欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (12): 3179-3191.doi: 10.3724/SP.J.1006.2022.13073

• 耕作栽培·生理生化 • 上一篇    下一篇

玉米耐高密品种冠层光氮分布及匹配特征研究

王梦(), 周光远(), 高聚林(), 于晓芳, 孙继颖, 胡树平, 青格尔, 屈佳伟, 马达灵, 王志刚()   

  1. 内蒙古农业大学农学院, 内蒙古呼和浩特 010019
  • 收稿日期:2021-12-09 接受日期:2022-05-05 出版日期:2022-12-12 网络出版日期:2022-05-10
  • 通讯作者: 高聚林,王志刚
  • 作者简介:王梦, E-mail: imauwangmeng@163.com;
    周光远, E-mail: imauzgy960125@163.com第一联系人:

    **同等贡献

  • 基金资助:
    国家自然科学基金项目(32160507);内蒙古自治区科技重大专项(2021SZD0012)

Distribution and matching characteristics of light and nitrogen in maize canopy of high-density tolerance varieties

WANG Meng(), ZHOU Guang-Yuan(), GAO Ju-Lin(), YU Xiao-Fang, SUN Ji-Ying, HU Shu-Ping, QING Ge-Er, QU Jia-Wei, MA Da-Ling, WANG Zhi-Gang()   

  1. College of Agronomy, Inner Mongolia Agricultural University, Hohhot 010019, Inner Mongolia, China
  • Received:2021-12-09 Accepted:2022-05-05 Published:2022-12-12 Published online:2022-05-10
  • Contact: GAO Ju-Lin,WANG Zhi-Gang
  • About author:First author contact:

    **Contributed equally to this work

  • Supported by:
    National Natural Science Foundation of China(32160507);Major Science and Technology Project of Inner Mongolia(2021SZD0012)

摘要:

在有限氮投入下通过增密种植实现玉米增产增效, 需要进一步挖掘耐密品种的光氮匹配利用潜力。揭示不同耐密品种冠层光氮空间分布和匹配特征差异, 及其与玉米产量形成及氮效率的关系, 对探索玉米产量效率层次差异消减途径具有指导意义。本试验以常规品种KH8和耐高密品种MC670为试验材料, 在减氮增密条件下, 系统分析了常规和耐密型玉米品种冠层光氮分布及匹配特征的差异。结果表明, 耐高密品种MC670穗位以上透光率较常规品种KH8高20.6%。两品种的比叶氮(specific leaf nitrogen, SLN)均表现为上层叶片、中层叶片显著高于下层叶片; MC670上层、中层叶片SLN显著高于KH8, 但下层叶片差异不显著。KH8和MC670的光氮匹配系数分别为1.28和0.86, MC670的光氮匹配系数与理想值差异较小, 说明MC670的光氮匹配程度优于KH8。综上所述, 与常规品种KH8相比, 耐高密品种MC670冠层具有较低的消光系数和较高的氮消减系数, 使耐高密品种冠层具有较优的光氮匹配程度, 同时使其中上部冠层具有更高的光合氮比例、光合氮效率和光合生产力, 这是其实现较高的氮肥生理效率、氮肥利用效率及获得高产的重要生理内因。

关键词: 玉米, 冠层, 光氮匹配, 氮效率

Abstract:

To increase maize yield and efficiency through high-density planting with limited nitrogen input, it is necessary to further explore the potential of light-nitrogen matching utilization of dense-tolerant varieties. Revealing the spatial distribution and matching characteristics of light and nitrogen in canopy in canopy of different density-tolerant varieties, and their relationship with maize yield formation and nitrogen efficiency, is of guiding significance for exploring the reduction of maize yield and efficiency hierarchy differences. In this experiment, the conventional variety KH8 and the high-density tolerant variety MC670 were used as the experimental materials. The planting density was set at 82,500 plants hm-2 and the nitrogen application rate was 150 kg hm-2, systematic analysis of the different varieties of dense canopy light resistant nitrogen differences in spatial distribution and matching characteristics. The results showed that the transmittance of MC670 was 20.6% significantly higher than that of KH8. SLN (specific leaf nitrogen) of upper and middle leaves was significantly higher than that of lower leaves in both cultivars. The SLN of upper and middle leaves of MC670 was significantly higher than that of KH8, but the difference of lower leaves was not significant. The matching coefficients of light and nitrogen for KH8 and MC670 were 1.28 and 0.86, respectively. The difference between the matching coefficients of light and nitrogen for MC670 and the ideal value was small, indicating that the matching degree of light and nitrogen for MC670 was better than KH8. In conclusion, compared with the conventional varieties KH8, the canopy of high-density resistant varieties MC670 had lower extinction coefficient and higher nitrogen reduction coefficient, which made the canopy of high-density resistant varieties had a better light nitrogen matching degree. Meanwhile, the middle and upper canopy had higher ratio of light and nitrogen, photosynthetic productivity, and photosynthetic nitrogen ratio. This is an important physiological factor to achieve higher nitrogen physiological efficiency, nitrogen use efficiency and high yield.

Key words: maize, canopy, photo-nitrogen matching, nitrogen use efficiency

图1

叶片生物量及氮素测量的叶片分层(左)及冠层PAR测量时冠层分层示意图"

图2

常规和耐密玉米品种冠层光分布比较 不同字母表示处理间差异达到0.05显著水平; 箭头指示穗位叶高度。"

图3

常规和耐密玉米品种冠层透光率(I/I0)比较 不同字母表示处理间差异达到0.05显著水平; 箭头指示穗位叶高度。"

图4

常规和耐密玉米品种冠层不同层次叶面积差异 不同字母表示处理间差异达到0.05显著水平。"

图5

常规和耐密玉米品种冠层PAR随累积LAI的变化规律 不同字母表示处理间差异达到0.05显著水平。"

图6

常规和耐密玉米品种冠层比叶氮分布比较 不同字母表示处理间差异达到0.05显著水平。"

图7

常规和耐密玉米品种冠层比叶氮与累积LAI的关系 不同字母表示处理间差异达到0.05显著水平。"

图8

常规和耐密玉米品种冠层比叶氮与相对累积叶面积指数的关系 不同字母表示处理间差异达到0.05显著水平。"

图9

常规和耐密玉米品种冠层比叶氮随冠层PAR变化规律 不同字母表示处理间差异达到0.05显著水平。"

表1

常规和耐密玉米品种光氮匹配程度比较"

年份
Year
品种
Cultivar
光分布模型
Light distribution model
R2 KL 氮分布模型
Nitrogen distribution model
R2 Kb KL/Kb
2018 KH8 Y=1614.64×e-0.4380X 0.9727 0.438 Y=2.58×e-0.3304X 0.9938 0.3304 1.326
MC670 Y=1728.80×e-0.4180X 0.9714 0.418 Y=3.26×e-0.5049X 0.9908 0.5049 0.828
2019 KH8 Y=1638.65×e-0.4820X 0.9954 0.482 Y=2.61×e-0.3897X 0.9703 0.3897 1.237
MC670 Y=1731.95×e-0.4480X 0.9801 0.448 Y=3.24×e-0.5054X 0.9678 0.5054 0.886

图10

常规和耐密玉米品种叶片净光合速率比较 不同字母表示处理间差异达到0.05显著水平。"

图11

常规和耐密玉米品种冠层光合氮效率比较 不同字母表示处理间差异达到0.05显著水平。"

图12

常规和耐密玉米品种冠层光合生产力比较 不同字母表示处理间差异达到0.05显著水平。"

图13

常规和耐密玉米品种叶片干物质积累量比较 不同字母表示处理间差异达到0.05显著水平。"

表2

常规和耐密玉米品种吐丝期叶片氮积累量及氮组分分析"

叶片层位
Leaf level
氮积累量
Nitrogen accumulation
光合氮积累量
Photosynthetic nitrogen
accumulation
基质氮积累量
Substrate nitrogen
accumulation
结构氮积累量
Structural nitrogen
accumulation
KH8 MC670 KH8 MC670 KH8 MC670 KH8 MC670
上层叶片
Upper leaf
39.2 Aa
38.2 Aa
13.4 Aa
14.5 Aa
12.7 Aa
13.1 Aa
12.9 Aa
10.8 Ba
中层叶片
Middle leaf
33.8 Bb
40.3 Aa
11.3 Bb
14.9 Aa
10.6 Bb
12.9 Aa
11.8 Aa
12.5 Aa
下层叶片
Lower leaf
20.7 Bc
29.9 Ab
6.1 Bc
9.6 Ab
6.2 Bc
8.9 Ab
8.4 Bc
11.3 Aa

