欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (2): 437-447.doi: 10.3724/SP.J.1006.2022.01093

• 耕作栽培·生理生化 • 上一篇    下一篇

水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响

徐龙龙(), 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强*()   

  1. 甘肃省干旱生境作物学重点实验室 / 甘肃农业大学农学院, 甘肃兰州 730070
  • 收稿日期:2020-12-03 接受日期:2021-04-14 出版日期:2022-02-12 网络出版日期:2021-06-09
  • 通讯作者: 柴强
  • 作者简介:E-mail: XL15109315778@163.com
  • 基金资助:
    本研究由甘肃省基础研究创新群体项目(20JR5RA037);中央引导地方科技发展专项(ZCYD-2020-1-4);国家自然科学基金项目(32101857);甘肃省科技计划项目(20JR5RA037);甘肃省科技计划项目(20JR5RA025);国家公益性行业(农业)科研项目(201503125-3);甘肃农业大学伏羲青年人才培养计划项目资助(Gaufx-03Y10)

Effect of water and nitrogen reduction on main photosynthetic physiological parameters of film-mulched maize no-tillage rotation wheat

XU Long-Long(), YIN Wen, HU Fa-Long, FAN Hong, FAN Zhi-Long, ZHAO Cai, YU Ai-Zhong, CHAI Qiang*()   

  1. Gansu Provincial Key Laboratory of Arid Land Crop Science / College of Agronomy, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2020-12-03 Accepted:2021-04-14 Published:2022-02-12 Published online:2021-06-09
  • Contact: CHAI Qiang
  • Supported by:
    This study was supported by the Innovation Group of Basic Research in Gansu Province(20JR5RA037);and the Central Government will Guide Local Science and Technology Development Projects(ZCYD-2020-1-4);and the National Natural Science Foundation of China(32101857);the Science and Technology Project of Gansu Province(20JR5RA037);the Science and Technology Project of Gansu Province(20JR5RA025);the Special Fund for Agro-scientific Research in the Public Interest of China(201503125-3);and the Fuxi Young Talents Fund of Gansu Agricultural University(Gaufx-03Y10)

摘要:

地膜玉米免耕结合水氮减量对小麦稳产增产的作用已经验证, 但其形成的光合生理机制研究仍比较薄弱。2018—2020年, 采用裂区设计, 设置地膜玉米免耕(NT)和传统耕作(CT)两种耕作方式, 传统灌水(I2, 2400 m 3 hm -2)和传统灌水减量20% (I1, 1920 m 3 hm -2) 2个灌水水平和施纯N 225 kg hm -2(N3)、180 kg hm -2(N2)和135 kg hm -2(N1) 3个施氮水平。结果表明, 耕作措施、施氮水平对小麦叶面积指数、光合势、SPAD值、光合速率均有显著影响; 灌水水平对光合速率影响显著。全生育期平均来看, NT较CT显著提高了小麦叶面积指数、光合势、SPAD值、光合速率, 分别提高14.5%~44.1%、13.2%~16.3%、7.4%~9.0%、14.5%~24.2%; 与I2相比, I1小麦光合速率显著降低了6.5%~13.6%。N1较N3叶面积指数、光合势、SPAD值、光合速率分别显著降低了6.4%~13.6%、7.5%~12.7%、6.0%~10.2%、7.5%~17.5%, N2与N3无显著差异。耕作措施、施氮水平、灌水水平三者均对小麦干物质积累量和籽粒产量影响显著。NT较CT分别显著提高13.4%~16.5%和9.0%~13.4%; I1较I2分别显著降低6.5%~6.7%、4.3%~7.4%; 与N3相比, N1处理分别显著降低10.0%~11.9%、12.6%~19.4%, N2与N3无显著差异。关联矩阵分析表明, 地膜玉米免耕结合水氮减量通过延缓小麦SPAD值的降低, 延长光合时间, 提高小麦的光合势和光合速率从而实现增产。

关键词: 免耕, 水氮减量, 小麦, 光合势, 光合生理参数

Abstract:

The effect of no-tillage combined with water and nitrogen reduction of mulching maize on the stability and increase of wheat yield has been verified, but the research of the photosynthetic physiological mechanism of its formation is still relatively weak. From 2018 to 2020, the split zone design was adopted, and two farming methods of film-mulched corn no-tillage (NT) and traditional tillage (CT) was arranged with two irrigation levels of traditional irrigation (I2, 2400 m 3 hm ?2) and traditional irrigation reduce 20% (I1, 1920 m 3 hm ?2) and three nitrogen application levels of 225 kg hm ?2 (N3), 180 kg hm ?2 (N2) and 135 kg hm ?2 (N1). The results showed that farming measures and nitrogen application level had significant effects on wheat leaf area index, photosynthetic potential, SPAD value, and photosynthetic rate; irrigation level had significant effects on photosynthetic rate. During the whole growth periods, compared with CT, NT increased wheat leaf area index, photosynthetic potential, SPAD value, and photosynthetic rate by 14.5%-44.1%, 13.2%-16.3%, 7.4%-9.0%, and 14.5%-24.2%, respectively; Compared with I2, the photosynthetic rate of wheat I1 decreased by 6.5%-13.6%. Compared with N3, the leaf area index, photosynthetic potential, SPAD value, and photosynthetic rate of N1 decreased by 6.4%-13.6%, 7.5%-12.7%, 6.0%-10.2%, and 7.5%-17.5%, respectively. There was no significant difference between N2 and N3. Cultivation measures, nitrogen application level, and irrigation level all had significant effects on dry matter accumulation and grain yield in wheat. Compared with CT, NT increased by 13.4%-16.5% and 9.0%-13.4%; Compared with I2, I1 decreased by 6.5%-6.7% and 4.3%-7.4%; Compared with N3, the dry matter accumulation and grain yield of N1 decreased by 10.0%-11.9% and 12.6%-19.4%, respectively, and there was no significant difference between N2 and N3. Correlation matrix analysis showed that the combined water and nitrogen reduction of no-tillage maize mulching could delay the decrease of wheat SPAD value, prolonged the photosynthetic time, and increased the photosynthetic potential and photosynthetic rate of wheat to increase yield.

Key words: no-tillage, water and nitrogen reduction, wheat, photosynthetic potential, photosynthetic physiological parameters

图1

地膜玉米免耕轮作小麦示意图 试验采用全膜覆盖, 地膜宽150 cm, 玉米种植4行(行距40 cm), 玉米收获后, 保留地膜完整度70%以上, 第2年采用穴播的方式种植春小麦, 密度为465万株 hm-2。"

图2

不同耕作措施和水氮减量模式下小麦全生育期叶面积指数动态变化 NT: 地膜玉米免耕; CT: 传统耕作; I2: 传统灌水(2400 m3 hm-2); I1: 传统灌水减量20% (1920 m3 hm-2); N3: 传统施氮(225 kg hm-2); N2: 传统施氮减量20% (180 kg hm-2); N1: 传统施氮减量40% (135 kg hm-2)。误差线表示标准差(n = 3)。"

图3

不同耕作措施和水氮减量模式下小麦光合势 NT: 地膜玉米免耕; CT: 传统耕作; I2: 传统灌水(2400 m3 hm-2); I1: 传统灌水减量20% (1920 m3 hm-2); N3: 传统施氮(225 kg hm-2); N2: 传统施氮减量20% (180 kg hm-2); N1: 传统施氮减量40% (135 kg hm-2)。误差线表示标准差(n = 3)。图中不同字母表示不同处理间差异显著。"

图4

不同耕作措施和水氮减量模式下小麦旗叶的SPAD值 NT: 地膜玉米免耕; CT: 传统耕作; I2: 传统灌水(2400 m3 hm-2); I1: 传统灌水减量20% (1920 m3 hm-2); N3: 传统施氮(225 kg hm-2); N2: 传统施氮减量20% (180 kg hm-2); N1: 传统施氮减量40% (135 kg hm-2)。误差线表示标准差(n = 3)。"

图5

不同耕作措施和水氮减量模式下小麦旗叶的光合速率 NT: 地膜玉米免耕; CT: 传统耕作; I2: 传统灌水(2400 m3 hm-2); I1: 传统灌水减量20% (1920 m3 hm-2); N3: 传统施氮(225 kg hm-2); N2: 传统施氮减量20% (180 kg hm-2); N1: 传统施氮减量40% (135 kg hm-2)。误差线表示标准差(n = 3)。图中不同字母表示不同处理间差异显著。"

图6

不同耕作措施和水氮减量模式下小麦干物质积累动态 NT: 地膜玉米免耕; CT: 传统耕作; I2: 传统灌水(2400 m3 hm-2); I1: 传统灌水减量20% (1920 m3 hm-2); N3: 传统施氮(225 kg hm-2); N2: 传统施氮减量20% (180 kg hm-2); N1: 传统施氮减量40% (135 kg hm-2)。误差线表示标准差(n = 3)。"

图7

不同耕作措施和水氮减量模式下小麦产量 NT: 地膜玉米免耕; CT: 传统耕作; I2: 传统灌水(2400 m3 hm-2); I1: 传统灌水减量20% (1920 m3 hm-2); N3: 传统施氮(225 kg hm-2); N2: 传统施氮减量20% (180 kg hm-2); N1: 传统施氮减量40% (135 kg hm-2)。误差线表示标准差(n = 3)。图中不同字母表示不同处理间差异显著。"

表1

小麦籽粒产量与光合速率、光合势及SPAD值的相关性及关联度分析"

指标
Parameter
相关性及关联度分析
Correlation and association analysis
光合速率
Pn
光合势
LAD
叶绿素相对含量
SPAD
籽粒产量
Grain yield
相关性 Correlation 0.881** 0.835** 0.375
关联度 Association degree 0.737 0.743 0.611
排序 Ranking 2 1 3
[1] Yang X L, Gao W S, Shi Q H, Chen F, Chu Q Q. Impact of climate change on the water requirement of summer maize in the Huang-Huai-Hai farming region. Agric Water Manage, 2013,124:20-27.
[2] 串丽敏, 何萍, 赵同科, 徐新朋, 周卫, 郑怀国. 中国小麦季氮素养分循环与平衡特征. 应用生态学报, 2015,26:76-86.
Chuan L M, He P, Zhao T K, Xu X P, Zhou W, Zheng H G. Nitrogen cycling and balance for wheat in China. Chin J Appl Ecol, 2015,26:76-86 (in Chinese with English abstract).
[3] 刘祚昌, 赖世登, 余彦波, 安庆坤. 小麦光合速率和光呼吸与产量性状的关系. 中国农业科学, 1980,13:11-15.
Liu Z C, Lai S D, Yu Y B, An Q K. correlation of photosynthetic characters with the yielding characters in wheat. Sci Agric Sin, 1980,13:11-15 (in Chinese with English abstract).
[4] 王虎兵, 曹红霞, 郝舒雪, 潘小燕. 温室番茄植株养分和光合对水肥耦合的响应及其与产量关系. 中国农业科学, 2019,52:1761-1771.
Wang H B, Cao H X, Hao S X, Pan X Y. Responses of plant nutrient and photosynthesis in greenhouse tomato to water-fertilizer coupling and their relationship with yield. Sci Agric Sin, 2019,52:1761-1771 (in Chinese with English abstract).
[5] 孙雪芳, 丁在松, 侯海鹏, 葛均筑, 唐丽媛, 赵明. 不同春玉米品种花后光合物质生产特点及碳氮含量变化. 作物学报, 2013,39:1284-1292.
Sun X F, Ding Z S, Hou H P, Ge J Z, Tang L Y, Zhao M. Post-anthesis photosynthetic assimilation and the changes of carbon and nitrogen in different varieties of spring maize. Acta Agron Sin, 2013,39:1284-1292 (in Chinese with English abstract).
[6] 王帅, 杨劲峰, 韩晓日, 刘小虎, 战秀梅, 刘顺国. 不同施肥处理对旱作春玉米光合特性的影响. 中国土壤与肥料, 2008, ( 6):23-27.
Wang S, Yang J F, Han X R, Liu X H, Zhan X M, Liu S G. Effect of fertilizer application on photosynthetic traits of spring maize. China Soils Fert, 2008, ( 6):23-27 (in Chinese with English abstract).
[7] 王建波, 严昌荣, 刘恩科, 陈保青, 张恒恒. 长期免耕覆盖对旱地冬小麦旗叶光合特性及干物质积累与转运的影响. 植物营养与肥料学报, 2015,21:296-305.
Wang J B, Yan C R, Liu E K, Chen B Q, Zhang H H. Effects of long-term no-tillage with straw mulch on photosynthetic characteristics of flag leaves and dry matter accumulation and translocation of winter wheat in dryland. J Plant Nutr Fert, 2015,21:296-305 (in Chinese with English abstract).
[8] 李友军, 吴金芝, 黄明, 姚宇卿, 张灿军, 蔡典雄, 金轲. 不同耕作方式对小麦旗叶光合特性和水分利用效率的影响. 农业工程学报, 2006,22:44-48.
Li Y J, Wu J Z, Huang M, Yao Y Q, Zhang C J, Cai D X, Jin K. Effects of different tillage systems on photosynthesis characteristics of flag leaf and water use efficiency in winter wheat. Trans CSAE, 2006,22:44-48 (in Chinese with English abstract).
[9] 周瑜, 苏旺, 王舰, 屈洋, 高小丽, 杨璞, 冯佰利. 不同覆盖方式和施氮量对糜子光合特性及产量性状的影响. 作物学报, 2016,42:873-885.
Zhou Y, Su W, Wang J, Qu Y, Gao X L, Yang P, Feng B L. Effects of mulching and nitrogen application on photosynthetic characteristics and yield traits in broom maize millet. Acta Agron Sin, 2016,42:873-885 (in Chinese with English abstract).
[10] 王磊, 董树亭, 刘鹏, 张吉旺, 赵斌. 水氮互作对冬小麦光合生理特性和产量的影响. 水土保持学报, 2018,32:304-311.
Wang L, Dong S P, Liu P, Zhang J W, Zhao B. Effects of water and nitrogen interaction on physiological and photosynthetic characteristics and yield of winter wheat. J Soil Water Conserv, 2018,32:304-311 (in Chinese with English abstract).
[11] 段巍巍, 赵红梅, 郭程瑾, 肖凯, 李雁鸣. 夏玉米光合特性对氮素用量的反应. 作物学报, 2007,33:949-954.
Duan W W, Zhao H M, Guo C J, Xiao K, Li Y M. Responses of photosynthesis characteristics to nitrogen application rates in summer maize (Zea mays L.). Acta Agron Sin, 2007,33:949-954 (in Chinese with English abstract).
[12] 李广浩, 赵斌, 董树亭, 刘鹏, 张吉旺, 何在菊. 控释尿素水氮耦合对夏玉米产量和光合特性的影响. 作物学报, 2015,41:1406-1415.
Li G H, Zhao B, Dong S T, Liu P, Zhang J W, He Z J. Effects of coupling controlled release urea with water on yield and photosynthetic characteristics in summer maize. Acta Agron Sin, 2015,41:1406-1415 (in Chinese with English abstract).
[13] Ercoli L, Lulli L, Mariotti M, Masoni A, Arduini I. Post-anthesis dry matter and nitrogen dynamics in durum wheat as affected by nitrogen supply and soil water availability. Eur J Agron, 2008,28:138-147.
[14] 马建辉, 张利霞, 姜丽娜, 王亚帆, 齐冰玉, 李春喜. 氮肥和密度对冬小麦光合生理和物质积累的影响. 麦类作物学报, 2015,35:674-680.
Ma J H, Zhang L X, Jiang L N, Wang Y F, Qi B Y, Li C X. Effect of nitrogen and density on photosynthetic physiology and matter accumulation of winter wheat. J Triticeae Crops, 2015,35:674-680 (in Chinese with English abstract).
[15] 张兴华, 高杰, 杜伟莉, 张仁和, 薛吉全. 干旱胁迫对玉米品种苗期叶片光合特性的影响. 作物学报, 2015,41:154-159.
Zhang X H, Gao J, Du W L, Zhang R H, Xue J Q. Effects of drought stress on photosynthetic characteristics of maize hybrids to at seedling stage. Acta Agron Sin, 2015,41:154-159 (in Chinese with English abstract).
[16] 杨明达, 马守臣, 杨慎骄, 张素瑜, 关小康, 李学梅, 王同朝, 李春喜. 氮肥后移对抽穗后水分胁迫下冬小麦光合特性及产量的影响. 应用生态学报, 2015,26:3315-3321.
Yang M D, Ma S C, Yang S J, Zhang S Y, Guan X K, Li X M, Wang T C, Li C X. Effects of postponing nitrogen application on photosynthetic characteristics and grain yield of winter wheat subjected to water stress after heading stage. Chin J Appl Ecol, 2015,26:3315-3321 (in Chinese with English abstract).
[17] 王一帆, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 间作小麦光合性能对地上地下互作强度的响应. 作物学报, 2021,47:929-941.
Wang Y F, Yin W, Hu F L, Fan H, Fan Z L, Zhao C, Yu A Z, Chai Q. Response of photosynthetic performance of intercropped wheat to interaction intensity between above- and below-ground. Acta Agron Sin, 2021,47:929-941 (in Chinese with English abstract).
[18] 王艺陶, 衣莹, 章建新, 侯立白, 康建涛, 董祥开. 不同灌水处理对冬小麦冠层结构及光合特性的影响. 干旱地区农业研究, 2009,27(6):63-66.
Wang Y T, Yi Y, Zhang J X, Hou L B, Kang J T, Dong X K. Effects of irrigation on winter wheat photosynthetic character and canopy structure. Agric Res Arid Areas, 2009,27(6):63-66 (in Chinese with English abstract).
[19] Wu Y, Huang F, Jia Z, Ren X, Cai T. Response of soil water, temperature, and maize (Zea may L.) production to different plastic film mulching patterns in semi-arid areas of northwest China. Soil Tillage Res, 2017,166:113-121.
[20] 郭翠花, 高志强, 苗果园. 花后遮阴对小麦旗叶光合特性及籽粒产量和品质的影响. 作物学报, 2010,36:673-679.
Guo C H, Gao Z Q, Miao G Y. Effect of shading at post flowering on photosynthetic characteristics of flag leaf and response of grain yield and quality to shading in wheat. Acta Agron Sin, 2010,36:673-679 (in Chinese with English abstract).
[21] 刘志鹏, 陈曦, 杨梦雅, 赵颖佳, 肖凯. 氮量及减灌对冬小麦旗叶生理参数和细胞保护酶活性的影响. 麦类作物学报, 2018,244:53-60.
Liu Z P, Chen X, Yang M Y, Zhao Y J, Xiao K. Effect of nitrogen amount and limited irrigation on physiological features of flag leaf and cellular protective enzyme activities in wheat. J Triticeae Crops, 2018,244:53-60 (in Chinese with English abstract).
[22] 徐国伟, 陆大克, 王贺正, 陈明灿, 李友军. 干湿交替灌溉与施氮量对水稻叶片光合性状的耦合效应. 植物营养与肥料学报, 2017,23:1225-1237.
Xu G W, Lu D K, Wang H Z, Chen M C, Li Y J. Coupling effect of wetting and drying alternative irrigation and nitrogen application rate on photosynthetic characteristics of rice leaves. J Plant Nutr Fert, 2017,23:1225-1237 (in Chinese with English abstract).
[23] 樊帆, 韩立朴, 刘祖昕, 王继师, 谢光辉. 氮素对干旱地区甜高粱碳水化合物和理论乙醇产量的影响研究. 中国农业大学学报, 2013: 28-36.
Fan F, Han L P, Liu Z X, Wang J S, Xie G H. Carbohydrates and predicted ethanol yield of different sweet sorghum cultivars at two nitrogen levels in arid region. J China Agric Univ, 2013: 28-36 (in Chinese with English abstract).
[24] 谷艳芳, 丁圣彦, 高志英, 邢倩. 干旱胁迫下冬小麦光合产物分配格局及其与产量的关系. 生态学报, 2010,30:1167-1173.
Gu Y F, Ding S Y, Gao Z Y, Xing Q. The pattern of photosynthate partitioning in drought-stressed winter wheat and its relationship with yield. Chin J Ecol, 2010,30:1167-1173 (in Chinese with English abstract).
[25] 郎有忠, 张祖建, 顾兴友, 杨建昌, 朱庆森. 水稻卷叶性状生理生态效应的研究: II. 光合特性、物质生产与产量形成. 作物学报, 2004,30:883-887.
Lang Y Z, Zhang Z J, Gu X Y, Yang J C, Zhu Q S. Physiological and ecological effects of crimpy leaf character in rice (Oryza sativa L.): II. Photosynthetic character, dry mass production and yield forming. Acta Agron Sin, 2004,30:883-887 (in Chinese with English abstract).
[26] 朱振家, 姜成英, 史艳虎, 吴文俊, 陈年来. 库源比改变对油橄榄产量及源叶光合作用的调节. 中国农业科学, 2015,48:546-554.
Zhu Z J, Jiang C Y, Shi Y H, Wu W J, Chen N L. Response of yield and leaf photosynthesis to sink-source ratio altering demand in olive. Sci Agric Sin, 2015,48:546-554 (in Chinese with English abstract).
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[8] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[9] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[10] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[11] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[12] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[13] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
[14] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
[15] 习玲, 王昱琦, 朱微, 王益, 陈国跃, 蒲宗君, 周永红, 康厚扬. 78份四川小麦育成品种(系)条锈病抗性鉴定与抗条锈病基因分子检测[J]. 作物学报, 2021, 47(7): 1309-1323.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!