欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (5): 1051-1058.doi: 10.3724/SP.J.1006.2022.14116

• 综述 • 上一篇    下一篇

基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术

周静远1,2(), 孔祥强2, 张艳军2, 李雪源3, 张冬梅2, 董合忠1,2,*()   

  1. 1山东师范大学生命科学学院, 山东济南 250014
    2山东省农业科学院经济作物研究所 / 山东省棉花栽培生理重点实验室, 山东济南 250100
    3新疆农业科学院经济作物研究所, 新疆乌鲁木齐 830091
  • 收稿日期:2021-06-07 接受日期:2021-10-09 出版日期:2022-05-12 网络出版日期:2021-10-20
  • 通讯作者: 董合忠
  • 作者简介:E-mail: zhoujingyuan0107@163.com
  • 基金资助:
    国家重点研究发展计划项目(2020YFD1001002);国家自然科学基金项目(31771718);国家自然科学基金项目(31801307);财政部和农业农村部: 国家现代农业产业技术体系建设专项资助(CARS-15-15)

Mechanism and technology of stand establishment improvements through regulating the apical hook formation and hypocotyl growth during seed germination and emergence in cotton

ZHOU Jing-Yuan1,2(), KONG Xiang-Qiang2, ZHANG Yan-Jun2, LI Xue-Yuan3, ZHANG Dong-Mei2, DONG He-Zhong1,2,*()   

  1. 1College of Life Science, Shandong Normal University, Jinan 250014, Shandong, China
    2Institute of Industrial Crops / Shandong Key Laboratory for Cotton Culture and Physiology, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
    3Institute of Cash Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, Xinjiang, China
  • Received:2021-06-07 Accepted:2021-10-09 Published:2022-05-12 Published online:2021-10-20
  • Contact: DONG He-Zhong
  • Supported by:
    National Key Research and Development Program of China(2020YFD1001002);National Natural Science Foundation of China(31771718);National Natural Science Foundation of China(31801307);China Agriculture Research System(CARS-15-15)

摘要:

苗全苗壮是实现棉花丰产丰收的基础, 但棉花属于子叶全出土的双子叶植物, 播种出苗易受环境条件和播种技术的影响, 一播全苗、壮苗的难度很大。棉苗顶端弯钩及时建成和下胚轴稳健生长是棉花出苗壮苗的关键, 本文首次以单粒精播调控种子萌发出苗过程中的顶端弯钩建成和下胚轴生长的生理与分子机制为核心, 系统评述了棉花成苗壮苗的调控机制。棉花种子单粒精播、适当浅播, 促进下胚轴伸长、弯钩建成和展开的关键基因HLS1COP1适时、适量表达, 棉苗下胚轴伸长、弯钩及时建成, 保证出土并适时展开弯钩和脱掉种壳, 正常出苗。单粒精播种子出苗后通过调控下胚轴生长关键基因HY5ARF2表达, 下胚轴稳健生长, 形成壮苗。在此基础上, 总结提出了以单粒精播、适当浅播为核心, 配合精细整地、提高种子质量、地膜覆盖、膜下滴灌等措施的棉花成苗壮苗关键栽培技术, 为实现一播全苗、壮苗早发提供了重要参考和指导。

关键词: 棉花, 出苗, 壮苗, 调控机制, 弯钩建成, 下胚轴生长

Abstract:

Realizing full and strong stand establishment of seedlings is the basis for achieving high yields and bump harvests in cotton. However, cotton is a dicotyledonous plant whose cotyledons are successfully all unearthed for standing. Seedling emergence is susceptible to environmental conditions and seeding techniques. Therefore, it is generally more difficult for cotton to get full and strong stand establishment than other major crops. The apical hook formation and the hypocotyl growth at seed germination and emergence stages play key roles in seedling emergence and stand establishment. Here we systemically reviewed the regulation mechanism of cotton seedling growth for the first time and put forward the key agronomic cultivation techniques to promote cotton seedling growth, focusing on the physiological and molecular mechanism of hook formation and hypocotyl growth and their influencing factors. Precision monoseeding can improve timely and moderate expression of the key genes HLS1 and COP1 related to hypocotyl elongation and hook formation, which assures better stand establishment by timely formation and expansion of the hooks and timely shedding of seed shells. The hypocotyl can grow steadily and form strong seedings by regulating the expression of key genes HY5 and ARF2 related to hypocotyl growth under precision monoseeding. In this paper, the key cultivation techniques of cotton precision monoseedling, combined with fine soil preparation, improving seed quality, plastic mulching, and drip irrigation under mulching were summarized and reviewed. This review provides important reference and guidance for the improvement and development of cotton sowing and cultivation technology in cotton.

Key words: cotton, emergence, strong seedling, regulation mechanism, curved hook formation, hypocotyl growth

图1

棉花弯钩建成和下胚轴生长促进出苗壮苗的机制[3,10,27] 机械压力、光照等环境信号与乙烯、赤霉素等激素信号相互作用并最终影响生长素的合成及运输, 调控顶端弯钩生长素的不对称分布及下胚轴伸长。正常箭头表示正调控作用, T型箭头表示负调控作用, 虚线箭头表示具体作用机制未知。"

[1] 王荣栋, 尹经章. 作物栽培学. 北京: 高等教育出版社, 2015. pp 258-297.
Wang R D, Yin J Z. Crop Cultivation and Management. Beijing: Higher Education Press, 2015. pp 258-297(in Chinese).
[2] 董合忠. 棉花重要生物学和栽培特性及其在丰产简化栽培中的应用. 中国棉花, 2013, 40(9):1-4.
Dong H Z. Major biological characteristics of cotton and their application in extensive high-yielding cultivation. China Cotton, 2013, 40(9):1-4 (in Chinese with English abstract).
[3] 刘旦梅, 裴雁曦. 双子叶植物幼苗顶端弯钩发育的分子机制. 中国生物化学与分子生物学报, 2018, 34:1138-1145.
Liu D M, Pei Y X. Molecular mechanism of the development of dicotyledonous seedling apical hook. Chin J Biochem Mol Biol, 2018, 34:1138-1145 (in Chinese with English abstract).
[4] McNellis T W, Deng X W. Light control of seedling morphogenetic pattern. Plant Cell, 1995, 7:1749-1761.
pmid: 8535132
[5] Chen M, Chory J, Fankhauser C. Light signal transduction in higher plants. Annu Rev Genet, 2004, 38:87-117.
doi: 10.1146/genet.2004.38.issue-1
[6] 董合忠, 李维江, 张晓洁. 棉花种子学. 北京: 科学出版社, 2004. pp 25-297.
Dong H Z, Li W J, Zhang X J. Science and Technology of Cotton seed. Beijing: Science Press, 2004. pp 25-297(in Chinese).
[7] Rehman A, Farooq M. Cotton Production. Hoboken: Wiley Online Library, 2019. pp 23-46.
[8] Reddy K R, Reddy V R, Hodges H F. Temperature effects on early season cotton growth and development. Agron J, 1992, 84:229-237.
doi: 10.2134/agronj1992.00021962008400020021x
[9] Zhang Y J, Dong H Z. Yield and fiber quality of cotton. Encycl Renew Sustain Materials, 2020, 2:356-364.
[10] Abbas M, Alabadí D, Blazquez M A. Differential growth at the apical hook: all roads lead to auxin. Front Plant Sci, 2013, 4:441.
[11] Mazzella M A, Casal J J, Muschietti J P, Fox A R. Hormonal networks involved in apical hook development in darkness and their response to light. Front Plant Sci, 2014, 5:52.
doi: 10.3389/fpls.2014.00052 pmid: 24616725
[12] 姜楠, 王超, 潘建伟. 拟南芥下胚轴伸长与向光性的分子调控机制. 植物生理学报, 2014, 50:1435-1444.
Jiang N, Wang C, Pan J W. Molecular regulatory mechanisms of hypocotyl elongation and phototropism in Arabidopsis. Acta Phytophysiol Sin, 2014, 50:1435-1444 (in Chinese with English abstract).
[13] 王红飞, 尚庆茂. 被子植物下胚轴细胞伸长的分子机制. 植物学报, 2018, 53:276-287.
Wang H F, Shang Q M. Molecular mechanism of hypocotyl cell elongation in angiosperms. Chin Bull Bot, 2018, 53:276-287 (in Chinese with English abstract).
[14] Sliwinska E, Bassel G W, Bewley J D. Germination of Arabidopsis thaliana seeds is not completed as a result of elongation of the radicle but of the adjacent transition zone and lower hypocotyl. J Exp Bot, 2009, 60:3587-3594.
doi: 10.1093/jxb/erp203 pmid: 19620183
[15] Zadníkova P, Petrasek J, Marhavy P, Raz V, Vandenbussche F, Ding Z J, Schwarzerová K, Morita M T, Tasaka M, Hejátko J, van Der Straeten D, Friml J, Benková E. Role of PIN-mediated auxin efflux in apical hook development of Arabidopsis thaliana. Development, 2010, 137:607-617.
doi: 10.1242/dev.041277
[16] Villalobos L I A C, Lee S, De-Oliveira C, Ivetac A, Brandt W, Armitage L, Sheard L B, Tan X, Parry G, Mao H. A combinatorial TIR1/AFB-Aux/IAA co-receptor system for differential sensing of auxin. Nat Chem Biol, 2012, 8:477-485.
doi: 10.1038/nchembio.926 pmid: 22466420
[17] Tiwari S B, Hagen G, Guilfoyle T. The roles of auxin response factor domains in auxin-responsive transcription. Plant Cell, 2003, 15:533-543.
pmid: 12566590
[18] Bleecker A B. Ethylene perception and signaling: an evolutionary perspective. Trends Plant Sci, 1999, 4:269-274.
doi: 10.1016/S1360-1385(99)01427-2
[19] Wang Y, Guo H. On hormonal regulation of the dynamic apical hook development. New Phytol, 2019, 222:1230-1234.
doi: 10.1111/nph.2019.222.issue-3
[20] De Grauwe L, Vandenbussche F, Tietz O, Palme K, Van Der Straeten D. Auxin, ethylene and brassinosteroids: tripartite control of growth in the Arabidopsis hypocotyl. Plant Cell Physiol, 2005, 46:827-836.
doi: 10.1093/pcp/pci111
[21] Lehman A, Black R, Ecker J R. HOOKLESS1, an ethylene response gene, is required for differential cell elongation in the Arabidopsis hypocotyl. Cell, 1996, 85:183-194.
pmid: 8612271
[22] Zhang X, Ji Y, Xue C, Ma H H, Xi Y L, Huang P X, Wang H, An F Y, Li B S, Wang Y C, Guo H W. Integrated regulation of apical hook development by transcriptional coupling of EIN3/EIL1 and PIFs in Arabidopsis. Plant Cell, 2018, 30:1971-1988.
doi: 10.1105/tpc.18.00018
[23] Gallego-Bartolomé J, Arana M V, Vandenbussche F, Minguet P Ž, Minguet E G, Guardiola V, Straeten D V D, Benkova E, Alabadí D, Blázquez M A. Hierarchy of hormone action controlling apical hook development in Arabidopsis. Plant J, 2011, 67:622-634.
doi: 10.1111/tpj.2011.67.issue-4
[24] Willige B C, Eri O T, Zourelidou M, Schwechheimer C. WAG2 represses apical hook opening downstream from gibberellin and PHYTOCHROME INTERACTING FACTOR 5. Development(Cambridge, England), 2012, 139:4020-4028.
doi: 10.1242/dev.081240 pmid: 22992959
[25] Achard P, Vriezen W H, Van Der Straeten D, Harberd N P. Ethylene regulates Arabidopsis development via the modulation of DELLA protein growth repressor function. Plant Cell, 2003, 15:2816-2825.
doi: 10.1105/tpc.015685
[26] Lyu M, Shi H, Li Y L, Kuang K Y, Yang Z X, Li J, Chen D, Li Y, Kou X X, Zhong S G. Oligomerization and photo-deoligomerization of HOOKLESS1 controls plant differential cell growth. Dev Cell, 2019, 51:78-88.
doi: 10.1016/j.devcel.2019.08.007
[27] Kong X Q, Li X, Lu H Q, Li Z H, Xu S Z, Li W J, Zhang Y J, Zhang H, Dong H Z. Monoseeding improves stand establishment through regulation of apical hook formation and hypocotyl elongation in cotton. Field Crops Res, 2018, 222:50-58.
doi: 10.1016/j.fcr.2018.03.014
[28] Yang H Q, Wu Y J, Tang R H, Liu D M, Liu Y, Cashmore A R. The C termini of Arabidopsis crytochromes mediate a constitutive light response. Cell, 2000, 103:815-827.
pmid: 11114337
[29] Toledo-Ortiz G, Huq E, Quail P H. The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell, 2003, 15:1749-1770.
pmid: 12897250
[30] Leivar P, Monte E. PIFs: systems integrators in plant development. Plant Cell, 2014, 26:56-78.
doi: 10.1105/tpc.113.120857
[31] De Lucas M, Prat S. PIFs get BRright: PHYTOCHROME INTERACTING FACTORs as integrators of light and hormonal signals. New Phytol, 2014, 202:1126-1141.
doi: 10.1111/nph.2014.202.issue-4
[32] Nozue K, Covington M F, Duek P D, Lorrain S, Fankhauser C, Harmer S L, Maloof J N. Rhythmic growth explained by coincidence between internal and external cues. Nature, 2007, 448:358-361.
doi: 10.1038/nature05946
[33] Shen Y, Khanna R, Carle C M, Quail P H. Phytochrome induces rapid PIF5 phosphorylation and degradation in response to red light activation. Plant Physiol, 2007, 145:1043-1105.
pmid: 17827270
[34] Willige B C, Ghosh S, Nill C, Zourelidou M, Dohmann M N, Maier A, Schwechheimer C. The DELLA domain of GA INSENSITIVE mediates the interaction with the GA INSENSITIVE DWARF1A gibberellin receptor of Arabidopsis. Plant Cell, 2007, 19:1209-1220.
pmid: 17416730
[35] Feng S, Martinez C, Gusmaroli G. Coordinated regulation of Arabidopsis thaliana development by light and gibber ellins. Nature, 2008, 451:475-479.
doi: 10.1038/nature06448
[36] Kunihiro A, Yamashino T, Mizuno T. PHYTOCHROMEINTERA CTING FACTORS PIF4 and PIF5 are implicated in the regulation of hypocotyl elongation in response to blue light in Arabidopsis thaliana. Jpn Soc Biosci Biotechnol Agrochem, 2010, 74:2538-2541.
[37] Ariizumi T, Murase K, Steber S C M. Proteolysis-independent downregulation of DELLA repression in Arabidopsis by the gibberellin receptor GIBBERELLIN INSENSITIVE DWARF1. Plant Cell, 2008, 20:2447-2459.
doi: 10.1105/tpc.108.058487 pmid: 18827182
[38] Ueguchitanaka M, Nakajima M, Motoyuki A, Matsuoka M. Gibberellin receptor and its role in gibberellin signaling in plants. Annu Rev Plant Biol, 2007, 58:183-198.
pmid: 17472566
[39] Osterlund M T, Hardtke C S, Wei N, Deng X W. Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature, 2000, 405:462-466.
doi: 10.1038/35013076
[40] Reed J W, Nagpal P, Poole D S, Furuya M, Chory J. Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell, 1993, 5:147-157.
pmid: 8453299
[41] Saijo Y. The COP1-SPA1 interaction defines a critical step in phytochrome A-mediated regulation of HY5 activity. Genes Dev, 2003, 17:2642-2647.
doi: 10.1101/gad.1122903
[42] Oyama T, Shimura Y, Okada K. The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl. Genes Dev, 1997, 11:2983-2995.
doi: 10.1101/gad.11.22.2983
[43] Boron A K, Vissenberg K. The Arabidopsis thaliana hypocotyl, a model to identify and study control mechanisms of cellular expansion. Plant Cell Rep, 2014, 33:697-706.
doi: 10.1007/s00299-014-1591-x
[44] 于延文. 乙烯调控拟南芥HY5蛋白稳定性和幼苗下胚轴生长. 中国农业科学院硕士学位论文, 北京, 2013.
Yu Y W. Ethylene Regulates the Stability of HY5 and Hypocotyl Growth in Arabidopsis thaliana. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2013 (in Chinese with English abstract)
[45] 张冬梅, 张艳军, 李存东, 董合忠. 论棉花轻简化栽培. 棉花学报, 2019, 31:163-168.
Zhang D M, Zhang Y J, Li C D, Dong H Z. On light and simplified cotton cultivation. Cotton Sci, 2019, 31:163-168 (in Chinese with English abstract)
[46] 董建军, 代建龙, 李霞, 李维江, 董合忠. 黄河流域棉花轻简化栽培技术评述. 中国农业科学, 2017, 50:4290-4298.
Dong J C, Dai J L, Li X, Li W J, Dong H Z. Review of light and simplified cotton cultivation technology in the Yellow River Valley. Sci Agric Sin, 2017, 50:4290-4298 (in Chinese with English abstract).
[47] Ram L J, Philippe D, Christian S, You M P, Barbetti M J, Jean-Nol A. Abiotic and biotic factors affecting crop seed germination and seedling emergence: a conceptual framework. Plant Soil, 2018: 432:1-28.
doi: 10.1007/s11104-018-3780-9
[48] You M P, Barbetti M J. Severity of phytophthora root rot and pre-emergence damping-off in subterranean clover influenced by moisture, temperature, nutrition, soil type, cultivar and their interactions. Plant Pathol, 2017, 66:1162-1181.
doi: 10.1111/ppa.2017.66.issue-7
[49] Markus B. The role of temperature in the regulation of dormancy and germination of two related summer-annual mudflat species. Aquat, 2003, 79:15-32.
[50] Dai J L, Dong H Z. Intensive cotton farming technologies in China: achievements, challenges and countermeasures. Field Crops Res, 2014, 155:99-110.
doi: 10.1016/j.fcr.2013.09.017
[51] 辛承松, 卢合全, 罗振, 孔祥强, 张祥宗. 黄河三角洲盐碱地棉花“适密简”种植模式及技术规程. 中国棉花, 2020, 47(8):40-42.
Xin C S, Lu H Q, Luo Z, Kong X Q, Zhang X Z. “Proper Density and Simple” Cultivation model and technical regulations of cotton in saline-alkali land in the Yellow River Delta. China Cotton, 2020, 47(8):40-42 (in Chinese with English abstract).
[52] 董合忠. 滨海盐碱地棉花成苗的原理与技术. 应用生态学报, 2012, 23:566-572.
Dong H Z. Underlying mechanisms and related techniques of stand establishment of cotton on coastal saline-alkali soil. Chin J Appl Ecol, 2012, 23:566-572 (in Chinese with English abstract).
[53] Dong H Z. Cotton Farming in Saline Soil. Beijing: Science Press, 2010. pp 179-190.
[54] Dong H Z, Li W Z, Li Z H, Zhang D M. Early plastic mulching increases stand establishment and lint yield of cotton in saline fields. Field Crops Res, 2009, 111:269-275.
doi: 10.1016/j.fcr.2009.01.001
[55] 罗振, 辛承松, 李维江, 张冬梅, 董合忠. 部分根区灌溉与合理密植对旱区棉花产量和水分生产率的影响. 应用生态学报, 2019, 30:3137-3146.
Luo Z, Xin C S, Li W J, Zhang D M, Dong H Z. Effects of partial root-zone irrigation and rational close planting on yield and water Effects of partial root-zone irrigation and rational close planting on yield and water productivity of cotton in arid area. Chin J Appl Ecol, 2019, 30:3137-3146 (in Chinese with English abstract).
[56] Li X, Kong X Q, Zhou J Y, Luo Z, Lu H Q, Li W J, T W, Zhang D M, Ma C L, Zhang H, Dong H Z. Seeding depth and seeding rate regulate apical hook formation by inducing GhHLS1 expression via ethylene during cotton emergence. Plant Physiol Biochem, 2021, 164:92-100.
doi: 10.1016/j.plaphy.2021.04.030
[1] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[2] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[3] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[4] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[5] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[6] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[7] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[8] 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623.
[9] 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826.
[10] 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671.
[11] 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究[J]. 作物学报, 2021, 47(3): 427-437.
[12] 卢合全, 唐薇, 罗振, 孔祥强, 李振怀, 徐士振, 辛承松. 商品有机肥替代部分化肥对连作棉田土壤养分、棉花生长发育及产量的影响[J]. 作物学报, 2021, 47(12): 2511-2521.
[13] 王晔, 刘钊, 肖爽, 李芳军, 吴霞, 王保民, 田晓莉. 转PSAG12-IPT基因对棉花叶片衰老及产量和纤维品质的影响[J]. 作物学报, 2021, 47(11): 2111-2120.
[14] 杨琴莉, 杨多凤, 丁林云, 赵汀, 张军, 梅欢, 黄楚珺, 高阳, 叶莉, 高梦涛, 严孙艺, 张天真, 胡艳. 棉花花器官突变体的鉴定及候选基因的克隆[J]. 作物学报, 2021, 47(10): 1854-1862.
[15] 崔静, 王志城, 张新雨, 柯会锋, 吴立强, 王省芬, 张桂寅, 马峙英, 张艳. 棉花GbSTK基因调控开花和黄萎病抗性的功能研究[J]. 作物学报, 2021, 47(1): 30-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!