作物学报 ›› 2022, Vol. 48 ›› Issue (3): 572-579.doi: 10.3724/SP.J.1006.2022.13005
徐宁坤(), 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇*(), 王桂凤
XU Ning-Kun(), LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu*(), WANG Gui-Feng
摘要:
玉米籽粒发育调控机制的研究对于玉米产量与品质性状的遗传改良十分重要。本研究鉴定了一个新的转座子插入的籽粒皱缩突变体5601Q, 遗传分析表明其籽粒缺陷稳定遗传且为单基因隐性突变。构建其B73背景的F2分离群体, 通过图位克隆将该突变定位于玉米4号染色体上60.19~62.58 Mb的区间。基因注释分析发现, 区间内存在一个已报道参与玉米籽粒发育的基因BRITTLE ENDOSPERM2 (Bt2), 其编码玉米胚乳淀粉合成途径中的一个限速酶——腺苷二磷酸葡萄糖焦磷酸化酶(ADP-glucose pyrophosphorylase, AGPase)的小亚基。籽粒储藏物质分析表明, 该突变体百粒重及淀粉含量显著降低, 但可溶性糖含量增加为野生型的4.67倍。利用本实验室已确定的Bt2基因突变体1774与5601Q进行等位测验, 确认了5601Q是Bt2的一个新的等位突变体。分子鉴定表明, 5601Q突变体中Bt2基因的第2个外显子存在一个Mutator 19转座子的插入。综上, 5601Q籽粒发育缺陷是由Bt2基因的突变导致, 本研究为解析玉米Bt2基因在胚乳储藏物质积累中的作用机制提供了新的种质资源。
[1] | 赵然, 蔡曼君, 杜艳芳, 张祖新. 玉米籽粒形成的分子生物学基础. 中国农业科学, 2019, 20:3495-3506. |
Zhao R, Cai M J, Du Y F, Zhang Z X. Molecular biological basis of maize grain formation. Chin Agric Sci, 2019, 20:3495-3506 (in Chinese with English abstract). | |
[2] | Dai D W, Tong H Y, Cheng L J, Peng F, Zhang T T, Qi W W, Song R T. Maize Dek33 encodes a pyrimidine reductase in riboflavin biosynthesis that is essential for oil-body formation and ABA biosynthesis during seed development. J Exp Bot, 2019, 19:5173-5187. |
[3] |
Chen X, Feng F, Qi W, Xu L, Yao D, Wang Q, Song R. Dek35 encodes a PPR protein that affects cis-splicing of mitochondrial nad4 intron 1 and seed development in maize. Mol Plant, 2017, 10:427-441.
doi: 10.1016/j.molp.2016.08.008 |
[4] |
Wang G, Zhong M, Shuai B, Song J, Zhang J, Han L, Ling H, Tang Y, Wang G, Song R. Arabidopsis Arabidopsis. New Phytol, 2017, 214:1563-1578.
doi: 10.1111/nph.2017.214.issue-4 |
[5] |
Ren R C, Lu X, Zhao Y J, Wei Y M, Wang L L, Zhang L, Zhang W T, Zhang C, Zhang X S, Zhao X Y. Pentatricopeptide repeat protein DEK40 is required for mitochondrial function and kernel development in maize. J Exp Bot, 2019, 70:6163-6379.
doi: 10.1093/jxb/erz391 |
[6] |
Fu S N, Meeley R, Scanlon M J. Empty pericarp2 encodes a negative regulator of the heat shock response and is required for maize embryogenesis. Plant Cell, 2002, 14:3119-3132.
doi: 10.1105/tpc.006726 |
[7] |
Jose F, Gutierrez M, Mauro D P. Empty pericarp4 encodes a mitochondrion-targeted pentatricopeptide repeat protein necessary for seed development and plant growth in maize. Plant Cell, 2007, 19:196-210.
doi: 10.1105/tpc.105.039594 |
[8] |
Liu Y J, Xiu Z H, Meeley R, Tan B C. Empty pericarp5 encodes a pentatricopeptide repeat protein that is required for mitochondrial RNA editing and seed development in maize. Plant Cell, 2013, 25:868-883.
doi: 10.1105/tpc.112.106781 |
[9] |
Sun F, Wang X, Bonnard G, Shen Y, Xiu Z, Li X, Gao D, Zhang Z, Tan B. Empty pericarp7 encodes a mitochondrial E-subgroup pentatricopeptide repeat protein that is required for ccmFN editing, mitochondrial function and seed development in maize. Plant J, 2015, 84:283-295.
doi: 10.1111/tpj.12993 |
[10] |
Wang G, Sun X, Wang G, Wang F, Song R. Opaque7 encodes an acyl-activating enzyme-like protein that affects storage protein synthesis in maize endosperm. Genetics, 2011, 189:1281-1295.
doi: 10.1534/genetics.111.133967 |
[11] |
Mertz E T, Bates L S, Nelson O E. Mutant gene that changes protein composition and increases lysine content of maize endosperm. Science, 1964, 145:279-280.
doi: 10.1126/science.145.3629.279 |
[12] |
Yao D, Qi W, Li X, Yang Q, Song R. Maize opaque10 encodes a cereal-specific protein that is essential for the proper distribution of zeins in endosperm protein bodies. PLoS Genet, 2016, 12:e1006270.
doi: 10.1371/journal.pgen.1006270 |
[13] |
Feng F, Qi W, Lyu Y. Opaque 11 is a central hub of the regulatory network for maize endosperm development and nutrient metabolism. Plant Cell, 2018, 30:375-396.
doi: 10.1105/tpc.17.00616 |
[14] |
Holding D R, Otegui M S, Li B, Meeley R B, Dam T, Hunter B G, Jung R, Larkins B A. The maize Floury1 gene encodes a novel endoplasmic reticulum protein involved in zein protein body formation. Plant Cell, 2007, 19:2569-2582.
pmid: 17693529 |
[15] |
Coleman C E, Clore A M, Ranch J P. floury2 phenotype in transgenic maize floury2 phenotype in transgenic maize. Proc Natl Acad Sci USA, 1997, 94:7094-7097.
doi: 10.1073/pnas.94.13.7094 |
[16] |
Qi L, Wang J, Ye J, Zheng X, Xiang X, Li C, Wang Q, Zhang Z, Wu Y. The maize imprinted gene Floury3 encodes a PLATZ protein required for tRNAs and 5S rRNA transcription through interaction with RNA polymerase III. Plant Cell, 2017, 29:2661-2675.
doi: 10.1105/tpc.17.00576 |
[17] |
Wang G, Qi W, Wu Q, Yao D, Song R. floury4 as a novel semidominant opaque mutant that disrupts protein body assembly floury4 as a novel semidominant opaque mutant that disrupts protein body assembly. Plant Physiol, 2014, 165:582-594.
doi: 10.1104/pp.114.238030 |
[18] |
Fedoroff N V, Furtek D B, Nelson O E. Cloning of the bronze locus in maize by a simple and generalizable procedure using the transposable controlling element Activator (Ac). Proc Natl Acad Sci USA, 1984, 81:3825-3829.
doi: 10.1073/pnas.81.12.3825 |
[19] | Theres N, Scheele T, Starlinger P. Bz2 locus of Zea mays using the transposable element Ds as a gene tag Bz2 locus of Zea mays using the transposable element Ds as a gene tag. Mol Gene Genet, 1987, 209:193. |
[20] |
Chourey P S, Nelson O E. The enzymatic deficiency conditioned by the shrunken-1 mutations in maize. Biochem Genet, 1976, 14:1041-1055.
pmid: 1016220 |
[21] |
Hannah L C, Tuschall D M, Mans R J. Multiple forms of maize endosperm ADP-glucose pyrophosphorylase and their control by shrunken-2 and brittle-2. Genetics, 1980, 95:961-970.
pmid: 17249055 |
[22] |
Laughnan J R. sh2 factor on carbohydrate reserves in the mature endosperm of maize sh2 factor on carbohydrate reserves in the mature endosperm of maize. Genetics, 1953, 38:485-499.
pmid: 17247452 |
[23] |
James M G, Myers R A M. sugary1, a determinant of starch composition in kernels sugary1, a determinant of starch composition in kernels. Plant Cell, 1995, 7:417-429.
pmid: 7773016 |
[24] |
Shure M, Wessler S, Fedoroff N. Waxy locus in maize Waxy locus in maize. Cell, 1983, 35:225-233.
pmid: 6313224 |
[25] |
Kim K N, Fisher D K, Gao M, Guiltinan M J. Molecular cloning and characterization of the Amylose-Extender gene encoding starch branching enzyme IIB in maize. Plant Mol Biol, 1998, 38:945-956.
pmid: 9869401 |
[26] | Correns C. Bastarde zwischen Maisrassen, mit besonderer Berücksichtigung der Xenien. Nature, 1901, 65:126. |
[27] |
Ferguson J E, Rhodes A M, Dickinson D B. The genetics of sugary enhancer (se), an independent modifier of sweet corn (su). Heredity, 1978, 6:377-380.
doi: 10.1038/hdy.1952.46 |
[28] |
Gonzales J W, Rhodes A M, Dickinson D B. Carbohydrate and enzymic characterization of a high sucrose sugary inbred line of sweet corn. Plant Physiol, 1976, 58:28-32.
pmid: 16659614 |
[29] |
Preiss J, Danner S, Summers P S, Morell M, Barton C R, Yang L, Nieder M. Molecular characterization of the Brittle-2 gene effect on maize endosperm ADP glucose pyrophosphorylase subunits. Plant Physiol, 1990, 92:881-885.
pmid: 16667400 |
[30] | Bae J M, Giroux M, Hannah L C. Cloning and characterization of the brittle-2 gene of maize. Maydica, 1990, 35:317-322. |
[31] |
Bhave M R, Lawrence S, Barton C, Hannah L C. Identification and molecular characterization of shrunken-2 cDNA clones of maize. Plant Cell, 1990, 2:581-588.
pmid: 1967077 |
[32] |
Dickinson D B, Preiss J. Presence of ADP-glucose pyrophosphorylase in Shrunken-2 and Brittle-2 mutants of maize endosperm. Plant Physiol, 1969, 44:1058-1062.
pmid: 16657157 |
[33] | 李晓旭, 李家政. 优化蒽酮比色法测定甜玉米中可溶性糖的含量. 保鲜与加工, 2013, 13(4):24-27. |
Li X X, Li J Z. Determination of the content of soluble sugar in sweet corn with optimized anthrone colorimetric method. Stor Proc, 2013, 13(4):24-27 (in Chinese with English abstract). | |
[34] |
Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980, 8:4321-4325.
doi: 10.1093/nar/8.19.4321 |
[35] |
Smith-White B J, Preiss J. Comparison of proteins of ADP- glucose pyrophosphorylase from diverse sources. J Mol Evol, 1992, 34:449-464.
pmid: 1318389 |
[36] | Greene T W, Hannah L C. Maize endosperm ADP-glucose pyrophosphorylase SHRUNKEN2 and BRITTLE2 subunit interactions. Plant Cell, 1998, 10:1295-1306. |
[37] |
Greene T W, Hannah L C. Enhanced stability of maize endosperm ADP-glucose pyrophosphorylase is gained through mutants that alter subunit interactions. Proc Natl Acad Sci USA, 1998, 95:13342-13347.
doi: 10.1073/pnas.95.22.13342 |
[38] |
Wilson L M, Whitt S R, Ibáñez A M, Rocheford T R, Goodman M M, Buckler E S. Dissection of maize kernel composition and starch production by candidate gene association. Plant Cell, 2004, 16:2719-2733.
doi: 10.1105/tpc.104.025700 |
[39] |
Cossegal M, Chambrier P, Mbelo S, Balzergue S, Martin-Magniette M L, Moing A, Deborde C, Guyon V, Perez P, Rogowsky P. bt2 maize kernels bt2 maize kernels. Plant Physiol, 2008, 146:1553-1570.
doi: 10.1104/pp.107.112698 pmid: 18287491 |
[40] |
Gustafson J P, Shin J H, Kwon S J, Lee J K, Min H K, Kim N S. Genetic diversity of maize kernel starch-synthesis genes with SNAPs. Genome, 2006, 49:1287-1296.
doi: 10.1139/g06-116 |
[41] |
Tenaillon M I, Sawkins M C, Long A D, Gaut R L, Doebley J F, Gaut B S. Zea mays ssp. mays L.) Zea mays ssp. mays L.). Proc Natl Acad Sci USA, 2001, 98:9161-9166.
doi: 10.1073/pnas.151244298 |
[42] | 乐素菊, 刘鹏飞, 曾慕衡, 王伟权, 王晓明. 超甜玉米bt2基因SNP位点的分析及分子标记辅助筛选. 西北农林科技大学学报(自然科学版), 2012, 40(11):73-78. |
Yue S J, Liu P F, Zeng M H, Wang W Q, Wang X M. Analysis of SNP locus of bt2 gene in super sweet maize and molecular marker assisted screening. J Northwest Agric For Univ (Nat Sci Edn), 2012, 40(11):73-78 (in Chinese with English abstract). | |
[43] | 单明珠, 周余庆, 李发民, 刘萌娟. 甜玉米籽粒含糖量性状的研究. 西北农林科技大学学报(自然科学版), 2006, 34(6):111-114. |
Shan M Z, Zhou Y Q, Li F M, Liu M J. Study on the traits of sugar content in sweet corn. J Northwest Agric For Univ (Nat Sci Edn), 2006, 34(6):111-114 (in Chinese with English abstract). | |
[44] | 于惠琳, 吴玉群, 胡宝忱, 尤丹, 王延波. 超甜玉米系与其野生型玉米系籽粒发育过程中糖分积累规律. 辽宁农业科学, 2019, (3):77-79. |
Yu H L, Wu Y Q, Hu B Z, Yu D, Wang Y B. Sugar accumulation regularity of super sweet maize and its wild type maize during kernel development. Liaoning Agric Sci, 2019, (3):77-79 (in Chinese with English abstract). |
[1] | 段灿星, 崔丽娜, 夏玉生, 董怀玉, 杨知还, 胡清玉, 孙素丽, 李晓, 朱振东, 王晓鸣. 玉米种质资源对拟轮枝镰孢与禾谷镰孢穗腐病的抗性精准鉴定与分析[J]. 作物学报, 2022, 48(9): 2155-2167. |
[2] | 张振博, 屈馨月, 于宁宁, 任佰朝, 刘鹏, 赵斌, 张吉旺. 施氮量对夏玉米籽粒灌浆特性和内源激素作用的影响[J]. 作物学报, 2022, 48(9): 2366-2376. |
[3] | 郭瑶, 柴强, 殷文, 范虹. 玉米密植光合生理机制及应用途径研究进展[J]. 作物学报, 2022, 48(8): 1871-1883. |
[4] | 王天波, 赫文学, 张峻铭, 吕伟增, 梁雨欢, 卢洋, 王雨露, 谷丰序, 宋词, 陈军营. 人工老化玉米种胚ROS产生及ATP合成酶亚基mRNA完整性研究[J]. 作物学报, 2022, 48(8): 1996-2006. |
[5] | 裴丽珍, 陈远学, 张雯雯, 肖华, 张森, 周元, 徐开未. 有机物料还田对夏玉米穗位叶光合性能及氮代谢的影响[J]. 作物学报, 2022, 48(8): 2115-2124. |
[6] | 杨迎霞, 张冠, 王梦梦, 陆国清, 王倩, 陈锐. 基于高通量测序技术的转基因玉米GM11061分子特征研究[J]. 作物学报, 2022, 48(7): 1843-1850. |
[7] | 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311. |
[8] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[9] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[10] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[11] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[12] | 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536. |
[13] | 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070. |
[14] | 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859. |
[15] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
|