图14

常规和耐密玉米品种叶片氮组分占叶片总氮的百分比 不同字母表示处理间差异达到0.05显著水平。"

表3

常规和耐密玉米品种产量及氮效率比较"

年份
Year
品种
Cultivar
产量
Grain yield
(t hm-2)
氮肥利用效率
N use efficiency
(kg kg-1)
氮肥生理效率
N internal efficiency
(kg kg-1)
氮肥吸收效率
N recovery efficiency
(kg kg-1)
2018 KH8 14.30 b 8.27 b 39.36 b 0.21 a
MC670 15.90 a 13.33 a 51.28 a 0.26 a
2019 KH8 13.24 b 8.67 b 31.73 b 0.27 a
MC670 14.90 a 12.93 a 45.19 a 0.29 a
[1] 杨哲. 栽培措施对春玉米产量差和效率差的贡献及其调控机制. 内蒙古农业大学硕士学位论文, 内蒙古呼和浩特, 2018.
Yang Z. Contribution of Management Factors to the Gaps of Yield and Resource Use Efficiency of Spring Maize and Regulating Pathway. MS Thesis of Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China, 2018. (in Chinese with English abstract)
[2] 张卫建. 对我国玉米绿色增产增效栽培技术的探讨: 增密减氮. 作物杂志, 2015, (4): 1-4.
Zhang W J. On the cultivation approach to green improvement of maize yield and N use efficiency in China: dense planting with less N fertilizer. Crops, 2015, (4): 1-4. (in Chinese with English abstract)
[3] 张鹤宇. 增密减氮对不同耐密性春玉米品种产量及氮肥利用效率的影响. 内蒙古农业大学硕士学位论文, 内蒙古呼和浩特, 2018.
Zhang H Y. Effect of Increasing Density and Decreasing Nitrogen Rate on Yield and Nitrogen Use Efficiency of Different Density Tolerance Spring Maize. MS Thesis of Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China, 2018. (in Chinese with English abstract)
[4] 程松. 不同基因型玉米对氮肥及密度的响应差异. 沈阳农业大学硕士学位论文, 辽宁沈阳, 2019.
Cheng S. Responses of Different Maize Genotypes to Nitrogen Fertilizer and Density. MS Thesis of Shenyang Agricultural University, Shenyang, Liaoning, China, 2019. (in Chinese with English abstract)
[5] 王强. 光、氮及其互作对水稻物质生产和氮效率的影响. 华中农业大学硕士学位论文, 湖北武汉, 2006.
Wang Q. Interactive Effects of Light Condition and Nitrogen Supply on Dry Matter Production and Nitrogen Use Efficiency of Rice. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2006. (in Chinese with English abstract)
[6] Grindlay D J C. Towards an explanation of crop nitrogen demand based on the optimization of leaf nitrogen per unit leaf area. J Agric Sci, 1997, 128: 377-396.
doi: 10.1017/S0021859697004310
[7] Dreccer M F, Slafer G A, Rabbinge R. Optimization of vertical distribution of canopy nitrogen: an alternative trait to increase yield potential in winter cereals. J Crop Prod, 1998, 1: 47-77.
doi: 10.1300/J144v01n01_03
[8] Hikosaka K. Leaf canopy as a dynamic system: ecophysiology and optimality in leaf turnover. Ann Bot, 2005, 95: 521-533.
doi: 10.1093/aob/mci050
[9] Markus L, Katharina S, Hans S. Vertical leaf nitrogen distribution in relation to nitrogen status in grassland plants. Ann Bot, 1993, 2: 679-688.
[10] Anten N, Schieving F, Werger M. Patterns of light and nitrogen distribution in relation to whole canopy carbon gain in C3 and C4 monoand dicotyledonous species. Oecologia, 1995, 101: 504-513.
doi: 10.1007/BF00329431 pmid: 28306967
[11] Dreccer M F, van Oijen M, Schapendonk A H C M, Pot C S, Rabbinge R. Dynamics of vertical leaf nitrogen distribution in a vegetative wheat canopy. Impact on canopy photosynthesis. Ann Bot, 2000, 86: 821-831.
doi: 10.1006/anbo.2000.1244
[12] Hikosaka K, Terashima I, Katoh S. Effects of leaf age, nitrogen nutrition and photon flux density on the distribution of nitrogen among leaves of a vine (Ipomoea tricolor Cav.) grown horizontally to avoid mutual shading of leaves. Oecologia, 1994, 97: 451-457.
doi: 10.1007/BF00325881 pmid: 28313732
[13] Drouet J L, Bonhomme R. Do variations in local leaf irradiance explain changes to leaf nitrogen within row maize canopies? Ann Bot, 1999, 84: 61-69.
doi: 10.1006/anbo.1999.0890
[14] Yin X Y, Lantinga E A, Schapendonk A H C M, Zhong X H. Some quantitative relationships between leaf area index and canopy nitrogen content and distribution. Ann Bot, 2003, 91: 893-903.
doi: 10.1093/aob/mcg096
[15] Hikosaka K. Optimal nitrogen distribution within a leaf canopy under direct and diffuse light. Plant Cell Environ, 2014, 37: 2077-2085.
doi: 10.1111/pce.12291
[16] Hirose T, Werger M J A. Maximizing daily canopy photosynthesis with respect to the leaf nitrogen allocation pattern in the canopy. Oecologia, 1987, 72: 520-526.
doi: 10.1007/BF00378977 pmid: 28312513
[17] Hikosaka K, Anten N, Borjigidai A, Kamiyama C, Sakai H, Hasegawa T, Oikawa S, Iio A, Watanabe M, Koike T, Nishina K. A meta-analysis of leaf nitrogen distribution within plant canopies. Ann Bot, 2016, 118: 239-247.
doi: 10.1093/aob/mcw099
[18] 赵久然, 王荣焕. 再议玉米耐密型品种的选育鉴定及配套栽培技术. 玉米科学, 2008, 16(4): 5-7.
Zhao J R, Wang R H. Further Discussion on the breeding and cultivation techniques for high density tolerant maize cultivars. J Maize Sci, 2008, 16(4): 5-7. (in Chinese with English abstract)
[19] 洪德峰, 马俊, 卫晓轶, 程东祥, 马毅, 魏锋, 王稼苜, 唐振海. 高密再增密对玉米植株特性、产量及耐密性的影响. 耕作与栽培, 2019, 39(6): 33-37.
Hong D F, Ma J, Wei X Y, Cheng D X, Ma Y, Wei F, Wang J M, Tang Z H. Effects of high density with increasing density on plant characteristics and yield characteristics and density tolerance of maize. Tillage Cult, 2019, 39(6): 33-37. (in Chinese with English abstract)
[20] 任文祥, 武开业. Smartchem 140全自动化学分析仪测定地表水中的硝酸盐和亚硝酸盐. 分析试验室, 2010, 29(增刊1): 348-349.
Ren W X, Wu K Y. Determination of nitrate and nitrite in surface water by Smartchem 140 automatic chemical analyzer. Chin J Anal Lab, 2010, 29(S1): 348-349 (in Chinese with English abstract).
[21] 吕伟仙, 葛滢, 吴建之, 常杰. 植物中硝态氮、铵态氮、总氮测定方法的比较研究. 光谱学与光谱分析, 2004, 24: 204-206.
Lyu W X, Ge Y, Wu J Z, Chang J. Study on the method for the determination of nitric nitrogen ammoniacal nitrogen and total nitrogen in plant. Spectr Spectr Anal, 2004, 24: 204-206. (in Chinese with English abstract)
[22] 波钦诺克, 荆家海, 丁钟荣. 植物生物化学分析方法. 北京: 科学出版社, 1981. pp 91-95.
Buchinock X H, Jing J H, Ding Z R. Analysis Method for Plant Biochemistry. Beijing: Science Press, 1981. pp 91-95 (in Chinese).
[23] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2002. pp 192-193.
Li H S. Experimental Principle and Technique for Plant Physiology. Beijing: Higher Education Press, 2002. pp 192-193. (in Chinese)
[24] Markus L, Katharina S, Hans S. Vertical leaf nitrogen distribution in relation to nitrogen status in grassland plants. Ann Bot, 2003, 92: 679-688.
doi: 10.1093/aob/mcg188
[25] 庄克章, 郭新宇, 王纪华, 王空军. 作物冠层中叶片氮素垂直分布研究进展. 玉米科学, 2006, 14(2): 104-107.
Zhuang K Z, Guo X Y, Wang J H, Wang K J. Development of leaf nitrogen vertical distribution in crop canopy research. J Maize Sci, 2006, 14(2): 104-107. (in Chinese with English abstract)
[26] Rousseaux M C, Hall A J, Sánhez R A. Light environment, nitrogen content, and carbon balance of basal leaves of sunflower canopies. Crop Sci, 1999, 39: 1903-1100.
doi: 10.2135/cropsci1999.3961903x
[27] 吕丽华, 王璞, 易镇邪, 魏凤桐, 刘明. 密度对夏玉米品种光合特性和产量性状的影响. 玉米科学, 2007, 15(2): 79-81.
Lyu L H, Wang P, Yi Z X, Wei F T, Liu M. Effects of plant density on photosynthetic character and yield trait in summer corn. J Maize Sci, 2007, 15(2): 79-81. (in Chinese with English abstract)
[28] Chen Y L, Wu D L, Mu X H, Xiao C X, Chen F J, Yuan L X, Mi G H. Vertical distribution of photosynthetic nitrogen use efficiency and its response to nitrogen in field-grown maize. Crop Sci, 2016, 56: 397-399.
doi: 10.2135/cropsci2015.03.0170
[29] 李岚涛, 盛开, 尹焕丽, 郭娅, 王丹丹, 王宜伦. 考虑植株氮垂直分布的夏玉米营养诊断敏感位点筛选. 农业工程学报, 2020, 36(6): 56-65.
Li L T, Sheng K, Yin H L, Guo Y, Wang D D, Wang Y L. Selecting the sensitive position of maize leaves for nitrogen status diagnosis of summer maize by considering vertical nitrogen distribution in plant. Trans CSAE, 2020, 36(6): 56-65. (in Chinese with English abstract)
[30] Whitehead E I, Moxon A L, Viets F G. Nitrogen distribution in the corn plant. Agric Exp Stn Technol Bull, 1948, 6: 37-39.
[31] 范厚明, 付业春. 种植密度和氮肥用量在玉米高产栽培中的重要性研究. 安徽农业科学, 2009, 37: 7406-7407.
Fan H M, Fu Y C. Research on the impact of planting density and amount of nitrogen fertilizer on high yielding cultivation of hybrid corn. J Anhui Agric Sci, 2009, 37: 7406-7407. (in Chinese with English abstract)
[32] 勾玲, 黄建军, 张宾, 李涛, 孙锐, 赵明. 群体密度对玉米茎秆抗倒力学和农艺性状的影响. 作物学报, 2007, 10: 1688-1695.
Gou L, Huang J J, Zhang B, Li T, Sun R, Zhao M. Effects of population density on stalk lodging resistant mechanism and agronomic characteristics of maize. Acta Agron Sin, 2007, 10: 1688-1695. (in Chinese with English abstract)
[33] Shirawa T, Sinclair T R. Distribution of nitrogen among leaves in soybean canopies. Crop Sci, 1993, 33: 804-808.
doi: 10.2135/cropsci1993.0011183X003300040035x
[34] Hirose T, Werger M J A, Pons T L, Van Rheenen J W A. Canopy structure and leaf nitrogen distribution in a stand of Lysimachia vulgaris L. as influenced by stand density. Oecologia, 1988, 77: 145-150.
doi: 10.1007/BF00379180 pmid: 28310366
[35] Sadras V O, Hall A J, Connor D J. Light-associated nitrogen distribution profile in flowering canopies of sunflower (Helianthus annuus L.) altered during grain growth. Oecologia, 1993, 95: 488-494.
doi: 10.1007/BF00317432 pmid: 28313288
[36] Schieving F, Pons T L, Werger M J A, Hirose T. The vertical distribution of nitrogen and photosynthetic activity at different plant densities in Carex acutiformis. Plant Soil, 1992, 14: 9-17.
[37] Dreccer M F, van Oijen M, Schapeendonk A H C M. Dynamics of vertical leaf nitrogen distribution in a vegetative wheat canopy. Impact on canopy photosynthesis. Ann Bot, 2000, 86: 821-831.
doi: 10.1006/anbo.2000.1244
[38] De Jong T M, Doyle J F. Seasonal relationships between leaf nitrogen content (photosynthesis capacity) and leaf canopy light exposure in peach (Prunus persica). Plant Cell Environ, 1985, 8: 701-706.
[39] Field C B. Allocating leaf nitrogen for the maximization of carbon gain: leaf age as a control on the allocation program. Oecologia, 1983, 56: 341-347.
doi: 10.1007/BF00379710 pmid: 28310214
[1] 孙智超, 张吉旺. 弱光胁迫影响玉米产量形成的生理机制及调控效应[J]. 作物学报, 2023, 49(1): 12-23.
[2] 陈冰洁, 张富粮, 杨硕, 李晓立, 何堂庆, 张晨曦, 田明慧, 吴梅, 郝晓峰, 张学林. 不同形态氮肥下丛枝菌根真菌对玉米灌浆期生理特性及产量和品质的影响[J]. 作物学报, 2023, 49(1): 249-261.
[3] 张静, 王洪章, 任昊, 殷复伟, 吴红燕, 赵斌, 张吉旺, 任佰朝, 戴爱斌, 刘鹏. 夏玉米根系构型与抗根倒性能间的关系[J]. 作物学报, 2023, 49(1): 188-199.
[4] 王锐璞, 董振营, 高悦欣, 鲍建喜, 殷芳冰, 李金萍, 龙艳, 万向元. 玉米籽粒淀粉含量全基因组关联分析和候选基因预测[J]. 作物学报, 2023, 49(1): 140-152.
[5] 商蒙非, 石晓宇, 赵炯超, 李硕, 褚庆全. 气候变化背景下中国不同区域玉米生育期高温胁迫时空变化特征[J]. 作物学报, 2023, 49(1): 167-176.
[6] 段灿星, 崔丽娜, 夏玉生, 董怀玉, 杨知还, 胡清玉, 孙素丽, 李晓, 朱振东, 王晓鸣. 玉米种质资源对拟轮枝镰孢与禾谷镰孢穗腐病的抗性精准鉴定与分析[J]. 作物学报, 2022, 48(9): 2155-2167.
[7] 张振博, 屈馨月, 于宁宁, 任佰朝, 刘鹏, 赵斌, 张吉旺. 施氮量对夏玉米籽粒灌浆特性和内源激素作用的影响[J]. 作物学报, 2022, 48(9): 2366-2376.
[8] 郭瑶, 柴强, 殷文, 范虹. 玉米密植光合生理机制及应用途径研究进展[J]. 作物学报, 2022, 48(8): 1871-1883.
[9] 王天波, 赫文学, 张峻铭, 吕伟增, 梁雨欢, 卢洋, 王雨露, 谷丰序, 宋词, 陈军营. 人工老化玉米种胚ROS产生及ATP合成酶亚基mRNA完整性研究[J]. 作物学报, 2022, 48(8): 1996-2006.
[10] 裴丽珍, 陈远学, 张雯雯, 肖华, 张森, 周元, 徐开未. 有机物料还田对夏玉米穗位叶光合性能及氮代谢的影响[J]. 作物学报, 2022, 48(8): 2115-2124.
[11] 杨迎霞, 张冠, 王梦梦, 陆国清, 王倩, 陈锐. 基于高通量测序技术的转基因玉米GM11061分子特征研究[J]. 作物学报, 2022, 48(7): 1843-1850.
[12] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[13] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[14] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[15] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .