欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (12): 3192-3202.doi: 10.3724/SP.J.1006.2022.11106

• 耕作栽培·生理生化 • 上一篇    下一篇

中国主要麦区小麦品种(系)产量与需硫特征关系分析

牟文燕1(), 褚宏欣1, 黄宁1, 张露露1, 张学美1, 郭子糠1, 黄翠1, 孙利谦1, 魏蕾1, 罗一诺1, 王朝辉1,2(), 刘金山1,2()   

  1. 1西北农林科技大学资源环境学院 / 农业农村部西北植物营养与农业环境重点实验室, 陕西杨凌 712100
    2西北农林科技大学 / 旱区作物逆境生物学国家重点实验室, 陕西杨凌 712100
  • 收稿日期:2021-11-30 接受日期:2022-05-05 出版日期:2022-12-12 网络出版日期:2022-05-23
  • 通讯作者: 王朝辉,刘金山
  • 作者简介:E-mail: 17854270855@163.com
  • 基金资助:
    财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-3);国家重点研发计划项目(2018YFD0200400)

Relationship between grain yield and sulfur requirement characteristics of wheat cultivars (lines) in main wheat production regions of China

MU Wen-Yan1(), CHU Hong-Xin1, HUANG Ning1, ZHANG Lu-Lu1, ZHANG Xue-Mei1, GUO Zi-Kang1, HUANG Cui1, SUN Li-Qian1, WEI Lei1, LUO Yi-Nuo1, WANG Zhao-Hui1,2(), LIU Jin-Shan1,2()   

  1. 1College of Natural Resources and Environment, Northwest A&F University / Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China
    2Northwest A&F University / State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi, China
  • Received:2021-11-30 Accepted:2022-05-05 Published:2022-12-12 Published online:2022-05-23
  • Contact: WANG Zhao-Hui,LIU Jin-Shan
  • Supported by:
    China Agriculture Research System of MOF and MARA(CARS-3);National Key Research and Development Program of China(2018YFD0200400)

摘要:

明确我国主要麦区主栽小麦品种(系)需硫量与籽粒产量和硫含量的关系, 为我国小麦合理施用硫肥和丰产优质绿色生产提供依据。于2017—2020年在我国西北旱地小麦种植区(旱作区)、华北小麦玉米轮作区(麦玉区)和南方水稻小麦轮作区(稻麦区)进行田间试验, 以各麦区主栽高产品种(系)为材料, 研究了各区域主栽小麦品种(系)的籽粒产量、硫含量和需硫量及其相互关系。旱作区、麦玉区和稻麦区主栽小麦品种(系)产量范围分别为4.1~6.9、6.2~9.3和4.4~7.1 t hm-2, 平均为5.9、8.1和5.9 t hm-2; 籽粒硫含量范围分别为1.73~2.27、1.59~2.01和1.42~1.73 g kg-1, 平均为1.98、1.78和1.53 g kg-1; 同一产量水平下不同小麦品种(系)籽粒硫含量差异显著。旱作区、麦玉区和稻麦区主栽小麦品种(系)的需硫量分别介于3.7~5.3、3.1~4.2和2.1~6.1 kg Mg-1, 平均为4.5、3.7、3.7 kg Mg-1; 产量由低产增至高产时, 旱作区与稻麦区小麦品种(系)需硫量分别降低16.3%和23.4%, 而麦玉区增加7.6%; 籽粒硫含量由1.5 g kg-1增至1.8 g kg-1时, 旱作区小麦品种(系)的需硫量增加17.2%, 籽粒硫含量由1.2 g kg-1增至1.8 g kg-1时, 麦玉区和稻麦区小麦品种(系)需硫量增加21.4%和116.5%。小麦生产中施用硫肥时, 应根据不同麦区种植的小麦品种(系)产量和硫含量差异确定需硫量, 再结合土壤供硫能力, 确定合理的硫肥施用量。

关键词: 不同种植区, 小麦主栽品种(系), 产量, 需硫量, 硫含量

Abstract:

The objective of this study is to clarify relationships of sulfur requirement to grain yield, and sulfur concentration of leading wheat cultivars (lines) in main wheat production regions in China, and to provide a strategy for ensuring reasonable sulfur fertilizer application and high yield and good quality. To study the relationships of grain yield, sulfur concentration and sulfur requirement of wheat cultivars (lines) under intensive agricultural cultivation, field experiment were conducted during 2017-2020 in the dryland wheat growing area in Northwest China (Dryland Wheat Regions), wheat-maize rotation area in North China (Wheat-Maize Regions), rice wheat rotation area in South China (Rice-Wheat regions). The grain yield of leading wheat cultivars (lines) in these regions were 4.1-6.9, 6.2-9.3, and 4.4-7.1 t hm-2, with the average of 5.9, 8.1, and 5.9 t hm-2; and the grain sulfur concentration was 1.73-2.27, 1.59-2.01, and 1.42-1.73 g kg-1, with the average of 1.98, 1.78, and 1.53 g kg-1, respectively. There were significant differences in grain sulfur concentration among different wheat cultivars (lines) under the same yield level. The sulfur requirement of leading wheat cultivars (lines) was 3.7-5.3, 3.1-4.2, and 2.1-6.1 kg Mg-1, with the average of 4.5, 3.7, and 3.7 kg Mg-1 in Dryland Wheat Regions, Wheat-Maize Regions, and Rice-Wheat regions, respectively. With the increase in yield from the very low to the very high levels, the sulfur requirement average declined by 16.3% and 23.4% in Dryland Wheat Regions and Rice-Wheat regions, respectively, while increased by 7.6% in Wheat Maize Regions. Moreover, with the increase in sulfur concentration from 1.5 g kg-1 to 1.8 g kg-1, the sulfur requirement of wheat cultivars (lines) increased by 17.2% in Dryland Wheat Regions, when the sulfur concentration was increased from 1.2 g kg-1 to 1.8 g kg-1, the sulfur requirement of wheat cultivars (lines) increased by 21.4% and 116.5% in Wheat-Maize Regions and Rice-Wheat regions, respectively. Therefore, the optimization of sulfur fertilizer application should be based on grain yield, sulfur concentration of wheat cultivars (lines), and soil sulfur supply capacities of soils in specific region.

Key words: different planting regions, leading wheat cultivars (lines), yield, sulfur requirement, sulfur concentration

表1

各麦区试验地点0~20 cm土壤基本理化性质的平均值"

麦区
Wheat region
全氮
TN
(g kg-1)
硝态氮
NN
(mg kg-1)
铵态氮
AN
(mg kg-1)
有效磷
AP (P)
(mg kg-1)
速效钾
AK (K)
(mg kg-1)
pH 有机质
OM
(g kg-1)
有效硫
AS
(mg kg-1)
旱作区DW 0.8±0.04 10.7±8.3 0.2±0.3 11.8±8.2 150±11.9 8.2±0.2 16.8±2.6 8.5±4.0
麦玉区MW 1.1±0.2 20.5±7.4 7.3±6.3 37.7±19.3 191±54.4 7.7±0.8 22.8±4.6 21.7±17.9
稻麦区RW 1.5±0.4 17.3±7.9 12±5.4 26.9±6.3 161±35.0 6.2±0.8 30.5±7.4 28.2±14.1

表2

中国主要麦区主栽小麦品种(系)籽粒产量与硫含量分布"

