[1]梁康迳, 王雪仁, 林文雄, 陈志雄, 李亚娟. 水稻产量形成的生理生态研究进展. 中国生态农业学报, 2002, 10(3): 63–65
Liang K J, Wang X R, Lin W X, Chen Z X, Li Y J. Advancement in physiological studies on yield formation in rice. Chin J Eco-Agric, 2002, 10(3): 63–65 (in Chinese with English abstract)
[2]李朝霞, 赵世杰, 孟庆伟, 邹琦. 高粒叶比小麦群体生理基础研究进展. 麦类作物学报, 2002, 22(4): 79–83
Li Z X, Zhao S J, Meng Q W, Zou Q. Advances in the study on physiological base of wheat population with high grain leaf area ratio. J Triticeae Crops, 2002, 22(4): 79–83 (in Chinese with English abstract)
[3]史春余, 王振林, 赵秉强, 郭风法, 余松烈. 钾营养对甘薯某些生理特性和产量形成的影响. 植物营养与肥料学报, 2002, 8: 81–85
Shi C Y, Wang Z Z, Zhao B Q, Guo F F, Yu S L. Effect of potassium nutrition on some physiological characteristics and yield formation of sweet potato. Plant Nutr Fert Sci, 2002, 8: 81–85 (in Chinese with English abstract)
[4]陈晓光, 李洪民, 张爱君, 史新敏, 唐忠厚, 魏猛, 史春余. 不同氮水平下多效唑对食用型甘薯光合和淀粉积累的影响. 作物学报, 2012, 38: 1728–1733
Chen X G, Li H M, Zhang A J, Shi X M, Tang Z H, Wei M, Shi C Y. Effect of paclobutrazol under different N-application rates on photosynthesis and starch accumulation in edible sweet potato. Acta Agron Sin, 2012, 38: 1728–1733 (in Chinese with English abstract)
[5]马代夫, 朱崇文. 甘薯壮苗增产的生理特点分析. 作物杂志, 1989, (4): 22–23
Ma D F, Zhu C W. Physiological basis of sweet potato strong seedling on high tuberous root yield. Crops, 1989, 4: 22–23 (in Chinese)
[6]周全卢. 秋甘薯不同类型品种干物质积累特性研究. 西南大学硕士学位论文, 重庆, 2007. p 52
Zhou Q L. Research of Dry Matter Accumulating Characters on Autumn Sweet Potato Varieties of Different Types. MS Thesis of Southwest University, Chongqing, China, 2007. p 52 (in Chinese with English abstract)
[7]王翠娟, 史春余, 王振振, 柴沙沙, 史衍玺. 覆膜栽培对甘薯幼根生长发育、块根形成及产量的影响, 作物学报, 2014, 40: 1677–1685
Wang C J, Shi C Y, Wang Z Z, Chai S S, Shi Y X. Effects of plastic film mulching cultivation on young roots growth development, tuber formation and tuber yield of sweet potato. Acta Agron Sin, 2014, 40: 1677–1685 (in Chinese with English abstract)
[8]陆漱韵, 刘庆昌, 李惟基. 甘薯育种学. 北京: 中国农业出版社, 1998. p 211
Lu S Y, Liu Q C, Li W J. Sweet Potato Breeding. Beijing: China Agriculture Press, 1998. p 211 (in Chinese)
[9]Villordon A Q, La Bonte D R, Firon N, Kfir Y, Pressman E, Schwartz A. Characterization of adventitious root development in sweet potato. Hort Sci, 2009, 44: 651–655
[10]Dubrovsky J G, Forde B G. Quantitative analysis of lateral root development: pitfalls and how to avoid them. Plant Cell, 2012, 24: 4–14
[11]Villordon A, LaBonte D, Solis J, Firon N. Characterization of lateral root development at the onset of storage root initiation in ‘Beauregard’ sweet potato adventitious roots. Hort Sci, 2012, 47: 961–968
[12]Villordon A Q, Clark C A. Variation in virus symptom development and root architecture attributes at the onset of storage root initiation in ‘Beauregard’ sweet potato plants grown with or without nitrogen. PloS One, 2014, 9: e107384
[13]潘庆民, 韩兴国, 白永飞, 杨景成. 植物非结构性贮藏碳水化合物的生理生态学研究进展, 植物学通报, 2002, (1): 30–38
Pan Q M, Han X G, Bai Y F, Yang J C. Advances in physiology and ecology studies on stored non-structure carbohydrates in plants. Chin Bull Bot, 2002, (1): 30–38 (in Chinese with English abstract)
[14]Kage H, Kochler M, Stutzel H. Root growth and dry matter partitioning of cauliflower under drought stress conditions: measurement and simulation. Eur J Agron, 2004, 20: 379–394
[15]Davidson A, Keller F, Turgeon R. Phloem loading, plant growth form, and climate. Protoplasma, 2011, 248: 153–163
[16]刘颖慧, 贾海坤, 高琼. 植物同化物分配及其模型研究综述, 生态学报, 2006, 26: 1981–1992
Liu Y H, Jia H K, Gao Q. Review on researches of photoassimilates partitioning and its models. Acta Ecol Sin, 2006, 26: 1981–1992 (in Chinese with English abstract)
[17]Noh S A, Lee H S, Kim Y S, Paek K H, Shin J S, Bae J M. Down-regulation of the IbEXP1 gene enhanced storage root development in sweet potato. J Exp Bot, 2013, 64: 129–142
[18]Tanaka M, Kato N, Nakayama H, Nakatani M., Takahata Y. Expression of class 1Knotted1-like homeobox genes in the storage roots of sweet potato (Ipomoea batatas). J Plant Physiol, 2008, 165: 1726–1735
[19]Ravi V, Indira P. Crop physiology of sweet potato. In: Janick J ed. Horticultural reviews, John Wiley & Sons, Inc, New York, 1999, Vol. 23, pp 277–339.
[20]Wilson L A, Low S B. The anatomy of the root system in West Indian sweet potato cultivars. Ann Bot, 1973, 37: 633–643
[21]BelehuT, Hammes P S, Robbertse P J. The origin and structure of adventitious roots in sweet potato (Ipomoea batatas). Aust J Bot, 2004, 52: 551–558
[22]Casimiro I, Beeckman T, Graham N, Bhalerao R, Zhang H, Casero P, Bennett M J. Dissecting Arabidopsis lateral root development. Trends Plant Sci, 2003, 8: 165–171
[23]Kays S J. The physiology of yield in the sweet potato. A Natu Reso Trop, 1985, 1: 79–132
[24]陆漱韵, 刘庆昌, 李惟基. 甘薯育种学. 北京: 中国农业出版社, 1998. p 58
Lu S Y, Liu Q C, Li W J. Sweet Potato Breeding. Beijing: China Agriculture Press, 1998. p 58 (in Chinese)
[25]Galtier N, Foyer C H, Huber J, Voelker T A, Huber S C. Effects of elevated sucrose-phosphate synthase activity on photosynthesis, assimilate partitioning, and growth in tomato. Plant Physiol, 1993, 101: 535–543
[26]Farrar J, Pollock C, Gallagher J. Sucrose and the integration of metabolism in vascular plants. Plant Sci 2000, 154: 1–11
[27]Roitsch T, González M C. Function and regulation of plant invertases: sweet sensations. Trends Plant Sci, 2004, 9: 606–610
[28]Hendriks J H, Kolbe A, Gibon Y, Stitt M, Geigenberger P. ADP-glucose pyrophosphorylase is activated by posttranslational redoxmodification in response to light and to sugars in leaves of Arabidopsis and other plant species. Plant Physiol, 2003, 133: 838–849
[29]Rontein D, Dieuaide-Noubhani M, Dufourc E J, Raymond P, Rolin D. The metabolic architecture of plant cells. Stability of central metabolism and flexibility of anabolic pathways during the growth cycle of tomato cells. J Biol Chem, 2002, 277: 43948–43960
[30]Lalonde S, Wipf D, Frommer W B. Transport mechanisms for organic forms of carbon and nitrogen between source and sink. Annu Rev Plant Biol, 2004, 55: 341–372
[31]Turgeon R. The role of phloem loading reconsidered. Plant Physiol, 2010, 152: 1817–1823
[32]潘秋红, 张大鹏. 植物转化酶的种类﹑特性与功能. 植物生理学通讯, 2004, 40: 275–280
Pan Q H, Zhang D P. Isoforms, characteristics and roles of plant invertases. Plant Physiol J, 2004, 40: 275–280 (in Chinese)
[33]Schiefelbein J W, Benfey P N. The development of plant roots: new approaches to underground problems. Plant Cell, 1991, 3: 1147
[34]Tang G Q, Lusvher M, Sturm A. Antisense repression of vacular and cell wall invertase in transgenic carrot alters early plant development and partitioning. Plant Cell, 1999, 11: 177–189
[35]王玮, 龚义勤, 柳李旺, 王燕, 荆赞革, 黄丹琼, 汪隆植. 萝卜肉质根膨大过程中糖含量及蔗糖代谢相关酶活性分析. 园艺学报, 2007, 34: 1313–1316
Wang W, Gong Y Q, Liu L W, Wang Y, Jing Z G, Huang D Q; Wang L Z. Changes of sugar content and sucrose metabolizing enzyme activities during fleshy tap root development in radish. Acta Hort Sin, 2007, 34: 1313–1316 (in Chinese with English abstract)
[36]姜立娜. 萝卜肉质根形成性状的分子生物学基础. 南京农业大学博士学位论文, 江苏南京, 2012. p 24
Jiang L N. Molecular characterization of taproot formation traits in radish. PhD Dissertation of Nanjing Agricultural University, Nanjing, China, 2012. p 24 (in Chinese with English abstract)
[37]Weber H, Borisjuk L, Heim U, Sauer N, Wobus U. A role for sugar transporters during seed development molecular characterization of a hexose and a sucrose carrier in fava bean seeds. Plant Cell, 1997, 9: 895–908
[38]谢鸣, 陈俊伟, 程建徽, 秦巧平, 蒋桂华, 王力宏, 王允镔, 戚行江. 杨梅果实发育与糖的积累及其关系研究. 果树学报, 2005, 6: 38–42
Xie M, Chen J W, Cheng J H, Qin Q P, Jiang G Z, Wang L H, Wang Y B, Qi X J. Studies on the fruit development and its relationship with sugar accumulation in bayberry fruit. J Fruit Sci, 2005, 6: 38–42 (in Chinese with English abstract)
[39]Kato T. Change of sucrose synthase activity in developing endosperm of rice cultivars. Crop Sci, 1995, 35: 827–831
[40]Heineke D, Sonnewald U, Büssis D, Günter G, Leidreiter K, Wilke I, Heldt H W. Apoplastic expression of yeast-derived invertase in potato. Plant Physiol, 1992, 100: 301–308
[41]Weschke W, Panitz R, Gubatz S, Wang Q, Radchuk R, Weber H, Wobus U. The role of invertases and hexose transporters incontrolling sugar ratios in maternal and filial tissues of barley caryopses during early development. Plant J, 2003, 33:395–411
[42]Weber H, Borisjuk L, Heim U, Buchner P, Wobus U. Seed coat-associated invertases of fava bean control both unloading and storage functions: cloning of cDNAs and cell type-specific expression. Plant Cell, 1995, 7: 1835–1846
[43]Wang S J, Chen M H, Yeh K W, Tsai C Y. Changes in carbohydrate content and gene expression during tuberous root development of sweet potato. J Plant Biochem Biotech, 2006, 15: 21–25
[44]许欢欢, 康健, 梁明祥. 植物果聚糖的代谢途径及其在植物抗逆中的功能研究进展. 植物学报, 2014, 2: 209–220
Zhang H H, Kang J, Liang M X. Research advances in the metabolism of fructan in plant stress resistance, Acta Bot Sin, 2014, 2: 209–220 (in Chinese with English abstract)
[45]Kǜhbauch W, Thome U. Nonstructural carbohydrates of wheat stems as influenced by sink-source manipulation. J Plant Physiol, 1989, 134: 243–250
[46]Suzuki M. Fructans in crop production and preservation. Sci Tech Fruc, 1993: 227–255
[47]Escalada J A, Moss D N. Changes in nonstructural carbohydrate fractions of developing spring wheat kernels. Crop Sci, 1976, 16: 627–631
[48]Pollock C J, Cairns A J. Fructan metabolism in grasses and cereals. Annu Rev Plant Physiol Plant Mol Biol, 1991, 42: 77–101
[49]Pollock C J. Fructans and the metabolism of sucrose in vascular plants. New Phytol, 1986, 104: 1–24
[50]Van den Ende W, Michiels A, De Roover J, Verhaert P, Van Laere A. Cloning and functional analysis of chicory root fructan1_exohydrolase I(1-FEHI):a vacuolar enzyme derived from a cell wall invertase ancestor Mass fingerprint of the 1-FEHI enzyme. Plant J, 2000, 24: 447–456
[51]Stoop J M, Van Arkel J, Hakkert J C, Tyree C, Caimi P G, Koops A J. Developmental modulation of inulin accumulation in storage organs of transgenic maize and transgenic potato. Plant Sci, 2007, 173: 172–181
[52]Caimi P G, McCole L M, Klein T M, Hershey H P. Cytosolic expression of the Bacillus amyloliquefaciens SacB protein inhibits tissue development in transgenic tobacco and potato. New Phytol, 1997, 136: 19–28
[53]Pollock C J, Jones T. Seasonal patterns of fructan metabolism in forage grasses. New Phytol, 1979, 83: 9–15 |