作物学报 ›› 2022, Vol. 48 ›› Issue (4): 942-951.doi: 10.3724/SP.J.1006.2022.14045
李瑞东1(), 尹阳阳1, 宋雯雯2, 武婷婷2, 孙石2, 韩天富2, 徐彩龙2,*(), 吴存祥2,*(), 胡水秀1,*()
LI Rui-Dong1(), YIN Yang-Yang1, SONG Wen-Wen2, WU Ting-Ting2, SUN Shi2, HAN Tian-Fu2, XU Cai-Long2,*(), WU Cun-Xiang2,*(), HU Shui-Xiu1,*()
摘要:
试验于2018—2019年进行, 选择2种不同分枝类型的品种(中作XA12938和中黄13)为供试材料, 设置13.5×104 (D1)、18.0×104 (D2)、22.5×104 (D3)、27.0×104 (D4)、31.5×104 (D5)和36.0×104株 hm-2 (D6) 6个种植密度, 研究增密种植对不同分枝类型品种叶面积指数(LAI)、干物质积累及分配、产量和产量构成因素的影响。结果表明, 随种植密度的提高, 大豆LAI进入高值(>4)的时期提前, 中作XA12938和中黄13分别从出苗后47.0 d和54.6 d (D1)提前至31.0 d和32.9 d (D6)。与中黄13相比, 中作XA12938LAI高值持续期长且中后期降幅小。不同品种处理间干物质随密度的增加程度存在差异, 结荚期中作XA12938和中黄13高密处理(D6)干重较低密处理(D1)干重分别提高77.53%和51.21%。随密度的提升, 成熟期生殖器官干物质占比呈先增加后降低的趋势。产量随种植密度增加总体呈先增加后趋平的趋势, 中作XA12938的最高产量出现在D5 (5000.45 kg hm-2)处理, 继续增加种植密度产量较稳定, 中黄13两年最高产量分别出现在D4 (4477.90 kg hm-2)和D5 (3935.30 kg hm-2)处理, 继续增加种植密度产量逐渐降低, 中作XA12938的平均产量较中黄13产量显著提高22.37%。灰色关联度分析发现, 中作XA12938植株高度和单位面积有效荚数与产量密切相关, 而中黄13的单位面积有效粒数和重心高度与产量的关联度较高。适度增密可提高大豆LAI并延长其高值持续期、促进干物质积累、增加生殖器官的占比、提高大豆产量。在生产中可选用分枝调节能力较强品种, 通过适当增加种植密度, 从而提高产量, 增加效益。
[1] | 尹阳阳, 徐彩龙, 宋雯雯, 胡水秀, 吴存祥. 密植是挖掘大豆产量潜力的重要栽培途径. 土壤与作物, 2019, 8:361-367. |
Yin Y Y, Xu C L, Song W W, Hu S X, Wu C X. Increasing planting density is an important approach to achieve the potential of soybean yield. Soils Crops, 2019, 8:361-367 (in Chinese with English abstract). | |
[2] |
Sun Z X, Su C, Yun J, Jiang Q, Wang L, Wang Y, Cao D, Zhao F, Zhao Q, Zhang M. Genetic improvement of the shoot architecture and yield in soya bean plants via the manipulation of GmmiR156b. Plant Biotechnol J, 2019, 17:50-62.
doi: 10.1111/pbi.2019.17.issue-1 |
[3] | 张瑞朋, 付连舜, 佟斌, 吴晓秋, 刘成元, 朱海荣, 孙国伟. 密度及行距对不同大豆品种农艺性状及产量的影响. 大豆科学, 2015, 34:52-55. |
Zhang R P, Fu L S, Tong B, Wu X Q, Liu C Y, Zhu H R, Sun G W. Effect of plant density and row spacing on agronomic characteristics and yield for different soybeans. Soybean Sci, 2015, 34:52-55 (in Chinese with English abstract). | |
[4] |
Place G T, Reberg-Horton S C, Dunphy J E, Smith A N, Seeding rate effects on weed control and yield for organic soybean production. Weed Technol, 2009, 23:497-502.
doi: 10.1614/WT-08-134.1 |
[5] |
Carciochi W, Schwalbert R, Andrade H, Corassa G, Carter P, Gaspar P, Schmidt J, Ciampitti I. Soybean seed yield response to plant density by yield environment in North America. Agron J, 2019, 111:1923-1932.
doi: 10.2134/agronj2018.10.0635 |
[6] |
Walker E R, Mengistu A, Bellaloui N, Koger C H, Roberts R K, Larson J A. Plant population and row-spacing effects on maturity group III soybean. Agron J, 2010, 102:821-826.
doi: 10.2134/agronj2009.0219 |
[7] |
Suhre J, Weidenbenner N, Rowntree S, Wilson E, Naeve S, Conley S, Casteel S, Diers B, Esker P, Specht J. Soybean yield partitioning changes revealed by genetic gain and seeding rate interactions. Agron J, 2014, 106:1631-1642.
doi: 10.2134/agronj14.0003 |
[8] | 张晓艳, 杜吉到, 郑殿峰. 密度对大豆群体冠层结构及光合特性的影响. 干旱地区农业研究, 2011, 29(4):75-80. |
Zhang X Y, Du J D, Zheng D F. Effect of density on canopy structure and photosynthetic characteristics in soybean population. Agric Res Arid Areas, 2011, 29(4):75-80 (in Chinese with English abstract). | |
[9] | Board J E, Harville B G. Growth dynamics during the vegetative period affects yield of narrow-row, late-planted soybean. Agron J, 1996, 88:575-579. |
[10] |
Haile F J, Higley L G, Specht J E. Soybean leaf morphology and defoliation tolerance. Agron J, 1998, 90:353-362.
doi: 10.2134/agronj1998.00021962009000030007x |
[11] |
Ma B L, Lianne M D, Costa C. Early prediction of soybean yield from canopy reflectance measurements. Agron J, 2001, 93:1227-1234.
doi: 10.2134/agronj2001.1227 |
[12] | 张永强, 张娜, 王娜, 唐江华, 徐文修, 李亚杰. 种植密度对夏大豆光合特性及产量构成的影响. 核农学报, 2015, 29:1386-1391. |
Zhang Y Q, Zhang N, Wang N, Tang J H, Xu W X, Li Y J. Effect of planting density on photosynthetic characteristics and yield components of summer soybean. J Nucl Agric Sci, 2015, 29:1386-1391 (in Chinese with English abstract). | |
[13] | 贾珂珂, 不同大豆品种株型结构、花荚形成及产量对密度的响应. 新疆农业大学硕士学位论文,新疆乌鲁木齐, 2005. |
Jia K K. Different Soybeans Plant Type Structure, Flower and Pod Formation and Yield Response to Densities. MS Thesis of Xinjiang Agricultural University, Urumqi, Xinjiang,China, 2015 (in Chinese with English abstract). | |
[14] | 章建新, 翟云龙, 薛丽华. 密度对高产春大豆生长动态及干物质积累分配的影响. 大豆科学, 2006, 25:1-5. |
Zhang J X, Zhai Y L, Xue L H. Effect of plant density on growth tendency, dry matter accumulation and distribution in high yield spring soybean. Soybean Sci, 2006, 25:1-5 (in Chinese with English abstract). | |
[15] | 赵双进, 张孟臣, 杨春燕, 王文秀. 栽培因子对大豆生长发育及群体产量的影响: I. 播期、密度、行株距(配置方式)对产量的影响. 中国油料作物学报, 2002, 24:31-34. |
Zhao S J, Zhang M C, Yang C Y, Wang W X. Effect of cultivation factors on soybean growth and development and population yield: I. Effect of sowing date, density and row spacing on yield. Chin J Oil Crop Sci, 2002, 24:31-34 (in Chinese with English abstract). | |
[16] | 徐婷, 雍太文, 刘文钰, 刘小明, 董茜, 宋春, 杨峰, 王小春, 杨文钰. 播期和密度对玉米-大豆套作模式下大豆植株、干物质积累及产量的影响. 中国油料作物学报, 2014, 36:593-601. |
Xu T, Yong T W, Liu W Y, Liu X M, Dong Q, Song C, Yang F, Wang X C, Yang W Y. Effects of sowing time and density on soybean agronomic traits, dry matter accumulation and yield in maize-soybean relay strip intercropping system. Chin J Oil Crop Sci, 2014, 36:593-601 (in Chinese with English abstract). | |
[17] |
Ethredge W J, Ashley D A, Woodruff J M. Row spacing and plant population effect on yield components of soybean. Agron J, 1989, 81:947-951.
doi: 10.2134/agronj1989.00021962008100060020x |
[18] |
Coulter J, Sheaffer C C, Haar M J, Wyse D L, Orf J H. Soybean cultivar response to planting date and seeding rate under organic management. Agron J, 2011, 103:1223-1229.
doi: 10.2134/agronj2011.0086 |
[19] |
Orlowski J, Gregg G L, Lee C D. Early-season lactofen application has limited effect on soybean branch and mainstem yield components. Crop Sci, 2016, 56:432-438.
doi: 10.2135/cropsci2015.08.0482 |
[20] | 田艺心, 高凤菊, 徐冉. 种植密度对高蛋白大豆经济性状和产量的影响. 中国油料作物学报, 2017, 39:476-482. |
Tian Y X, Gao F J, Xu R. Effect of planting density on economic characteristics and yield of different high protein soybean. Chin J Oil Crop Sci, 2017, 39:476-482 (in Chinese with English abstract). | |
[21] |
Xu C L, He Y Q, Sun S, Song W W, Wu T T, Han T F, Wu C X. Analysis of soybean yield formation differences across different production regions in China. Agron J, 2020, 112:4195-4206.
doi: 10.1002/agj2.v112.5 |
[22] |
Purcell L C, Ball R A, Reaper J D, Vories E D. Radiation use efficiency and biomass production in soybean at different plant population densities. Crop Sci, 2002, 42:172-177.
pmid: 11756269 |
[23] | 董钻. 大豆产量生理(第2版). 北京: 中国农业出版社, 2011. pp 47-49. |
Dong Z. Soybean Yield Physiology, 2nd edn. Beijing: China Agriculture Press, 2011. pp 47-49(in Chinese). | |
[24] | 元明浩, 刘玉兰, 杨翠莲. 不同密度下有限结荚习性分枝型矮秆耐密大豆的株型变化规律. 大豆科学, 2009, 28:552-556. |
Yuan M H, Liu Y L, Yang C L. Variation in plant size of dwarf densely tolerant soybean with limited pod set habit at different densities. Soybean Sci, 2009, 28:552-556 (in Chinese with English abstract). | |
[25] | 马兆惠, 车仁君, 王海英, 张惠君, 谢甫绨. 种植密度和种植方式对超高产大豆根系形态和活力的影响. 中国农业科学, 2015, 48:1084-1094. |
Ma Z H, Che R J, Wang H Y, Zhang H J, Xie F T. Effect of different seeding rates and planting patterns on root morphological traits and root vigor of super-high-yield soybean cultivars. Sci Agric Sin, 2015, 48:1084-1094 (in Chinese with English abstract). | |
[26] | 郑伟, 谢甫绨, 郭泰, 王志新, 李灿东, 张振宇, 吴秀红, 张茂明, 王庆胜. 密度对不同类型大豆叶部性状的影响. 中国油料作物学报, 2014, 36:66-70. |
Zheng W, Xie F T, Guo T, Wang Z X, Li C D, Zhang Z Y, Wu X H, Zhang M M, Wang Q S. Effect of density for different types of leaf traits on soybean. Chin J Oil Crop Sci, 2014, 36:66-70 (in Chinese with English abstract). | |
[27] | 张银锁, 宇振荣, Driessen P M. 环境条件和栽培管理对夏玉米干物质积累、分配及转移的试验研究. 作物学报, 2002, 28:104-109. |
Zhang Y S, Yu Z R, Driessen P M. Experimental study of assimilate production, partitioning and translocation among plant organs in summer maize (Zea mays) under various environmental and management conditions. Acta Agron Sin, 2002, 28:104-109 (in Chinese with English abstract). | |
[28] |
Tollenaar M, Daynard T B. Effect of source-sink ratio on dry matter accumulation and leaf senescence of maize. Can J Plant Sci, 1987, 62:855-860.
doi: 10.4141/cjps82-128 |
[29] |
Karlen D L, Sadler E J, Camp C R. Dry matter, nitrogen, phosphorus, and potassium accumulation rates by corn on norfolk loamy sand. Agron J, 1987, 79:649-656.
doi: 10.2134/agronj1987.00021962007900040014x |
[30] |
王士红, 杨中旭, 史加亮, 李海涛, 宋宪亮, 孙学振. 增密减氮对棉花干物质和氮素积累分配及产量的影响. 作物学报, 2020, 46:395-407.
doi: 10.3724/SP.J.1006.2020.94074 |
Wang S H, Yang Z X, Shi J L, Li H T, Song X L, Sun X Z. Effects of increasing planting density and decreasing nitrogen rate on dry matter, nitrogen accumulation and distribution, and yield of cotton. Acta Agron Sin, 2020, 46:395-407 (in Chinese with English abstract). | |
[31] |
Rajcan J, Tollenaar M. Effect of source-sink ratio on dry matter accumulation and leaf senescence of maize. Can J Plant Sci, 1982, 62:855-860.
doi: 10.4141/cjps82-128 |
[32] |
Jones R J, Simmons S R. Effect of altered source-sink ratio on growth of maize kernels. Crop Sci, 1983, 23:129-134.
doi: 10.2135/cropsci1983.0011183X002300010038x |
[33] | 刘明, 卜伟召, 杨文钰, 武晓玲. 山东间作大豆产量与主要农艺性状关联分析. 中国油料作物学报, 2018, 40:344-351. |
Liu M, Bu W Z, Yang W Y, Wu X L. Correlation analysis of yield and agronomic traits of soybean for intercropping in Shandong. Chin J Oil Crop Sci, 2018, 40:344-351 (in Chinese with English abstract). | |
[34] | 舒文涛, 李金花, 耿臻, 杨青春, 李琼, 张东辉, 张保亮. 黄淮海夏大豆产量与主要农艺性状的灰色关联度分析. 中国农学通报, 2014, 30(27):48-51. |
Shu W T, Li J H, Geng Z, Yang Q C, Li Q, Zhang D H, Zhang B L. Grey correlation degree analysis on main agronomic traits and yield of summer sowing soybean in Huanghuai River region. Chin Agric Sci Bull, 2014, 30(27):48-51 (in Chinese with English abstract). |
[1] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[2] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[3] | 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462. |
[4] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[5] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[6] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[7] | 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545. |
[8] | 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557. |
[9] | 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297. |
[10] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[11] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[12] | 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209. |
[13] | 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247. |
[14] | 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016. |
[15] | 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800. |
|