欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (4): 942-951.doi: 10.3724/SP.J.1006.2022.14045

• 耕作栽培·生理生化 • 上一篇    下一篇

增密对不同分枝类型大豆品种同化物积累和产量的影响

李瑞东1(), 尹阳阳1, 宋雯雯2, 武婷婷2, 孙石2, 韩天富2, 徐彩龙2,*(), 吴存祥2,*(), 胡水秀1,*()   

  1. 1江西农业大学农学院 / 作物生理生态与遗传育种教育部重点实验室 / 江西省作物生理生态与遗传育种重点实验室 / 南方粮油作物协同创新中心, 江西南昌 330045
    2中国农业科学院作物科学研究所 / 国家大豆产业技术研发中心, 北京 100081
  • 收稿日期:2021-03-18 接受日期:2021-07-12 出版日期:2022-04-12 网络出版日期:2021-07-27
  • 通讯作者: 徐彩龙,吴存祥,胡水秀
  • 作者简介:E-mail: 18511755808@163.com
  • 基金资助:
    国家重点研发计划项目资助(2020YFD1000903)

Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types

LI Rui-Dong1(), YIN Yang-Yang1, SONG Wen-Wen2, WU Ting-Ting2, SUN Shi2, HAN Tian-Fu2, XU Cai-Long2,*(), WU Cun-Xiang2,*(), HU Shui-Xiu1,*()   

  1. 1College of Agriculture, Jiangxi Agricultural University / Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education / Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding / Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Nanchang 330045, Jiangxi, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / National Soybean Industrial Technology R & D Center, Beijing 100081, China
  • Received:2021-03-18 Accepted:2021-07-12 Published:2022-04-12 Published online:2021-07-27
  • Contact: XU Cai-Long,WU Cun-Xiang,HU Shui-Xiu
  • Supported by:
    National Key Research and Development Program of China(2020YFD1000903)

摘要:

试验于2018—2019年进行, 选择2种不同分枝类型的品种(中作XA12938和中黄13)为供试材料, 设置13.5×104 (D1)、18.0×104 (D2)、22.5×104 (D3)、27.0×104 (D4)、31.5×104 (D5)和36.0×104株 hm-2 (D6) 6个种植密度, 研究增密种植对不同分枝类型品种叶面积指数(LAI)、干物质积累及分配、产量和产量构成因素的影响。结果表明, 随种植密度的提高, 大豆LAI进入高值(>4)的时期提前, 中作XA12938和中黄13分别从出苗后47.0 d和54.6 d (D1)提前至31.0 d和32.9 d (D6)。与中黄13相比, 中作XA12938LAI高值持续期长且中后期降幅小。不同品种处理间干物质随密度的增加程度存在差异, 结荚期中作XA12938和中黄13高密处理(D6)干重较低密处理(D1)干重分别提高77.53%和51.21%。随密度的提升, 成熟期生殖器官干物质占比呈先增加后降低的趋势。产量随种植密度增加总体呈先增加后趋平的趋势, 中作XA12938的最高产量出现在D5 (5000.45 kg hm-2)处理, 继续增加种植密度产量较稳定, 中黄13两年最高产量分别出现在D4 (4477.90 kg hm-2)和D5 (3935.30 kg hm-2)处理, 继续增加种植密度产量逐渐降低, 中作XA12938的平均产量较中黄13产量显著提高22.37%。灰色关联度分析发现, 中作XA12938植株高度和单位面积有效荚数与产量密切相关, 而中黄13的单位面积有效粒数和重心高度与产量的关联度较高。适度增密可提高大豆LAI并延长其高值持续期、促进干物质积累、增加生殖器官的占比、提高大豆产量。在生产中可选用分枝调节能力较强品种, 通过适当增加种植密度, 从而提高产量, 增加效益。

关键词: 大豆, 分枝类型, 种植密度, 同化物积累, 产量

Abstract:

To investigate the effects of planting density on leaf area index, dry matter accumulation and distribution, and yield components of different varieties, field experiments were conducted using two soybean varieties with different branching types (Zhongzuo XA12938, a main stem type variety; Zhonghuang 13, a branched type variety) under six planting densities (D1: 13.5×104 plants hm-2; D2: 18.0×104 plants hm-2; D3: 22.5×104 plants hm-2; D4: 27.0×104 plants hm-2; D5: 31.5×104 plants hm-2; D6: 36.0×104 plants hm-2). The results showed that as planting densities increased, soybean LAI reached the highest values (>4) earlier, from 47.0 d and 54.6 d (D1) to 31.0 d and 32.9 d (D6) after seedling emergence for Zhongzuo XA12938 and Zhonghuang 13, respectively. Compared to Zhonghuang 13, the high LAI values in Zhongzuo XA12938 lasted longer and decreased less at the middle and late stages. The degree of increase in dry matter with density varied between treatments. At podding stage, dry weight increased by 77.53% and 51.21% in the high-density treatment (D6) compared to the low-density treatment (D1) for Zhongzuo XA12938 and Zhonghuang 13, respectively. The percentage of dry matter in reproductive organs at maturity stage increased and then decreased with increasing density. The highest yields were achieved under D5 (5000.45 kg hm-2) treatment and remained stable at increasing densities for Zhongzuo XA12938. The highest yields for both years were achieved under D4 (4477.90 kg hm-2) and D5 (3935.30 kg hm-2) treatments for Zhonghuang 13. The average yield of Zhongzuo XA12938 was significantly higher by 22.37% than that of Zhonghuang 13. Grey correlation analysis revealed that plant height and effective pods per unit area were closely related to yield in Zhongzuo XA12938, while effective grains per unit area and height of centre of gravity were more highly correlated with yield in Zhonghuang 13. Zhongzuo XA12938 moderate increase in density can increase the LAI and prolong the duration of its high value, promote dry matter accumulation, increase the proportion of reproductive organs, and improve the yield in soybean. Varieties with strong meristem regulation can be used to improve yields and increase benefits by appropriately increasing planting density in production.

Key words: soybean, plant types, planting density, assimilate accumulation, yield

表1

种植密度对不同分枝类型大豆产量及其构成的影响"

年份
Year
品种
Cultivar
处理
Treatment
单株粒数
Seeds
per plant
单位面积粒数
Seeds per m2
单株荚数
Pods
per plant
单位面积荚数
Pods per m2
百粒重
100-seed weight (g)
产量
Yield
(kg hm-2)
2018 中作XA12938
Zhongzuo XA12938
D1 200.1 a 2700.4 c 88.0 a 1187.7 b 16.7 c 3548.3 c
D2 170.0 b 3057.6 bc 74.8 b 1345.0 ab 16.6 c 3925.1 bc
D3 162.2 b 3646.6 a 70.0 b 1563.0 a 17.0 bc 4136.6 b
D4 120.8 c 3260.0 ab 51.5 c 1389.8 ab 17.1 ab 4367.6 ab
D5 106.5 cd 3352.0 ab 44.7 cd 1407.3 ab 17.3 a 5071.5 a
D6 86.3 d 3106.4 bc 37.0 d 1331.3 ab 17.1 ab 4996.9 a
中黄13
Zhonghuang 13
D1 119.0 a 1607.4 d 54.1 a 730.6 d 21.1 d 2592.1 e
D2 116.0 a 2086.2 c 52.7 a 948.3 c 21.4 cd 3345.5 d
D3 114.7 a 2581.5 ab 52.2 a 1173.4 ab 22.0 bcd 4185.1 b
D4 102.5 b 2766.6 a 46.6 b 1257.5 a 22.5 abc 4477.9 a
D5 79.4 c 2501.1 ab 36.1 c 1136.9 ab 22.9 ab 4013.8 c
D6 67.9 c 2444.4 b 30.9 c 1111.1 b 23.7 a 3964.4 c
2019 中作XA12938
Zhongzuo XA12938
D1 221.3 a 2986.7 b 79.0 a 1066.7 b 15.8 c 3406.2 e
D2 184.5 b 3320.8 b 67.1 b 1207.6 b 16.4 b 3920.1 d
D3 171.3 b 3852.9 a 63.4 b 1427.0 a 16.4 b 4431.1 c
D4 147.0 c 3968.8 a 55.9 c 1509.1 a 16.8 a 4735.4 bc
D5 118.0 d 3716.8 a 45.2 d 1424.1 a 17.0 a 4929.4 ab
D6 105.5 d 3797.8 a 42.2 d 1519.1 a 17.1 a 5200.3 a
中黄13
Zhonghuang 13
D1 115.8 a 1562.5 d 46.3 a 625.0 e 25.6 c 2664.2 d
D2 108.0 b 1943.9 c 44.4 ab 800.0 d 26.3 b 2995.1 cd
D3 103.5 b 2328.6 b 45.0 a 1012.4 c 26.4 b 3294.0 bc
D4 94.3 c 2544.6 ab 43.0 ab 1161.9 b 27.1 a 3680.0 ab
D5 81.8 d 2575.0 a 41.3 b 1300.5 a 27.2 a 3894.5 a
D6 65.3 e 2348.9 ab 34.3 c 1236.3 ab 27.5 a 3935.3 a
年份Year (Y) *** *** *** ** *** ns
品种Cultivar (C) *** *** *** *** *** ***
密度Density (D) *** *** *** *** *** ***
Y × C *** *** ns ns ns ***
Y × D ** *** *** *** *** ***
C × D *** *** *** *** *** ***
Y × C × D ** *** ** *** ns ***

图1

增密种植不同分枝类型品种各生育时期大豆叶面积指数 A: 中作XA12938; B: 中黄13; V3: 第3片三出复叶展开; R1: 开花期; R3: 结荚期; R5: 鼓粒期; R7: 成熟期; R8: 完熟期。柱上不同小写字母表示处理间在0.05水平差异显著。处理同表1。"

表2

不同分枝类型大豆增密种植叶面积高值持续时期变化"

品种
Cultivar
处理
Treatment
回归方程
Regression equation
R2 叶面积指数为4的起始天数
(距离出苗日期)
Starting days with leaf area index of
4 from seedling emergence date (d)
叶面积指数大于4的天数
Days with leaf area index higher than 4 (d)
中作XA12938
Zhongzuo XA12938
D1 y= -0.0026x2+0.321x-5.341 0.992 46.9662 76.4954 29.53
D2 y= -0.0032x2+0.384x-6.208 0.992 39.6569 80.4368 40.78
D3 y= -0.0033x2+0.405x-6.434 0.986 36.7681 85.9894 49.22
D4 y= -0.0044x2+0.517x-8.405 0.986 33.6378 83.8168 50.18
D5 y= -0.0048x2+0.568x-9.262 0.992 31.9555 86.4612 54.51
D6 y= -0.0054x2+0.634x-10.481 0.988 31.0431 86.3828 55.34
中黄13
Zhonghuang 13
D1 y= -0.0024x2+0.307x-5.601 0.863 54.5767 73.2983 18.72
D2 y= -0.0026x2+0.327x-5.698 0.927 47.9622 77.7686 29.81
D3 y= -0.0029x2+0.358x-6.089 0.953 43.3327 80.2880 36.96
D4 y= -0.0033x2+0.409x-6.813 0.960 38.2797 85.5990 47.32
D5 y= -0.0038x2+0.452x-7.244 0.982 35.3915 83.6085 48.22
D6 y= -0.0043x2+0.520x-8.445 0.968 32.8645 88.0658 55.20

图2

种植密度不同分枝类型大豆品种各生育时期大豆干物质积累的影响 A: 中作XA12938; B: 中黄13; V3: 第3片三出复叶展开; R1: 开花期; R3: 结荚期; R5: 鼓粒期; R7: 成熟期; R8: 完熟期。柱上不同小写字母表示处理间在0.05水平差异显著。处理同表1。"

表3

增密种植不同分枝类型大豆成熟期干物质分配"

品种
Cultivar
处理
Treatment
叶重
Leaf weight
叶柄重
Petiole weight
茎重
Stem weight
荚皮重
Pod weight
籽粒重
Seed weight
中作XA12938 D1 0.24±0.001 a 0.09±0.007 a 0.16±0.006 b 0.22±0.006 a 0.29±0.017 c
Zhongzuo XA12938 D2 0.23±0.010 ab 0.08±0.007 ab 0.17±0.009 b 0.23±0.017 a 0.30±0.009 bc
D3 0.20±0.003 bc 0.08±0.008 ab 0.17±0.011 b 0.23±0.049 a 0.32±0.041 bc
D4 0.18±0.010 cd 0.07±0.006 ab 0.18±0.006 ab 0.21±0.006 a 0.36±0.015 ab
D5 0.15±0.013 d 0.06±0.002 ab 0.18±0.004 ab 0.20±0.007 a 0.40±0.014 a
D6 0.16±0.013 d 0.06±0.010 b 0.20±0.010 a 0.22±0.015 a 0.36±0.005 ab
中黄13 D1 0.24±0.014 a 0.12±0.013 a 0.17±0.005 b 0.21±0.009 a 0.27±0.022 c
Zhonghuang 13 D2 0.19±0.009 b 0.10±0.002 a 0.17±0.004 b 0.23±0.008 a 0.31±0.002 bc
D3 0.15±0.013 c 0.10±0.003 a 0.17±0.013 b 0.24±0.030 a 0.34±0.016 ab
D4 0.13±0.003 c 0.09±0.005 a 0.17±0.005 b 0.24±0.004 a 0.37±0.009 a
D5 0.15±0.008 c 0.11±0.013 a 0.18±0.008 ab 0.25±0.015 a 0.31±0.018 bc
D6 0.14±0.007 c 0.11±0.007 a 0.21±0.015 a 0.25±0.002 a 0.30±0.005 bc

表4

增密种植不同分枝类型大豆农艺性状与产量间灰色关联度分析"

性状
Trait
中作XA12938 Zhongzuo XA12938 中黄13 Zhonghuang 13
关联度
Correlation degree
关联度排序
Relevance ranking
关联度
Correlation degree
关联度排序
Relevance ranking
单位面积有效荚数Effective pods per m2 0.8545 2 0.8163 6
单位面积有效粒数Effective seeds per m2 0.8311 4 0.8556 1
百粒重Hundred-seed weight (g) 0.8200 5 0.8262 5
重心Plant center of gravity 0.8441 3 0.8509 2
株高Plant height 0.8618 1 0.8496 3
分枝数Branch number 0.5473 7 0.5052 7
成熟期干物质重Dry matter weight at maturity 0.8198 6 0.8383 4
[1] 尹阳阳, 徐彩龙, 宋雯雯, 胡水秀, 吴存祥. 密植是挖掘大豆产量潜力的重要栽培途径. 土壤与作物, 2019, 8:361-367.
Yin Y Y, Xu C L, Song W W, Hu S X, Wu C X. Increasing planting density is an important approach to achieve the potential of soybean yield. Soils Crops, 2019, 8:361-367 (in Chinese with English abstract).
[2] Sun Z X, Su C, Yun J, Jiang Q, Wang L, Wang Y, Cao D, Zhao F, Zhao Q, Zhang M. Genetic improvement of the shoot architecture and yield in soya bean plants via the manipulation of GmmiR156b. Plant Biotechnol J, 2019, 17:50-62.
doi: 10.1111/pbi.2019.17.issue-1
[3] 张瑞朋, 付连舜, 佟斌, 吴晓秋, 刘成元, 朱海荣, 孙国伟. 密度及行距对不同大豆品种农艺性状及产量的影响. 大豆科学, 2015, 34:52-55.
Zhang R P, Fu L S, Tong B, Wu X Q, Liu C Y, Zhu H R, Sun G W. Effect of plant density and row spacing on agronomic characteristics and yield for different soybeans. Soybean Sci, 2015, 34:52-55 (in Chinese with English abstract).
[4] Place G T, Reberg-Horton S C, Dunphy J E, Smith A N, Seeding rate effects on weed control and yield for organic soybean production. Weed Technol, 2009, 23:497-502.
doi: 10.1614/WT-08-134.1
[5] Carciochi W, Schwalbert R, Andrade H, Corassa G, Carter P, Gaspar P, Schmidt J, Ciampitti I. Soybean seed yield response to plant density by yield environment in North America. Agron J, 2019, 111:1923-1932.
doi: 10.2134/agronj2018.10.0635
[6] Walker E R, Mengistu A, Bellaloui N, Koger C H, Roberts R K, Larson J A. Plant population and row-spacing effects on maturity group III soybean. Agron J, 2010, 102:821-826.
doi: 10.2134/agronj2009.0219
[7] Suhre J, Weidenbenner N, Rowntree S, Wilson E, Naeve S, Conley S, Casteel S, Diers B, Esker P, Specht J. Soybean yield partitioning changes revealed by genetic gain and seeding rate interactions. Agron J, 2014, 106:1631-1642.
doi: 10.2134/agronj14.0003
[8] 张晓艳, 杜吉到, 郑殿峰. 密度对大豆群体冠层结构及光合特性的影响. 干旱地区农业研究, 2011, 29(4):75-80.
Zhang X Y, Du J D, Zheng D F. Effect of density on canopy structure and photosynthetic characteristics in soybean population. Agric Res Arid Areas, 2011, 29(4):75-80 (in Chinese with English abstract).
[9] Board J E, Harville B G. Growth dynamics during the vegetative period affects yield of narrow-row, late-planted soybean. Agron J, 1996, 88:575-579.
[10] Haile F J, Higley L G, Specht J E. Soybean leaf morphology and defoliation tolerance. Agron J, 1998, 90:353-362.
doi: 10.2134/agronj1998.00021962009000030007x
[11] Ma B L, Lianne M D, Costa C. Early prediction of soybean yield from canopy reflectance measurements. Agron J, 2001, 93:1227-1234.
doi: 10.2134/agronj2001.1227
[12] 张永强, 张娜, 王娜, 唐江华, 徐文修, 李亚杰. 种植密度对夏大豆光合特性及产量构成的影响. 核农学报, 2015, 29:1386-1391.
Zhang Y Q, Zhang N, Wang N, Tang J H, Xu W X, Li Y J. Effect of planting density on photosynthetic characteristics and yield components of summer soybean. J Nucl Agric Sci, 2015, 29:1386-1391 (in Chinese with English abstract).
[13] 贾珂珂, 不同大豆品种株型结构、花荚形成及产量对密度的响应. 新疆农业大学硕士学位论文,新疆乌鲁木齐, 2005.
Jia K K. Different Soybeans Plant Type Structure, Flower and Pod Formation and Yield Response to Densities. MS Thesis of Xinjiang Agricultural University, Urumqi, Xinjiang,China, 2015 (in Chinese with English abstract).
[14] 章建新, 翟云龙, 薛丽华. 密度对高产春大豆生长动态及干物质积累分配的影响. 大豆科学, 2006, 25:1-5.
Zhang J X, Zhai Y L, Xue L H. Effect of plant density on growth tendency, dry matter accumulation and distribution in high yield spring soybean. Soybean Sci, 2006, 25:1-5 (in Chinese with English abstract).
[15] 赵双进, 张孟臣, 杨春燕, 王文秀. 栽培因子对大豆生长发育及群体产量的影响: I. 播期、密度、行株距(配置方式)对产量的影响. 中国油料作物学报, 2002, 24:31-34.
Zhao S J, Zhang M C, Yang C Y, Wang W X. Effect of cultivation factors on soybean growth and development and population yield: I. Effect of sowing date, density and row spacing on yield. Chin J Oil Crop Sci, 2002, 24:31-34 (in Chinese with English abstract).
[16] 徐婷, 雍太文, 刘文钰, 刘小明, 董茜, 宋春, 杨峰, 王小春, 杨文钰. 播期和密度对玉米-大豆套作模式下大豆植株、干物质积累及产量的影响. 中国油料作物学报, 2014, 36:593-601.
Xu T, Yong T W, Liu W Y, Liu X M, Dong Q, Song C, Yang F, Wang X C, Yang W Y. Effects of sowing time and density on soybean agronomic traits, dry matter accumulation and yield in maize-soybean relay strip intercropping system. Chin J Oil Crop Sci, 2014, 36:593-601 (in Chinese with English abstract).
[17] Ethredge W J, Ashley D A, Woodruff J M. Row spacing and plant population effect on yield components of soybean. Agron J, 1989, 81:947-951.
doi: 10.2134/agronj1989.00021962008100060020x
[18] Coulter J, Sheaffer C C, Haar M J, Wyse D L, Orf J H. Soybean cultivar response to planting date and seeding rate under organic management. Agron J, 2011, 103:1223-1229.
doi: 10.2134/agronj2011.0086
[19] Orlowski J, Gregg G L, Lee C D. Early-season lactofen application has limited effect on soybean branch and mainstem yield components. Crop Sci, 2016, 56:432-438.
doi: 10.2135/cropsci2015.08.0482
[20] 田艺心, 高凤菊, 徐冉. 种植密度对高蛋白大豆经济性状和产量的影响. 中国油料作物学报, 2017, 39:476-482.
Tian Y X, Gao F J, Xu R. Effect of planting density on economic characteristics and yield of different high protein soybean. Chin J Oil Crop Sci, 2017, 39:476-482 (in Chinese with English abstract).
[21] Xu C L, He Y Q, Sun S, Song W W, Wu T T, Han T F, Wu C X. Analysis of soybean yield formation differences across different production regions in China. Agron J, 2020, 112:4195-4206.
doi: 10.1002/agj2.v112.5
[22] Purcell L C, Ball R A, Reaper J D, Vories E D. Radiation use efficiency and biomass production in soybean at different plant population densities. Crop Sci, 2002, 42:172-177.
pmid: 11756269
[23] 董钻. 大豆产量生理(第2版). 北京: 中国农业出版社, 2011. pp 47-49.
Dong Z. Soybean Yield Physiology, 2nd edn. Beijing: China Agriculture Press, 2011. pp 47-49(in Chinese).
[24] 元明浩, 刘玉兰, 杨翠莲. 不同密度下有限结荚习性分枝型矮秆耐密大豆的株型变化规律. 大豆科学, 2009, 28:552-556.
Yuan M H, Liu Y L, Yang C L. Variation in plant size of dwarf densely tolerant soybean with limited pod set habit at different densities. Soybean Sci, 2009, 28:552-556 (in Chinese with English abstract).
[25] 马兆惠, 车仁君, 王海英, 张惠君, 谢甫绨. 种植密度和种植方式对超高产大豆根系形态和活力的影响. 中国农业科学, 2015, 48:1084-1094.
Ma Z H, Che R J, Wang H Y, Zhang H J, Xie F T. Effect of different seeding rates and planting patterns on root morphological traits and root vigor of super-high-yield soybean cultivars. Sci Agric Sin, 2015, 48:1084-1094 (in Chinese with English abstract).
[26] 郑伟, 谢甫绨, 郭泰, 王志新, 李灿东, 张振宇, 吴秀红, 张茂明, 王庆胜. 密度对不同类型大豆叶部性状的影响. 中国油料作物学报, 2014, 36:66-70.
Zheng W, Xie F T, Guo T, Wang Z X, Li C D, Zhang Z Y, Wu X H, Zhang M M, Wang Q S. Effect of density for different types of leaf traits on soybean. Chin J Oil Crop Sci, 2014, 36:66-70 (in Chinese with English abstract).
[27] 张银锁, 宇振荣, Driessen P M. 环境条件和栽培管理对夏玉米干物质积累、分配及转移的试验研究. 作物学报, 2002, 28:104-109.
Zhang Y S, Yu Z R, Driessen P M. Experimental study of assimilate production, partitioning and translocation among plant organs in summer maize (Zea mays) under various environmental and management conditions. Acta Agron Sin, 2002, 28:104-109 (in Chinese with English abstract).
[28] Tollenaar M, Daynard T B. Effect of source-sink ratio on dry matter accumulation and leaf senescence of maize. Can J Plant Sci, 1987, 62:855-860.
doi: 10.4141/cjps82-128
[29] Karlen D L, Sadler E J, Camp C R. Dry matter, nitrogen, phosphorus, and potassium accumulation rates by corn on norfolk loamy sand. Agron J, 1987, 79:649-656.
doi: 10.2134/agronj1987.00021962007900040014x
[30] 王士红, 杨中旭, 史加亮, 李海涛, 宋宪亮, 孙学振. 增密减氮对棉花干物质和氮素积累分配及产量的影响. 作物学报, 2020, 46:395-407.
doi: 10.3724/SP.J.1006.2020.94074
Wang S H, Yang Z X, Shi J L, Li H T, Song X L, Sun X Z. Effects of increasing planting density and decreasing nitrogen rate on dry matter, nitrogen accumulation and distribution, and yield of cotton. Acta Agron Sin, 2020, 46:395-407 (in Chinese with English abstract).
[31] Rajcan J, Tollenaar M. Effect of source-sink ratio on dry matter accumulation and leaf senescence of maize. Can J Plant Sci, 1982, 62:855-860.
doi: 10.4141/cjps82-128
[32] Jones R J, Simmons S R. Effect of altered source-sink ratio on growth of maize kernels. Crop Sci, 1983, 23:129-134.
doi: 10.2135/cropsci1983.0011183X002300010038x
[33] 刘明, 卜伟召, 杨文钰, 武晓玲. 山东间作大豆产量与主要农艺性状关联分析. 中国油料作物学报, 2018, 40:344-351.
Liu M, Bu W Z, Yang W Y, Wu X L. Correlation analysis of yield and agronomic traits of soybean for intercropping in Shandong. Chin J Oil Crop Sci, 2018, 40:344-351 (in Chinese with English abstract).
[34] 舒文涛, 李金花, 耿臻, 杨青春, 李琼, 张东辉, 张保亮. 黄淮海夏大豆产量与主要农艺性状的灰色关联度分析. 中国农学通报, 2014, 30(27):48-51.
Shu W T, Li J H, Geng Z, Yang Q C, Li Q, Zhang D H, Zhang B L. Grey correlation degree analysis on main agronomic traits and yield of summer sowing soybean in Huanghuai River region. Chin Agric Sci Bull, 2014, 30(27):48-51 (in Chinese with English abstract).
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[3] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[4] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[7] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[8] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[9] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[10] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[11] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[12] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[13] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[14] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[15] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!