planting, respectively. Meanwhile, Jixu 23 showed the lower rate of top biomass/storage root biomass (T/SR) at top cover stage (45 days after planting). On the other hand, in point of metabolism of sucrose and hexoses, and the formation of stored polysaccharide polymers, Shangshu19 had significantly lower rate of sucrose/hexoses in the whole early growth phase, formed the greater sucrose concentration gradient between leaves and roots, and had 1-Kestose and Nystose in roots at 15 and 30 days after planting. Its starch content in leaf was significantly lower than that of Jixu 23 at 30 and 45 days after planting. Meanwhile, Jixu 23 only had Nystose in roots before storage root formation, with significantly lowest rate of sucrose/starch when the rate of sucrose/total soluble sugar was similar to that of Shangshu 19 at 45 days after planting. A two-year field trials (2013–2014) were performed to investigate yield-contributing traits and the fresh storage root yield at top cover stage and harvest period, in which, Shangshu19 showed the more valid storage roots per plant, higher valid storage root fresh weight per plant or storage root at top cover stage and harvest period, meanwhile, Jixu23 had significantly higher average fresh weight per storage root.

Key words: Sweet potato, Valid storage root per plant, Root characteristics, Sugar components, Storage root yield

[1]梁康迳, 王雪仁, 林文雄, 陈志雄, 李亚娟. 水稻产量形成的生理生态研究进展. 中国生态农业学报, 2002, 10(3): 63–65



Liang K J, Wang X R, Lin W X, Chen Z X, Li Y J. Advancement in physiological studies on yield formation in rice. Chin J Eco-Agric, 2002, 10(3): 63–65 (in Chinese with English abstract)



[2]李朝霞, 赵世杰, 孟庆伟, 邹琦. 高粒叶比小麦群体生理基础研究进展. 麦类作物学报, 2002, 22(4): 79–83



Li Z X, Zhao S J, Meng Q W, Zou Q. Advances in the study on physiological base of wheat population with high grain leaf area ratio. J Triticeae Crops, 2002, 22(4): 79–83 (in Chinese with English abstract)



[3]史春余, 王振林, 赵秉强, 郭风法, 余松烈. 钾营养对甘薯某些生理特性和产量形成的影响. 植物营养与肥料学报, 2002, 8: 81–85



Shi C Y, Wang Z Z, Zhao B Q, Guo F F, Yu S L. Effect of potassium nutrition on some physiological characteristics and yield formation of sweet potato. Plant Nutr Fert Sci, 2002, 8: 81–85 (in Chinese with English abstract)



[4]陈晓光, 李洪民, 张爱君, 史新敏, 唐忠厚, 魏猛, 史春余. 不同氮水平下多效唑对食用型甘薯光合和淀粉积累的影响. 作物学报, 2012, 38: 1728–1733



Chen X G, Li H M, Zhang A J, Shi X M, Tang Z H, Wei M, Shi C Y. Effect of paclobutrazol under different N-application rates on photosynthesis and starch accumulation in edible sweet potato. Acta Agron Sin, 2012, 38: 1728–1733 (in Chinese with English abstract)



[5]马代夫, 朱崇文. 甘薯壮苗增产的生理特点分析. 作物杂志, 1989, (4): 22–23



Ma D F, Zhu C W. Physiological basis of sweet potato strong seedling on high tuberous root yield. Crops, 1989, 4: 22–23 (in Chinese)



[6]周全卢. 秋甘薯不同类型品种干物质积累特性研究. 西南大学硕士学位论文, 重庆, 2007. p 52



Zhou Q L. Research of Dry Matter Accumulating Characters on Autumn Sweet Potato Varieties of Different Types. MS Thesis of Southwest University, Chongqing, China, 2007. p 52 (in Chinese with English abstract)



[7]王翠娟, 史春余, 王振振, 柴沙沙, 史衍玺. 覆膜栽培对甘薯幼根生长发育、块根形成及产量的影响, 作物学报, 2014, 40: 1677–1685



Wang C J, Shi C Y, Wang Z Z, Chai S S, Shi Y X. Effects of plastic film mulching cultivation on young roots growth development, tuber formation and tuber yield of sweet potato. Acta Agron Sin, 2014, 40: 1677–1685 (in Chinese with English abstract)



[8]陆漱韵, 刘庆昌, 李惟基. 甘薯育种学. 北京: 中国农业出版社, 1998. p 211



Lu S Y, Liu Q C, Li W J. Sweet Potato Breeding. Beijing: China Agriculture Press, 1998. p 211 (in Chinese)



[9]Villordon A Q, La Bonte D R, Firon N, Kfir Y, Pressman E, Schwartz A. Characterization of adventitious root development in sweet potato. Hort Sci, 2009, 44: 651–655



[10]Dubrovsky J G, Forde B G. Quantitative analysis of lateral root development: pitfalls and how to avoid them. Plant Cell, 2012, 24: 4–14



[11]Villordon A, LaBonte D, Solis J, Firon N. Characterization of lateral root development at the onset of storage root initiation in ‘Beauregard’ sweet potato adventitious roots. Hort Sci, 2012, 47: 961–968



[12]Villordon A Q, Clark C A. Variation in virus symptom development and root architecture attributes at the onset of storage root initiation in ‘Beauregard’ sweet potato plants grown with or without nitrogen. PloS One, 2014, 9: e107384



[13]潘庆民, 韩兴国, 白永飞, 杨景成. 植物非结构性贮藏碳水化合物的生理生态学研究进展, 植物学通报, 2002, (1): 30–38



Pan Q M, Han X G, Bai Y F, Yang J C. Advances in physiology and ecology studies on stored non-structure carbohydrates in plants. Chin Bull Bot, 2002, (1): 30–38 (in Chinese with English abstract)



[14]Kage H, Kochler M, Stutzel H. Root growth and dry matter partitioning of cauliflower under drought stress conditions: measurement and simulation. Eur J Agron, 2004, 20: 379–394



[15]Davidson A, Keller F, Turgeon R. Phloem loading, plant growth form, and climate. Protoplasma, 2011, 248: 153–163



[16]刘颖慧, 贾海坤, 高琼. 植物同化物分配及其模型研究综述, 生态学报, 2006, 26: 1981–1992



Liu Y H, Jia H K, Gao Q. Review on researches of photoassimilates partitioning and its models. Acta Ecol Sin, 2006, 26: 1981–1992 (in Chinese with English abstract)



[17]Noh S A, Lee H S, Kim Y S, Paek K H, Shin J S, Bae J M. Down-regulation of the IbEXP1 gene enhanced storage root development in sweet potato. J Exp Bot, 2013, 64: 129–142



[18]Tanaka M, Kato N, Nakayama H, Nakatani M., Takahata Y. Expression of class 1Knotted1-like homeobox genes in the storage roots of sweet potato (Ipomoea batatas). J Plant Physiol, 2008, 165: 1726–1735



[19]Ravi V, Indira P. Crop physiology of sweet potato. In: Janick J ed. Horticultural reviews, John Wiley & Sons, Inc, New York, 1999, Vol. 23, pp 277–339.



[20]Wilson L A, Low S B. The anatomy of the root system in West Indian sweet potato cultivars. Ann Bot, 1973, 37: 633–643



[21]BelehuT, Hammes P S, Robbertse P J. The origin and structure of adventitious roots in sweet potato (Ipomoea batatas). Aust J Bot, 2004, 52: 551–558



[22]Casimiro I, Beeckman T, Graham N, Bhalerao R, Zhang H, Casero P, Bennett M J. Dissecting Arabidopsis lateral root development. Trends Plant Sci, 2003, 8: 165–171



[23]Kays S J. The physiology of yield in the sweet potato. A Natu Reso Trop, 1985, 1: 79–132



[24]陆漱韵, 刘庆昌, 李惟基. 甘薯育种学. 北京: 中国农业出版社, 1998. p 58



Lu S Y, Liu Q C, Li W J. Sweet Potato Breeding. Beijing: China Agriculture Press, 1998. p 58 (in Chinese)



[25]Galtier N, Foyer C H, Huber J, Voelker T A, Huber S C. Effects of elevated sucrose-phosphate synthase activity on photosynthesis, assimilate partitioning, and growth in tomato. Plant Physiol, 1993, 101: 535–543



[26]Farrar J, Pollock C, Gallagher J. Sucrose and the integration of metabolism in vascular plants. Plant Sci 2000, 154: 1–11



[27]Roitsch T, González M C. Function and regulation of plant invertases: sweet sensations. Trends Plant Sci, 2004, 9: 606–610



[28]Hendriks J H, Kolbe A, Gibon Y, Stitt M, Geigenberger P. ADP-glucose pyrophosphorylase is activated by posttranslational redoxmodification in response to light and to sugars in leaves of Arabidopsis and other plant species. Plant Physiol, 2003, 133: 838–849



[29]Rontein D, Dieuaide-Noubhani M, Dufourc E J, Raymond P, Rolin D. The metabolic architecture of plant cells. Stability of central metabolism and flexibility of anabolic pathways during the growth cycle of tomato cells. J Biol Chem, 2002, 277: 43948–43960



[30]Lalonde S, Wipf D, Frommer W B. Transport mechanisms for organic forms of carbon and nitrogen between source and sink. Annu Rev Plant Biol, 2004, 55: 341–372



[31]Turgeon R. The role of phloem loading reconsidered. Plant Physiol, 2010, 152: 1817–1823



[32]潘秋红, 张大鹏. 植物转化酶的种类﹑特性与功能. 植物生理学通讯, 2004, 40: 275–280



Pan Q H, Zhang D P. Isoforms, characteristics and roles of plant invertases. Plant Physiol J, 2004, 40: 275–280 (in Chinese)



[33]Schiefelbein J W, Benfey P N. The development of plant roots: new approaches to underground problems. Plant Cell, 1991, 3: 1147



[34]Tang G Q, Lusvher M, Sturm A. Antisense repression of vacular and cell wall invertase in transgenic carrot alters early plant development and partitioning. Plant Cell, 1999, 11: 177–189



[35]王玮, 龚义勤, 柳李旺, 王燕, 荆赞革, 黄丹琼, 汪隆植. 萝卜肉质根膨大过程中糖含量及蔗糖代谢相关酶活性分析. 园艺学报, 2007, 34: 1313–1316



Wang W, Gong Y Q, Liu L W, Wang Y, Jing Z G, Huang D Q; Wang L Z. Changes of sugar content and sucrose metabolizing enzyme activities during fleshy tap root development in radish. Acta Hort Sin, 2007, 34: 1313–1316 (in Chinese with English abstract)



[36]姜立娜. 萝卜肉质根形成性状的分子生物学基础. 南京农业大学博士学位论文, 江苏南京, 2012. p 24



Jiang L N. Molecular characterization of taproot formation traits in radish. PhD Dissertation of Nanjing Agricultural University, Nanjing, China, 2012. p 24 (in Chinese with English abstract)



[37]Weber H, Borisjuk L, Heim U, Sauer N, Wobus U. A role for sugar transporters during seed development molecular characterization of a hexose and a sucrose carrier in fava bean seeds. Plant Cell, 1997, 9: 895–908



[38]谢鸣, 陈俊伟, 程建徽, 秦巧平, 蒋桂华, 王力宏, 王允镔, 戚行江. 杨梅果实发育与糖的积累及其关系研究. 果树学报, 2005, 6: 38–42



Xie M, Chen J W, Cheng J H, Qin Q P, Jiang G Z, Wang L H, Wang Y B, Qi X J. Studies on the fruit development and its relationship with sugar accumulation in bayberry fruit. J Fruit Sci, 2005, 6: 38–42 (in Chinese with English abstract)



[39]Kato T. Change of sucrose synthase activity in developing endosperm of rice cultivars. Crop Sci, 1995, 35: 827–831



[40]Heineke D, Sonnewald U, Büssis D, Günter G, Leidreiter K, Wilke I, Heldt H W. Apoplastic expression of yeast-derived invertase in potato. Plant Physiol, 1992, 100: 301–308



[41]Weschke W, Panitz R, Gubatz S, Wang Q, Radchuk R, Weber H, Wobus U. The role of invertases and hexose transporters incontrolling sugar ratios in maternal and filial tissues of barley caryopses during early development. Plant J, 2003, 33:395–411



[42]Weber H, Borisjuk L, Heim U, Buchner P, Wobus U. Seed coat-associated invertases of fava bean control both unloading and storage functions: cloning of cDNAs and cell type-specific expression. Plant Cell, 1995, 7: 1835–1846



[43]Wang S J, Chen M H, Yeh K W, Tsai C Y. Changes in carbohydrate content and gene expression during tuberous root development of sweet potato. J Plant Biochem Biotech, 2006, 15: 21–25



[44]许欢欢, 康健, 梁明祥. 植物果聚糖的代谢途径及其在植物抗逆中的功能研究进展. 植物学报, 2014, 2: 209–220



Zhang H H, Kang J, Liang M X. Research advances in the metabolism of fructan in plant stress resistance, Acta Bot Sin, 2014, 2: 209–220 (in Chinese with English abstract)



[45]Kǜhbauch W, Thome U. Nonstructural carbohydrates of wheat stems as influenced by sink-source manipulation. J Plant Physiol, 1989, 134: 243–250



[46]Suzuki M. Fructans in crop production and preservation. Sci Tech Fruc, 1993: 227–255



[47]Escalada J A, Moss D N. Changes in nonstructural carbohydrate fractions of developing spring wheat kernels. Crop Sci, 1976, 16: 627–631



[48]Pollock C J, Cairns A J. Fructan metabolism in grasses and cereals. Annu Rev Plant Physiol Plant Mol Biol, 1991, 42: 77–101



[49]Pollock C J. Fructans and the metabolism of sucrose in vascular plants. New Phytol, 1986, 104: 1–24



[50]Van den Ende W, Michiels A, De Roover J, Verhaert P, Van Laere A. Cloning and functional analysis of chicory root fructan1_exohydrolase I(1-FEHI):a vacuolar enzyme derived from a cell wall invertase ancestor Mass fingerprint of the 1-FEHI enzyme. Plant J, 2000, 24: 447–456



[51]Stoop J M, Van Arkel J, Hakkert J C, Tyree C, Caimi P G, Koops A J. Developmental modulation of inulin accumulation in storage organs of transgenic maize and transgenic potato. Plant Sci, 2007, 173: 172–181



[52]Caimi P G, McCole L M, Klein T M, Hershey H P. Cytosolic expression of the Bacillus amyloliquefaciens SacB protein inhibits tissue development in transgenic tobacco and potato. New Phytol, 1997, 136: 19–28



[53]Pollock C J, Jones T. Seasonal patterns of fructan metabolism in forage grasses. New Phytol, 1979, 83: 9–15

[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[8] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[9] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[10] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[11] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[12] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[13] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!