麦区
Wheat region
产量 Yield 籽粒硫含量 Grain sulfur concentration
产量等级
Yield level
(t hm-2)
样本数(频率%)
Sample size
(frequency %)
产量
Yield
(t hm-2)
硫含量等级
Sulfur concentration
level (g kg-1)
样本数(频率%)
Sample size
(frequency %)
硫含量
Sulfur concentration
(g kg-1)
旱作区
DW
低产VL (<5.3) 10 (9.7) 4.7±0.43 e 低硫VLS (<1.84) 11 (10.7) 1.78±0.03 e
偏低L (5.3-5.7) 18 (17.5) 5.5±0.12 d 偏低硫LS (1.84-1.93) 25 (24.3) 1.87±0.03 d
中产M (5.7-6.1) 32 (31.1) 5.9±0.11 c 中硫MS (1.93-2.03) 34 (33.0) 1.95±0.03 c
偏高H (6.1-6.5) 32 (31.1) 6.2±0.10 b 偏高硫HS (2.03-2.12) 17 (16.5) 2.06±0.03 b
高产VH (≥6.5) 11 (10.7) 6.7±0.12 a 高硫VHS (≥2.12) 16 (15.5) 2.20±0.04 a
麦玉区
MW
低产VL (<7.3) 18 (14.8) 7.0±0.32 e 低硫VLS (<1.66) 17 (13.9) 1.63±0.02 e
偏低L (7.3-7.8) 19 (15.6) 7.6±0.17 d 偏低硫LS (1.66-1.74) 30 (24.6) 1.69±0.02 d
中产M (7.8-8.4) 43 (35.2) 8.1±0.16 c 中硫MS (1.74-1.82) 33 (27.0) 1.77±0.02 c
偏高H (8.4-8.9) 24 (19.7) 8.7±0.16 b 偏高硫HS (1.82-1.90) 27 (22.1) 1.85±0.02 b
高产VH (≥8.9) 18 (14.8) 9.1±0.11 a 高硫VHS (≥1.90) 15 (12.3) 1.94±0.04 a
稻麦区
RW
低产VL (<5.0) 8 (21.1) 4.7±0.24 e 低硫VLS (<1.44) 2 (5.3) 1.44±0.01 e
偏低L (5.0-5.6) 5 (13.2) 5.4±0.22 d 偏低硫LS (1.44-1.50) 12 (31.6) 1.49±0.02 d
中产M (5.6-6.2) 7 (18.4) 6.0±0.14 c 中硫MS (1.50-1.56) 14 (36.8) 1.51±0.02 c
偏高H (6.2-6.9) 16 (42.1) 6.5±0.16 b 偏高硫HS (1.56-1.62) 4 (10.5) 1.58±0.01 b
高产VH (≥6.9) 2 (5.3) 7.1±0.04 a 高硫VHS (≥1.62) 6 (15.8) 1.72±0.05 a

图1

中国主要麦区主栽小麦品种(系)籽粒硫含量和产量的关系 盒内黑色实线和红色虚线分别表示中位数和平均数; 盒子的上、下边缘线分别表示数据集的75%和25%分位数; 上、下误差线分别表示95%和5%分位数; “·”代表小于5%或大于95%分位数的数据; 盒子误差线下的数字为籽粒硫含量平均值, 小写字母表示平均值间差异显著(P ≤ 0.05); 横坐标轴上面的整数为对应产量等级的样本数量。缩写同表2。"

图2

中国主要麦区主栽小麦品种(系)产量、籽粒硫含量与需硫量的拟合关系 GSR为籽粒需硫量; GSC为籽粒硫含量; Y为产量。缩写同表2。"

图3

中国主要麦区主栽小麦品种(系)需硫量拟合值与实测值的关系 **表示实测需硫量与拟合需硫量之间相关性显著(P ≤ 0.01); 椭圆内为需硫量偏低或偏高样本。缩写同表2。"

表3

中国主要麦区主栽小麦品种(系)不同产量及籽粒硫含量水平的拟合需硫量"

麦区
Wheat region
产量水平
Yield level
(t hm-2)
拟合籽粒硫需求量Grain sulfur requirement (kg Mg-1) 均值
Mean value
籽粒硫含量Grain sulfur concentration (g kg-1)
1.2-1.5 1.5-1.8 ≥1.8
旱作区
DW
低产VL (<5.3) 4.5±0.17 5.3±0.41 4.9±0.46
偏低L (5.3-5.7) 4.3±0.17 5.0±0.28 4.7±0.40
中产M (5.7-6.1) 4.2±0.15 4.9±0.35 4.6±0.42
偏高H (6.1-6.5) 4.1±0.13 4.8±0.29 4.5±0.33
高产VH (≥6.5) 3.7±0.34 4.4±0.46 4.1±0.51
均值Mean value 4.2±0.59 4.9±0.61
麦玉区
MW
低产VL (<7.1) 3.1±0.13 3.6±0.14 4.0±0.19 3.6±0.32
偏低L (7.1-7.7) 3.3±0.06 3.7±0.10 4.0±0.18 3.7±0.27
中产M (7.7-8.4) 3.4±0.07 3.7±0.11 4.2±0.21 3.8±0.28
偏高H (8.4-8.9) 3.4±0.07 3.8±0.10 4.1±0.18 3.8±0.26
高产VH (≥8.9) 3.5±0.05 3.9±0.11 4.2±0.20 3.9±0.26
均值Mean value 3.4±0.30 3.7±0.25 4.1±0.26
稻麦区
RW
低产VL (<5.0) 2.9±0.36 3.9±0.45 6.1±0.98 4.3±1.10
偏低L (5.0-5.6) 2.3±0.36 3.6±0.46 5.9±0.69 3.9±1.01
中产M (5.6-6.2) 2.5±0.35 3.5±0.36 5.1±0.15 3.7±0.71
偏高H (6.2-6.9) 2.4±0.39 3.3±0.38 4.4±0.06 3.4±0.81
高产VH (≥6.9) 2.1±0.40 3.1±0.45 4.7±0.49 3.3±0.96
均值Mean value 2.4±1.17 3.5±1.14 5.2±1.18

表4

中国主要麦区高产小麦品种(系)的产量、籽粒硫含量和需硫量差异"

麦区
Wheat region
品种(系)
Cultivar (line)
产量
Yield
(t hm-2)
籽粒硫含量
Grain sulfur concentration
(g kg-1)
拟合需硫量
Fitting sulfur requirement
(kg Mg-1)
旱作区
DW
LH16-1 6.9 a 1.90 bcd 4.4
隆平203 Longping 203 6.8 a 1.87 cd 4.4
鲁研776 Luyan 776 6.7 a 1.80 d 4.2
濮麦087 Pumai 087 6.7 a 2.01 ab 4.7
济麦78 Jimai 78 6.7 a 1.91 bcd 4.5
郑麦6694 Zhengmai 6694 6.6 a 1.92 bcd 4.5
临Y8222 Lin Y8222 6.6 a 1.95 abc 4.6
泰科麦493 Taikemai 493 6.6 a 1.99 abc 4.7
泛农16 Fanmai 16 6.5 a 2.08 a 5.0
北9 Bei 9 6.5 a 1.99 abc 4.7
麦玉区
MW
BC15PT117 9.3 a 1.74 bc 3.9
潍麦1711 Weimai 1711 9.2 a 1.83 ab 4.0
TKM0311 9.2 a 1.75 bc 3.9
衡H165171 Heng H165171 9.2 a 1.91 a 4.1
衡麦176001 Hengmai 176001 9.1 a 1.73 bc 3.9
中麦6079 Zhongmai 6079 9.1 a 1.68 c 3.8
中麦7083 Zhongmai 7083 9.1 a 1.84 ab 4.0
LS2371 9.1 a 1.63 c 3.7
TKM6007 9.0 a 1.90 a 4.1
LH1703 9.0 a 1.84 ab 4.0
稻麦区
RW
扬17G83 Yang 17G83 7.1 a 1.53 a 2.8
信麦179 Xinmai 179 7.0 a 1.51 a 2.8
华麦17P24 Huamai 17P24 6.9 a 1.52 a 2.8
绵麦907 Mianmai 907 6.7 a 1.45 a 2.5
华麦1062 Huamai 1062 6.7 a 1.50 a 2.8
扬辐麦5054 Yangfumai 5054 6.6 a 1.49 a 2.8
漯麦163 Luomai 163 6.6 a 1.58 a 3.2
宁麦1710 Ningmai 1710 6.6 a 1.54 a 3.0
扬15-133 Yang 15-133 6.6 a 1.50 a 2.8
T60279 6.6 a 1.46 a 2.6
[1] 中华人民共和国国家统计局. 中国统计年鉴. 北京: 中国统计出版社, 2020. p 377.
National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook. Beijing: China Statistic Press, 2020. p 377. (in Chinese)
[2] Tea I, Genter T, Naulet N, Boyer V, Lummerzheim M, Kleiber D. Effect of foliar sulfur and nitrogen fertilization on wheat storage protein composition and dough mixing propertie. Cereal Chem, 2004, 81: 759-766.
doi: 10.1094/CCHEM.2004.81.6.759
[3] Tea I, Genter T, Naulet N, Lummerzheim M, Kleiber D. Interaction between nitrogen and sulfur by foliar application and its effects on flour bread-making quality. J Agric Food Chem, 2007, 87: 2853-2859.
[4] Zhao F, Hawkesford M, McGrath S. Sulphur assimilation and effects on yield and quality of wheat. J Cereal Sci, 1999, 30: 1-17.
doi: 10.1006/jcrs.1998.0241
[5] Zhao F, Salmon S E, Withers P J A, Monaghan J M, Evans E J, Shewry P R, McGrath S P. Variation in the bread making quality and rheological properties of wheat in relation to sulphur nutrition under field conditions. J Cereal Sci, 1999, 30: 19-31.
doi: 10.1006/jcrs.1998.0244
[6] Carciochi W D, Divito G A, Fernández L A, Echeverría H E. Sulfur affects root growth and improves nitrogen recovery and internal efficiency in wheat. J Plant Nutr, 2017, 40: 1231-1242.
doi: 10.1080/01904167.2016.1187740
[7] 王丽, 王朝辉, 郭子糠, 陶振魁, 郑洺钧, 黄宁, 高志源, 张欣欣, 黄婷苗. 黄土高原不同地点小麦籽粒矿质元素的含量差异. 中国农业科学, 2020, 53: 3527-3540.
Wang L, Wang Z H, Guo Z K, Tao Z K, Zheng M J, Huang N, Gao Z Y, Zhang X X, Huang T M. Differences of main nutrient concentration in wheat grain between typical locations of the loess plateau. Sci Agric Sin, 2020, 53: 3527-3540. (in Chinese with English abstract)
[8] Jagmandeep D, Sulochana D, Tyler L, Bruno F, Peter O, Raun W. In-season application of nitrogen and sulfur in winter wheat. Agrosyst Geosci Environ, 2019, 2: 180047.
[9] 韩占江, 王伟华. 硫对小麦产量和品质的影响. 耕作与栽培, 2005, (6): 6-7.
Han Z J, Wang W H. Effects of sulfur on yield and quality of wheat. Tillage Cult, 2005, (6): 6-7. (in Chinese)
[10] 朱云集, 沈学善, 李国强, 郭天财. 硫吸收同化分配及其对小麦产量和品质影响的研究进展. 麦类作物学报, 2005, 25: 134-138.
Zhu Y J, Shen X S, Li G Q, Guo T C. Advance in sulphur uptake, assimilation, distribution and its effects on yield and quality of wheat (Triticum aestivum L.). J Triticeae Crops, 2005, 25: 134-138. (in Chinese with English abstract)
[11] 罗来超, 王朝辉, 惠晓丽, 张翔, 马清霞, 包明, 赵岳, 黄明, 王森. 覆膜栽培对旱地小麦籽粒产量及硫含量的影响. 作物学报, 2018, 44: 886-896.
Luo L C, Wang Z H, Hui X L, Zhang X, Ma Q X, Bao M, Zhao Y, Huang M, Wang S. Effects of plastic film mulching on grain yield and sulfur concentration of winter wheat in dryland of loess plateau. Acta Agron Sin, 2018, 44: 886-896. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.00886
[12] 张辉, 朱云集, 田文仲, 谢迎新. 不同灌水条件下施硫对冬小麦碳、氮、硫物质积累及产量的影响. 植物营养与肥料学报, 2011, 17: 838-844.
Zhang H, Zhu Y J, Tian W Z, Xie Y X. Effects of sulphur application on accumulations of carbon, nitrogen and sulphur and grain yield of winter wheat under different irrigation conditions. Plant Nutr Fert Sci, 2011, 17: 838-844. (in Chinese with English abstract)
[13] 袁嫚嫚, 邬刚, 耿维, 王家宝, 井玉丹, 孙义祥. 配方肥配施锌肥和硫肥对小麦的提质增效作用. 农业资源与环境学报, 2020, 37: 518-526.
Yuan M M, Wu G, Geng W, Wang J B, Jing Y D, Sun Y X. Combined application of formula, zinc, and sulfur fertilizers to improve the yield and grain quality of wheat. J Agric Resour Environ, 2020, 37: 518-526. (in Chinese with English abstract)
[14] Onur H, Mevlüt A, Mahmut K. Changes in the grain element contents of durum wheat cultivars of turkey registered between 1967-2010. Commun Soil Sci Plant Anal, 2020, 51: 431-439.
doi: 10.1080/00103624.2019.1709487
[15] 王凡, 朱云集, 郭天财, 胡金环, 田文仲, 祝小婕. 不同基因型小麦硫素利用效率研究. 麦类作物学报, 2008, 28: 999-1004.
Wang F, Zhu Y J, Guo T C, Hu J H, Tian W Z, Zhu X J. Genotypic variations of sulfate use efficiency in wheat. J Triticeae Crops, 2008, 28: 999-1004. (in Chinese with English abstract)
[16] 王东, 金士鹏, 孙亮, 张民. 不同小麦品种氮、硫积累特性与子粒品质的关系. 植物营养与肥料学报, 2009, 15: 41-47.
Wang D, Jin S P, Sun L, Zhang M. Relationship between grain quality and the accumulation of nitrogen and sulfur in different wheat cultivars. J Plant Nutr Fert, 2009, 15: 41-47. (in Chinese with English abstract)
[17] 王利, 高祥照, 马文奇, 刘艳华. 中国农业中硫的消费现状、问题与发展趋势. 植物营养与肥料学报, 2008, 14: 1219-1226.
Wang L, Gao X Z, Ma W Q, Liu Y H. Sulphur consumption in Chinese agriculture: situation and outlook. Plant Nutr Fert Sci, 2008, 14: 1219-1226. (in Chinese with English abstract)
[18] 刘崇群. 我国南方土壤硫的状况和对硫肥的需求. 中国农资, 2005, (11): 52-53.
Liu C Q. Status of soil sulfur and requirement for sulfur fertilizer in south China. China Agri-prod News, 2005, (11): 52-53. (in Chinese)
[19] 张文辉, 段平. 我国土壤的供硫现状及其农业效果. 河南化工, 1996, (1): 4-6.
Zhang W H, Duan P. Present situation of soil sulfur supply and its agricultural effect in China. Henan Chem Ind, 1996, (1): 4-6. (in Chinese)
[20] 黄宁, 王朝辉, 王丽, 马清霞, 张悦悦, 张欣欣, 王瑞. 我国主要麦区主栽高产品种产量差异及其与产量构成和氮磷钾吸收利用的关系. 中国农业科学, 2020, 53: 81-93.
Huang N, Wang Z H, Wang L, Ma Q X, Zhang Y Y, Zhang X X, Wang R. Yield variation of winter wheat and its relationship to yield components, NPK uptake and utilization of leading and high yielding wheat cultivars in main wheat production regions of China. Sci Agric Sin, 2020, 53: 81-93. (in Chinese with English abstract)
[21] 黄倩楠, 党海燕, 黄婷苗, 侯赛宾, 王朝辉. 我国主要麦区农户施肥评价及减肥潜力分析. 中国农业科学, 2020, 53: 4816-4834.
Huang Q N, Dang H Y, Huang T M, Hou S B, Wang Z H. Evaluation of farmers’ fertilizer application and fertilizer reduction potentials in major wheat production regions of China. Sci Agric Sin 2020, 53: 4816-4834. (in Chinese with English abstract)
[22] 郭凤芝, 林坤, 葛振勇, 曹光, 李延坤, 刘凤洲, 郭凌云, 李思同.2001-2017 年山东省审定小麦高产品种农艺、产量和品质性状演变分析. 山东农业科学, 2019, 51(3): 16-23.
Guo F Z, Lin K, Ge Z Y, Cao G, Li Y K, Liu F Z, Guo L Y, Li S T. Evolutionary analysis of agronomic, yield and quality traits of approved high-yield wheat cultivars in Shandong province from 2001 to 2017. Shandong Agric Sci, 2019, 51(3): 16-23. (in Chinese with English abstract)
[23] 陈贵菊, 闫璐, 王福玉, 邵敏敏, 黄玲, 赵凯, 杨本洲, 张玉丹, 孙雷明, 王霖. 近10年黄淮冬麦区北片水地区试品种产量及主要农艺性状分析. 山东农业科学, 2021, 53(5): 142-148.
Chen G J, Yan L, Wang F Y, Shao M M, Huang L, Zhao K, Yang B Z, Zhang Y D, Sun L M, Wang L. Analysis on yield and main agronomic traits of winter in the north Huanghe-Huaihe region test in recent 10 years. Shandong Agric Sci, 2021, 53(5): 142-148. (in Chinese with English abstract)
[24] 姚金保, 张鹏, 余桂红, 马鸿翔, 杨学明, 周淼平, 张平平. 长江中下游小麦品种产量稳定性及试点鉴别力分析. 江苏农业科学, 2021, 49(15): 64-70.
Yao J B, Zhang P, Yu G H, Ma H X, Yang X M, Zhou M P, Zhang P P. Analysis on yield stability and pilot discrimination of wheat cultivars in the middle and lower reaches of the Yangtze River. Jiangsu Agric Sci, 2021, 49(15): 64-70. (in Chinese)
[25] 黄倩楠, 王朝辉, 黄婷苗, 侯赛宾, 张翔, 马清霞, 张欣欣. 中国主要麦区农户小麦氮磷钾养分需求与产量的关系. 中国农业科学, 2018, 51: 2722-2734.
Huang Q N, Wang Z H, Huang T M, Hou S B, Zhang X, Ma Q X, Zhang X X. Relationships of N, P and K requirement to wheat grain yield of farmers in major wheat production regions of China. Sci Agric Sin, 2018, 51: 2722-2734. (in Chinese with English abstract)
[26] 白金顺, 曹卫东, 毕军, 李学敏, 杨璐, 高嵩涓, 熊静. 速效硫肥对冬小麦产量、品质和经济效益的影响. 中国农学通报, 2013, 29(27): 105-110.
Bai J S, Cao W D, Bi J, Li X M, Yang L, Gao S J, Xiong J. Effects of rapid release sulphur fertilizer on grain yield, quality and economic profit for winter wheat. China Agric Sci Bull, 2013, 29(27): 105-110. (in Chinese with English abstract)
[27] 党红凯, 李雁鸣, 孙亚辉, 张馨文, 李瑞奇, 马春英, 孟建, 刘红彬. 超高产冬小麦硫素营养特点的初步研究. 麦类作物学报, 2008, 28: 811-818.
Dang H K, Li Y M, Sun Y H, Zhang X W, Li R Q, Ma C Y, Meng J, Liu H B. Preliminary study on the characteristics of sulfur nutrition in super high-yielding winter wheat. J Triticeae Crops, 2008, 28: 811-818. (in Chinese with English abstract)
[28] 谢瑞芝, 董树亭, 胡昌浩, 王空军. 不同基因型玉米硫素吸收利用差异研究: I. 根系吸收动力学参数与品种对硫肥的响应. 作物学报, 2002, 28: 345-350.
Xie R Z, Dong S T, Hu C H, Wang K J. The difference of sulfate uptake and utilization in genotypes of maize (Zea mays L.): I. Sulfate uptake kinetic parameters and the respondence of variety to sulphur fertilizer. Acta Agron Sin, 2002, 28: 345-350. (in Chinese with English abstract)
[29] 滕险峰. 土壤中硫的组成及其对植物的有效性的研究. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2000.
Teng X F. Composition of Soil Sulphur and Its Availability to Plants. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang, China, 2000. (in Chinese with English abstract)
[30] 徐成凯, 胡正义, 章钢娅, 邓西海, 曹志洪. 石灰性土壤中硫形态组分及其影响因素. 植物营养与肥料学报, 2001, 7: 416-423.
Xu C K, Hu Z Y, Zhang G Y, Deng X H, Cao Z H. Sulfur speciation and its influencing factors in calcareous soil. Plant Nutr Fert Sci, 2001, 7: 416-423 (in Chinese with English abstract).
[31] 赵玉霞, 李娜, 王文岩, 李雪芳, 周芳, 王林权. 施用硫肥对陕西关中地区冬小麦氮、硫吸收与转运及产量的影响. 植物营养与肥料学报, 2013, 19: 1321-1328.
Zhao Y X, Li N, Wang W Y, Li X F, Zhou F, Wang L Q. Effects of sulfur application rate on the absorption and translocation of nitrogen and sulfur and grain yield of winter wheat in Guanzhong area of Shaanxi. J Plant Nutr Fert, 2013, 19: 1321-1328. (in Chinese with English abstract)
[1] 孙智超, 张吉旺. 弱光胁迫影响玉米产量形成的生理机制及调控效应[J]. 作物学报, 2023, 49(1): 12-23.
[2] 李秀, 李刘龙, 李慕嵘, 尹立俊, 王小燕. 不同小麦品种旗叶叶绿素含量、叶片显微结构及产量对花后遮光的响应机理[J]. 作物学报, 2023, 49(1): 286-294.
[3] 陈嘉军, 林祥, 谷淑波, 王威雁, 张保军, 朱俊科, 王东. 花后叶面喷施尿素对冬小麦氮素吸收利用和产量的影响[J]. 作物学报, 2023, 49(1): 277-285.
[4] 王海琪, 王荣荣, 蒋桂英, 尹豪杰, 晏世杰, 车子强. 施氮量对滴灌春小麦叶片光合生理性状的影响[J]. 作物学报, 2023, 49(1): 211-224.
[5] 陈冰洁, 张富粮, 杨硕, 李晓立, 何堂庆, 张晨曦, 田明慧, 吴梅, 郝晓峰, 张学林. 不同形态氮肥下丛枝菌根真菌对玉米灌浆期生理特性及产量和品质的影响[J]. 作物学报, 2023, 49(1): 249-261.
[6] 周群, 袁锐, 朱宽宇, 王志琴, 杨建昌. 不同施氮量下籼/粳杂交稻甬优2640产量和氮素吸收利用的特点[J]. 作物学报, 2022, 48(9): 2285-2299.
[7] 陈志青, 冯源, 王锐, 崔培媛, 卢豪, 魏海燕, 张海鹏, 张洪程. 外源钼对水稻产量形成及氮素利用的影响[J]. 作物学报, 2022, 48(9): 2325-2338.
[8] 王云奇, 高福莉, 李傲, 郭同济, 戚留冉, 曾寰宇, 赵建云, 王笑鸽, 高国英, 杨佳鹏, 白金泽, 马亚欢, 梁月馨, 张睿. 小麦花后穗部温度变化规律及其与产量的关系[J]. 作物学报, 2022, 48(9): 2400-2408.
[9] 李鑫, 王剑, 李亚兵, 韩迎春, 王占彪, 冯璐, 王国平, 熊世武, 李存东, 李小飞. 不同间套作模式对棉花产量和生物量累积、分配的影响[J]. 作物学报, 2022, 48(8): 2041-2052.
[10] 杨飞, 张征锋, 南波, 肖本泽. 水稻产量相关性状的全基因组关联分析及候选基因筛选[J]. 作物学报, 2022, 48(7): 1813-1821.
[11] 张少华, 段剑钊, 贺利, 井宇航, 郭天财, 王永华, 冯伟. 基于无人机平台多模态数据融合的小麦产量估算研究[J]. 作物学报, 2022, 48(7): 1746-1760.
[12] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[13] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[14] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[15] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[10] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .