欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (5): 1037-1050.doi: 10.3724/SP.J.1006.2022.12062

• 综述 •    下一篇

稻米氨基酸含量和组分及其调控

杨建昌*(), 李超卿, 江贻   

  1. 扬州大学江苏省作物遗传生理国家重点实验室培育点 / 粮食作物现代产业技术协同创新中心, 江苏扬州 225009
  • 收稿日期:2021-07-26 接受日期:2021-11-20 出版日期:2022-05-12 网络出版日期:2021-12-07
  • 通讯作者: 杨建昌
  • 基金资助:
    国家自然科学基金项目(32071943);江苏高校优势学科建设工程项目(PAPD);扬州大学高端人才支持计划项目资助(2015-01)

Contents and compositions of amino acids in rice grains and their regulation: a review

YANG Jian-Chang*(), LI Chao-Qing, JIANG Yi   

  1. Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2021-07-26 Accepted:2021-11-20 Published:2022-05-12 Published online:2021-12-07
  • Contact: YANG Jian-Chang
  • Supported by:
    National Natural Science Foundation of China(32071943);Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD);Top Talent Supporting Program of Yangzhou University(2015-01)

摘要:

谷类作物籽粒中氨基酸是人和动物的重要营养物质。提高稻米氨基酸含量特别是赖氨酸等必需氨基酸含量是水稻育种和栽培的一个重要目标和研究热点。本文概述了水稻成熟籽粒氨基酸含量和组分及其在不同部位的分布, 籽粒氨基酸的合成与代谢, 植物激素对籽粒氨基酸合成与代谢的调控作用, 籽粒氨基酸含量和组分的环境影响与栽培调控; 讨论了存在问题和今后研究重点。深入研究花后籽粒氨基酸含量和组分的时(不同灌浆阶段)、空(籽粒不同部位)分布特点及其生理生化机制、栽培调控与调控原理, 可望获得对稻米氨基酸形成与分布机制的新认识, 开发提高精米中氨基酸含量特别是赖氨酸等必需氨基酸含量的新途径。

关键词: 水稻, 氨基酸, 时空分布, 生理机制, 栽培调控

Abstract:

Amino acids in cereal grains are important nutrients for both human and animals. Increasing the content of amino acids in the rice grain, especially lysine and other essential amino acids, plays a very important role in improving the nutritional standard of people in the countries with rice as staple food. This paper reviewed some research progresses in the contents and compositions of amino acids in the mature grain of rice and their distribution in the different parts of a grain, the synthesis and metabolism of amino acids in the grain, the role of plant hormones in regulating the synthesis and metabolism of on amino acids, and the effects of environmental factors and cultivation practices on the contents and compositions of amino acids in the grain, and discussed the existing problems and key points for future research. It merits further investigating the temporal (at different filling stages) and spatial (at different parts of a grain) distribution characteristics of the contents and compositions of amino acids in a grain during the filling, their physiological and biochemical mechanism, and cultivation regulation and its principle. Such a study is expected to gain new insight into the mechanism in the formation and distributions of amino acids in a rice grain, and explore a new way to increase the contents of amino acids, especially essential amino acids such as lysine, in milled rice.

Key words: rice, amino acids, spatiotemporal distribution, physiological mechanism, cultivation regulation

图1

高等植物天冬氨酸家族氨基酸代谢途径 GS: 谷氨酰胺合成酶; GOGAT: 谷氨酸合酶; AST: 天冬氨酸转氨酶; AS: 天冬酰胺合成酶; ASN: 天冬酰胺酶; AK: 天冬氨酸激酶; HSDH:高丝氨酸脱氢酶; DHDPS: 二氢毗考琳酸合酶; HK: 高丝氨酸激酶; TS: 苏氨酸合酶; CS: 胱氨酸合酶; TD: 苏氨酸脱氢酶; DHDPR: 二氢毗考琳酸还原酶; DAPD: 二氨基丙酸脱羧酶; LKR: 赖氨酸酮戊二酸还原酶; SDH: 酵母氨酸脱氢酶。该图根据参考文献[42]、[43]、[44]改制。"

表1

非转基因水稻(日本晴-WT)与转基因水稻(日本晴-GS1)成熟期精米中蛋白质和氨基酸含量及灌浆期籽粒中激素水平的比较"

蛋白质、氨基酸、激素的含量2
Contents of proteins, amino acids, and hormones 2
日本晴-WT (对照)
Nipponbare-wide type (control)
日本晴-GS1 1
Nipponbare-GS1 1
蛋白质 Protein [g (100 g DW)-1] 7.14 9.23**
17种氨基酸 TAA [mg (g DW)-2] 71.5 85.7**
赖氨酸含量 Lys [mg (g DW)-1] 3.19 4.06*
玉米素+玉米核苷 Z+ZR [nmol (g DW)-1] 0.78 0.83ns
吲哚-3-乙酸 IAA [nmol (g DW)-1] 0.58 0.59ns
赤霉素 GA1+GA4 [nmol (g DW)-1] 0.64 0.67ns
脱落酸 ABA [nmol (g DW)-1] 1.13 1.45*
1-氨基环丙烷-1-羧酸 ACC [nmol (g DW)-1] 57.6 58.4ns
乙烯释放速率 Ethlene [nmol (g DW h)-1] 1.59 1.61ns
24-表油菜素内酯 24-EBL [pmol (g DW)-1] 12.8 18.8**
28-高油菜素内酯 28-HBL [pmol (g DW)-1] 15.9 20.4**

表2

灌浆期喷施化学调控物质对水稻籽粒天冬氨酸激酶(AK)活性、成熟籽粒精米中17种氨基酸总含量 (TAA)和赖氨酸(Lys)含量的影响1"

处理2
Treatment2
扬稻6号(籼稻) Yangdao 6 (indica) 武运粳24号(粳稻) Wuyunjing 24 (japonica)
AK活性3
AK activity 3
TAA含量
TAA content
Lys含量
Lys content
AK活性3
AK activity 3
TAA含量
TAA content
Lys含量
Lys content
清水Water (control) 26.3 70.8 3.11 27.2 72.5 3.39
10 µmol L-1 ZR 27.9ns 71.1ns 3.13ns 27.7ns 72.9ns 3.41ns
10 µmol L-1 IAA 27.4ns 70.6ns 3.12ns 26.9ns 71.3ns 3.32ns
10 µmol L-1 GA3 25.7ns 69.5ns 3.08ns 26.3ns 70.6ns 3.29ns
10 µmol L-1 ACC 25.5ns 69.7ns 2.97ns 25.8ns 70.4ns 3.32ns
10 µmol L-1 ABA 32.3* 75.5* 3.56* 31.4* 75.9* 3.75*
10 µmol L-1 24-EBL 33.7* 77.6* 3.76* 32.3* 77.3* 3.93*
50 µmol L-1 ZR 27.2ns 71.5ns 3.10ns 27.5ns 72.6ns 3.38ns
50 µmol L-1 IAA 26.5ns 71.4ns 3.12ns 27.1ns 72.2ns 3.27ns
50 µmol L-1 GA3 25.1ns 70.7ns 3.05ns 26.4ns 71.1ns 3.33ns
50 µmol L-1 ACC 24.9* 68.8ns 2.92ns 25.4ns 69.5ns 3.14ns
50 µmol L-1 ABA 22.2* 63.3* 2.55* 21.6* 64.8* 2.73*
50 µmol L-1 24-EBL 32.5* 77.8* 3.78* 33.5* 77.5* 3.95*
10 µmol L-1 ABA+10 µmol L-1 24-EBL 36.1** 85.4** 4.25** 37.9** 86.5** 4.35**
50 µmol L-1 ABA+10 µmol L-1 24-EBL 25.4ns 70.6ns 2.86ns 26.8ns 71.3ns 3.17ns
50 µmol L-1 ABA+50 µmol L-1 24-EBL 26.0ns 71.5ns 3.09ns 27.2ns 72.7ns 3.22ns

图2

不同年代粳稻品种精米中赖氨酸(A)、8种必需氨基酸(B)和总非必需氨基酸(C)含量 柱上不同字母者表示在P = 0.05水平上差异显著; 该图根据参考文献[64]数据进行改制。"

图3

施氮量对水稻精米中赖氨酸(A)、8种必需氨基酸(B)和总非必需氨基酸(C)含量的影响 0N、180N和360N分别表示施氮量为0、180和360 kg hm-2; YFJ-8、NJ-9108和YY-2640分别表示水稻品种扬辐粳8号、南粳9108和甬优2640; 柱上不同字母者表示在P=0.05水平上差异显著; 该图根据参考文献[88]数据进行改制。"

图4

灌溉方式对水稻精米中赖氨酸(A)、8种必需氨基酸(B)和总非必需氨基酸(C)含量的影响 FI: 水层灌溉; AWD: 干湿交替灌溉; YY-2640: 甬优2640; HD-5: 淮稻5号; 柱上不同字母者表示在P = 0.05水平上差异显著; 该图根据参考文献[97]数据进行改制。"

[1] Albarracin M, Dyner L, Giacomino M S, Weisstaub A, Zuleta A, Drago S R. Modification of nutritional properties of whole rice flours (Oryza sativa L.) by soaking, germination, and extrusion. J Food Biochem, 2019, 43:e12854.
[2] Shivakumar N, Kashyap S, Kishore S, Varkey A, Devi S, Preston T, Jahoor F, Sheshshayee M S, Kurpad A V. Protein-quality evaluation of complementary foods in Indian children. Am J Clin Nutrit, 2019, 109:1319-1327.
[3] Zhang Y, Xu D, Hebelstrup K H, Yang D L, Cai J, Wang X, Zhou Q, Cao W X, Dai T B, Jiang D. Nitrogen topdressing timing modifies free amino acids profiles and storage protein gene expression in wheat grain. BMC Plant Biol, 2018, 18:353.
doi: 10.1186/s12870-018-1563-3
[4] 杨晴晴. 高赖氨酸转基因水稻的营养评价及代谢关联研究. 扬州大学博士学位论文, 江苏扬州, 2016.
Yang Q Q. Nutritional Assessment and Metabolic Connection Analysis of Transgenic Rice with High Free Lysine. PhD Dissertation of Yangzhou University, Yangzhou, Jiangsu,China, 2016 (in Chinese with English abstract).
[5] Mir N A, Riar C S, Singh S. Nutritional constituents of pseudo cereals and their potential use in food systems: a review. Trends Food Sci Technol, 2018, 75:170-180.
doi: 10.1016/j.tifs.2018.03.016
[6] Wong H W, Liu Q, Sun S S M. Biofortification of rice with lysine using endogenous histones. Plant Mol Biol, 2015, 87:235-248.
doi: 10.1007/s11103-014-0272-z pmid: 25512028
[7] Kamara J S, Konishi S, Sasanuma T, Abe T. Variation in free amino acid profile among some rice (Oryza sativa L.) cultivars. Breed Sci, 2010, 60:46-54.
doi: 10.1270/jsbbs.60.46
[8] Yang Q Q, Wu H Y, Li Q F, Duan R X, Zhang C Q, Sun S S M, Liu Q Q. Characterization of agronomy, grain physicochemical quality, and nutritional property of high-lysine 35R transgenic rice with simultaneous modification of lysine biosynthesis and catabolism. J Agric Food Chemist, 2017, 65:4296-4304.
[9] Huang M, Zhang H D, Zhao C R, Chen G H, Zou Y B. Physiological processes contributing to the difference in grain amino acid content between two hybrid rice (Oryza sativa L.) cultivars. Phyton(Buenos Aires), 2019, 88:101-107.
doi: 10.32604/phyton.2019.06694
[10] Mitsuda H. Toward solutions for food crisis in the 21st century—from basic research to development of innovative food technologies. Proc Jpn Acad Ser B-Phys Biol Sci, 1999, 75:246-253.
doi: 10.2183/pjab.75.246
[11] Long X H, Liu Q Q, Chan M L, Wang Q, Sun S S M. Metabolic engineering and profiling of rice with increased lysine. Plant Biotect J, 2013, 11:490-501.
[12] Yang Q Q, Zhang C Q, Chan M L, Zhao D S, Chen J Z, Wang Q, Li Q F, Yu H X, Gu M H, Sun S S M. Biofortification of rice with the essential amino acid lysine: molecular characterization, nutritional evaluation, and field performance. J Exp Bot, 2016, 67:4285-4296.
doi: 10.1093/jxb/erw209
[13] Schmidt D, Rizzi V, Gaziola S A, Medici L O, Vincze E, Kozak M, Lea P J, Azevedo R A. Lysine metabolism in antisense C-hordein barley grains. Plant Physiol Biochem, 2015, 87:73-83.
doi: 10.1016/j.plaphy.2014.12.017
[14] 王红梅, 刘巧泉, 顾铭洪. 稻米蛋白营养品质及其遗传改良. 植物生理学通讯, 2007, 43:391-396.
Wang H M, Liu Q Q, Gu M H. The nutritional quality of rice proteins and its genetic improvement. Plant Physiol Commun, 2007, 43:391-396 (in Chinese).
[15] Juliano B O. Rice: Chemistry and Technology. American Association of Cereal Chemists. USA: Inc St Paul Minn, 1985. pp 1-174.
[16] WHO. Energy and protein requirements. In: WHO Technology Report Series, 522. Geneva: World Health Organization, 1973.
[17] 王根庆. 不同稻类品种蛋白质和氨基酸含量差异的研究. 华北农学报, 1991, 6(2):7-12.
Wang G Q. A study on differences between grain protein and amino acid content in different rice varieties. Acta Agric Boreali-Sin, 1991, 6(2):7-12 (in Chinese with English abstract).
[18] Kaur P, Pal P, Virdi A S, Singh N, Mahajan G. Protein and starch characteristics of milled rice from different cultivars affected by transplantation date. J Food Sci Technol, 2016, 53:3186-3196.
doi: 10.1007/s13197-016-2293-x
[19] 韩展誉, 吴春艳, 许艳秋, 黄福灯, 熊义勤, 管弦悦, 周庐建, 潘刚, 程方民. 不同施氮水平下灌浆期高温对水稻贮藏蛋白积累及其合成代谢影响. 中国农业科学, 2021, 54:1439-1454.
Han Z Y, Wu C Y, Xu Y Q, Huang F D, Xiong Y Q, Guan X Y, Zhou L J, Pan G, Cheng F M. Effects of high-temperature at filling stage on grain storage protein accumulation and its biosynthesis metabolism for rice plants under different nitrogen application levels. Sci Agric Sin, 2021, 54:1439-1454 (in Chinese with English abstract).
[20] 路凯, 赵庆勇, 周丽慧, 赵春芳, 张亚东, 王才林. 稻米蛋白质含量与食味品质的关系及其影响因素研究进展. 江苏农业学报, 2020, 36:1305-1311.
Lu K, Zhao Q Y, Zhou L H, Zhao C F, Zhang Y D, Wang C L. Research progress on the relationship between rice protein content and eating quality and the influence factors. Jiangsu J Agric Sci, 2020, 36:1305-1311 (in Chinese with English abstract).
[21] Gan L, Huang B S, Song Z J, Zhang Y C, Zhang Y J, Chen S, Tong L Q, Wei Z S, Yu L X, Luo, X B, Zhang X H, Cai D T, He Y C. Unique glutelin expression patterns and seed endosperm structure facilitate glutelin accumulation in polyploid rice seed. Rice, 2021, 14:61.
doi: 10.1186/s12284-021-00500-0 pmid: 34224013
[22] Santos K F D N, Silveira R D D, Martin-Didonet C C G, Brondani C. Storage protein profile and amino acid content in wild rice Oryza glumaepatula. Pesquisa Agropecuaria Brasileira, 2013, 48:66-72.
[23] Ishimaru T, Parween S, Saito Y, Shigemitsu T, Yamakawa H, Nakazono M, Masumura T, Nishizawa N K, Kondo M, Sreenivasulu N. Laser microdissection-based tissue-specific transcriptome analysis reveals a novel regulatory network of genes involved in heat-induced grain chalk in rice endosperm. Plant Cell Physiol, 2019, 60:626-642.
doi: 10.1093/pcp/pcy233 pmid: 30517758
[24] Hagen S R, Frost B, Augustin J. Precolumn phenylisothiocyanate derivatization and liquid chromatography of amino acids in food. J Assoc Official Analyt Chem, 1989, 72:912-916.
[25] Kawakatsu T, Takaiwa F. Differences in transcriptional regulatory mechanisms functioning for free lysine content and seed storage protein accumulation in rice grain. Plant Cell Physiol, 2010, 51:1964-1974.
doi: 10.1093/pcp/pcq164 pmid: 21037241
[26] Tran T U, Suzuki K, Okadome H, Ikezaki H, Homma S, Ohtsubo K. Detection of changes in taste of japonica and indica brown and milled rice(Oryza sativa L.) during storage using physicochemical analyses and a taste sensing system. J Agric Food Chem, 2005, 53:1108-1118.
doi: 10.1021/jf049064+
[27] Tran T U, Suzuki K, Okadome H, Homma S, Ohtsubo K. Analysis of the tastes of brown rice and milled rice with different milling yields using a taste sensing. Food Chem, 2004, 88:557-566.
doi: 10.1016/j.foodchem.2004.02.007
[28] 金红, 吴晓蕾, 宋斌斌, 李慧茹, 张欣, 王松文. 不同食味水稻品种中与氮代谢相关酶活性的比较研究. 广东农业科学, 2015, 14(7):27-30.
Jin H, Wu X L, Song B B, Li H R, Zhang X, Wang S W. Comparative study on activities of enzymes related to nitrogen metabolism in rice cultivars with different eating tastes. Guangdong Agric Sci, 2015, 14(7):27-30 (in Chinese with English abstract).
[29] Nagato K. Differences in grain weight of spikelets located at different positions within a rice panicle. Jpn J Crop Sci, 1941, 13:156-169 (in Japanese).
doi: 10.1626/jcs.13.156
[30] Mohapatra P K, Patel R, Sahu S K. Time of flowering affects grain quality and spikelet partitioning within the rice panicle. Australian J Plant Physiol, 1993, 20:231-242.
[31] 杨建昌. 禾谷类作物弱势粒的充实. 见: “10000个科学难题”农业科学编委会, 10000个科学难题, 农业科学卷. 北京: 科学出版社, 2011. pp 120-122.
Yang J C. The Filling of Inferior Caryopses in Cereals. In: The Editorial Board of 10000 Selected Problems in Agricultural Sciences eds. 10000 Selected Problems in Science. Beijing: Science Press, 2011. pp 120-122(in Chinese).
[32] Mohapatra P K, Panigrahi R, Turner N C. Physiology of spikelet development on the rice panicle: is manipulation of apical dominance crucial for grain yield improvement? Adv Agron, 2011, 110:333-359.
[33] Ishimaru T, Hirose T, Matsuda T, Goto A, Takahashi K, Sasaki H, Terao T, Ishii R, Ohsugi R, Yamagishi T. Expression patterns of genes encoding carbohydrate-metabolizing enzymes and their relationship to grain filling in rice (Oryza sativa L.): comparison of caryopses located at different positions in a panicle. Plant Cell Physiol, 2005, 46:620-628.
pmid: 15701658
[34] Chen T T, Xu G W, Wang Z Q, Zhang H, Yang J C, Zhang J H. Expression of proteins in superior and inferior spikelets of rice during grain filling under different irrigation regimes. Proteomics, 2016, 16:102-121.
doi: 10.1002/pmic.201500070
[35] Zhang Z X, Zhao H, Huang F L, Long J F, Song G, Lin W X. The 14-3-3 protein GF14f negatively affects grain filling of inferior spikelets of rice (Oryza sativa L.). Plant J, 2019, 99:344-358.
[36] 杨建昌, 张建华. 促进稻麦同化物转运和籽粒灌浆的途径与机制. 科学通报, 2018, 63:2932-2943.
Yang J C, Zhang J H. Approach and mechanism in enhancing the remobilization of assimilates and grain-filling in rice and wheat. Chin Sci Bull, 2018, 63:2932-2943 (in Chinese with English abstract).
[37] 周琴, 姜东, 戴廷波, 荆奇, 曹卫星. 谷氨酰胺供应水平对离体培养小麦穗籽粒淀粉和蛋白质及其组分含量的影响. 植物学通报 2005, 22:549-554.
Zhou Q, Jiang D, Dai T B, Jing Q, Cao W X. Effect of glutamine on content of starch, protein and protein components in grains of in vitro-cultured wheat spikes. Chin Bull Bot, 2005, 22:549-554 (in Chinese with English abstract).
[38] 周丽慧, 张昌泉, 刘巧泉, 顾铭洪. 具不同蛋白质含量水稻品种中天冬酰胺合成酶基因的表达. 基因组学与应用生物学, 2009, 28:39-45.
Zhou L H, Zhang C Q, Liu Q Q, Gu M H. Expression characteristics of asparagine synthetase gene among rice varieties with different seed storage protein content. Genom Appl Biol, 2009, 28:39-45 (in Chinese with English abstract).
[39] 曹珍珍, 张其芳, 韦克苏, 杨卫丽, 刘光快, 程方民. 水稻籽粒氮代谢几个关键酶对花后高温胁迫的响应及其与贮藏蛋白积累关系. 作物学报, 2012, 38:99-106.
Cao Z Z, Zhang Q F, Wei K S, Yang W L, Liu G K, Cheng F M. Response of some key enzyme activities involved in nitrogen metabolism to high temperature at filling stage and its relation to storage protein accumulation in rice grain. Acta Agron Sin, 2012, 38:99-106 (in Chinese with English abstract).
[40] 梁成刚, 张青, 李敬, 熊丹, 许光利, 汪燕, 刘泉, 黄鹏, 李天. 水稻灌浆期高温对天冬氨酸代谢酶活性及其家族氨基酸含量的影响. 中国水稻科学, 2013, 27:71-76.
Liang C G, Zhang Q, Li J, Xiong D, Wang Y, Liu Q, Huang P, Li T. Effect of high temperature on aspartate metabolism enzyme activities and aspartate-family amino acids contents at rice grain-filling stage. Chin J Rice Sci, 2013, 27:71-76 (in Chinese with English abstract).
[41] 韦克苏. 花后高温对水稻胚乳淀粉合成与蛋白积累的影响机制. 浙江大学博士学位论文, 浙江杭州, 2012.
Wei K S. Effect of High Temperature on Starch Synthesis and Protein Accumulation in Rice Endosperm at Filling Stage. PhD Dissertation of Zhejiang University, Hangzhou, Zhejiang, China, 2012 (in Chinese with English abstract).
[42] Azevedo R A, Lancien M, Lea P J. The aspartic acid metabolic pathway, an exciting and essential pathway in plants. Amino Acids, 2006, 30:143-162.
pmid: 16525757
[43] Azevedo R A, Lea P J. Lysine metabolism in higher plants. Amino Acids, 2001, 20:261-279.
pmid: 11354603
[44] Tang G L, Zhu X H, Gakiere B, Levanony H, Kahana A, Galili G. The bifunctional LKR/SDH locus of plants also encodes a highly active monofunctional lysine-ketoglutarate reductase using a polyadenylation signal located within an intron. Plant Physiol, 2002, 130:147-154.
[45] Zhang W Y, Sheng J Y, Xu Y J, Xiong F, Wu Y F, Wang W L, Wang Z Q, Yang J C, Zhang J H. Role of brassinosteroids in rice spikelet differentiation and degeneration under soil-drying during panicle development. BMC Plant Biol, 2019, 19:409.
doi: 10.1186/s12870-019-2025-2
[46] Gu J F, Li Z K, Mao Y Q, Struik P C, Zhang H, Liu L J, Wang Z Q, Yang J C. Roles of nitrogen and cytokinin signals in root and shoot communications in maximizing of plant productivity and their agronomic applications. Plant Sci, 2018, 274:320-331.
doi: 10.1016/j.plantsci.2018.06.010
[47] Wang Z Q, Xu Y J, Chen T T, Zhang H, Yang J C, Zhang J H. Abscisic acid and the key enzymes and genes in sucrose-to-starch conversion in rice spikelets in response to soil drying during grain filling. Planta, 2015, 175:47-55.
[48] Forestan C, Meda S, Varotto S. ZmPlN1-mediated auxin transport is related to cellular differentiation during maize embryogenesis and endosperm development. Plant Physiol, 2010, 152:1373-1390.
doi: 10.1104/pp.109.150193
[49] Fath A, Bethke P C, Belligni M V, Spiegel Y N, Jones R L. Signalling in the cereal aleurone: hormones, reactive oxygen and cell death. New Phytol, 2001, 151:99-107.
doi: 10.1046/j.1469-8137.2001.00153.x
[50] Todaka D, Zhao Y, Yoshida T, Kudo M, Kidokoro S, Mizoi J, Kodaira, K S, Takebayashi Y, Kojima M, Sakakibara, H, Toyooka K, Sato M, Fernie A R, Shinozaki K, Yamaguchi-Shinozaki K. Temporal and spatial changes in gene expression, metabolite accumulation and phytohormone content in rice seedlings grown under drought stress conditions. Plant J, 2017, 90:61-78.
doi: 10.1111/tpj.2017.90.issue-1
[51] Chanclud E, Kisiala A, Emery N R J, Chalvon V, Ducasse A, Romiti-Michel C, Gravot A, Kroj T, Morel J B. Cytokinin production by the rice blast fungus is alpha pivotal requirement for full virulence. PLoS Pathogens, 2016, 12:e1005457.
[52] Sun L, Di D W, Li G J, Kronzucker H J, Shi W M. Spatio- temporal dynamics in global rice gene expression (Oryza sativa L.) in response to high ammonium stress. J Plant Physiol, 2017, 212:94-104.
doi: 10.1016/j.jplph.2017.02.006
[53] Radchuk V, Riewe D, Peukert M, Matros A, Strickert M, Radchuk R, Weier D, Steinbiss H H, Sreenivasulu N. Down- regulation of the sucrose transporters HvSUT1 and HvSUT2 affects sucrose homeostasis along its delivery path in barley grains. J Exp Bot, 2017, 68:4595-4612.
doi: 10.1093/jxb/erx266
[54] 杨建昌. 水稻根系形态生理与产量、品质形成及养分吸收利用的关系. 中国农业科学, 2011, 44:36-46.
Yang J C. Relationships of rice root morphology and physiology with the formation of grain yield and quality and the nutrient absorption and utilization. Sci Agric Sin, 2011, 44:36-46 (in Chinese with English abstract).
[55] Xu Y J, Jian C Q, Li K, Tian Y F, Zhang W Y, Zhu K Y, Wang Z Q, Yang J C. Role of polyamines in filling grains in regulating amino acid synthesis in milled rice. Food Energy Secur, 2021, 10:e306.
[56] 何光华, 谢戎, 郑家奎, 袁祚廉, 左永树, 杨正林, 袁玲, 邵启明, 黄彬茹. 水稻籽粒游离氨基酸含量及其产量的种子和母体遗传效应分析. 生物数学学报, 1995, 10(4):71-77.
He G H, Xie R, Zheng J K, Yuan Z L, Zuo Y S, Yang Z L, Yuan L, Shao Q M, Huang L R. Analysis of seed and maternal genetic effects for free amino acid content and it’s yield of grain in rice. J Biomathem, 1995, 10(4):71-77 (in Chinese with English abstract).
[57] 徐振华, 曲莹, 刘海英, 朱立楠, 张忠臣, 金正勋. 粳稻超亲变异系籽粒谷氨酰胺合成酶基因表达特性及序列变异分析. 中国水稻科学, 2016, 30:304-312.
Xu Z H, Qu Y, Liu H Y, Zhu L N, Zhang Z C, Jin Z X. Expression characteristics and sequence variation analysis of glutamine synthetase gene in grain of japonica rice with transgressive variation. Chin J Rice Sci, 2016, 30:304-312 (in Chinese with English abstract).
[58] Wu J G, Shi C H, Zhang X M, Katsura T. Genetic and genotype × environment interaction effects for the content of seven essential amino acids in indica rice. J Genet, 2004, 83:171-178.
pmid: 15536256
[59] Yang Q Q, Zhao D S, Zhang C Q, Wu H Y, Li Q F, Gu M H, Sun S S M, Liu Q Q. A connection between lysine and serotonin metabolism in rice endosperm. Plant Physiol, 2018, 176:1965-1980.
doi: 10.1104/pp.17.01283
[60] Liu X, Zhang C C, Wang X R, Liu Q Q, Yuan D Y, Pan G, Sun S S M, Du J M. Development of high-lysine rice via endosperm- specific expression of a foreign LYSINE RICH PROTEIN gene. BMC Plant Biol, 2016, 16:147.
doi: 10.1186/s12870-016-0837-x
[61] Yang Q Q, Yu W H, Wu H Y, Zhang C Q, Sun S S M, Liu Q Q. Lysine biofortification in rice by modulating feedback inhibition of aspartate kinase and dihydrodipicolinate synthase. Plant Biotech J, 2020, 19:490-501.
doi: 10.1111/pbi.v19.3
[62] Bicar E H, Woodman-Clikeman W, Sangtong V, Joan M. Peterson J M, Yang S S, Michael Lee M, Scott M P. Transgenic maize endosperm containing a milk protein has improved amino acid balance. Transgenic Res, 2008, 17:59-71.
pmid: 17387628
[63] Yu J, Peng P, Zhang X, Zhao Q, Zhy D, Sun X, Liu J, Ao G. Seed-specific expression of a lysine rich protein sb401 gene significantly increases both lysine and total protein content in maize seeds. Mol Breed, 2004, 14:1-7.
doi: 10.1023/B:MOLB.0000037990.23718.d6
[64] Zhang H, Yu C, Hou D P, Liu H L, Zhang H T, Tao R R, Cai H, Gu J F, Liu L J, Zhang Z J, Wang Z Q, Yang J C. Changes in mineral elements and starch quality of grains during the improvement of japonica rice cultivars. J Sci Food Agric, 2018, 98:122-133.
doi: 10.1002/jsfa.8446
[65] Wahid A, Gelani S, Ashraf M, Foolad M R. Heat tolerance in plants: an overview. Environ Exp Bot, 2007, 61:199-223.
doi: 10.1016/j.envexpbot.2007.05.011
[66] 段骅, 杨建昌. 高温对水稻的影响及其机制的研究进展. 中国水稻科学, 2012, 26:394-400.
Duan H, Yang J C. Research advances in the effect of high temperature on rice and its mechanism. Chin J Rice Sci, 2012, 26:394-400 (in Chinese with English abstract).
[67] Das S, Krishnan P, Nayak M, Ramakrishnan B. High temperature stress effects on pollens of rice (Oryza sativa L.) genotypes. Environ Exp Bot, 2014, 101:36-46.
doi: 10.1016/j.envexpbot.2014.01.004
[68] Huang L Y, Sun Y, Peng S B, Wang F. Genotypic differences of japonica rice responding to high temperature in China. Agron J, 2016, 108:626-636.
doi: 10.2134/agronj2015.0507
[69] 梁成刚, 陈利平, 汪燕, 刘佳, 许光利, 李天. 高温对水稻灌浆期籽粒氮代谢关键酶活性及蛋白质含量的影响. 中国水稻科学, 2010, 24:398-402.
Liang C G, Chen L P, Wang Y, Liu J, Xu G L, Li T. Effects of high temperature on key enzyme activities of nitrogen metabolism and protein content during rice grain filling. Chin J Rice Sci, 2010, 24:398-402 (in Chinese with English abstract).
[70] 许光利, 刘佳, 梁成刚, 汪燕, 丁春邦, 李天. 灌浆结实期弱光对水稻籽粒氮代谢酶及蛋白质含量的影响. 浙江大学学报(农业与生命科学版), 2016, 42:53-62.
Xu G L, Liu J, Liang C G, Wang Y, Ding C B, Li T. Changes of nitrogen metabolism enzyme activities and protein content in response to low light during the seed filling stage in rice. J Zhejiang Univ (Agric Life Sci Edn), 2016, 42:53-62 (in Chinese with English abstract).
[71] Liang C G, Liu J, Wang Y, Xiong D, Ding C B, Li T. Low light during grain filling stage deteriorates rice cooking quality, but not nutritional value. Rice Sci, 2015, 22:197-206.
doi: 10.1016/j.rsci.2015.04.003
[72] Yamakawa H, Hakata M. Atlas of rice grain filling-related metabolism under high temperature: joint analysis of metabolome and transcriptome demonstrated inhibition of starch accumulation and induction of amino acid accumulation. Plant Cell Physiol, 2010, 51:795-809.
doi: 10.1093/pcp/pcq034
[73] 韩展誉, 管弦悦, 赵倩, 吴春艳, 黄福灯, 潘刚, 程方民. 灌浆温度和氮肥及其互作效应对稻米贮藏蛋白组分的影响. 作物学报, 2020, 46:1087-1098.
doi: 10.3724/SP.J.1006.2020.92062
Han Z Y, Guan X Y, Zhao Q, Wu C Y, Huang F D, Pan G, Cheng F M. Individual and combined effects of air temperature at filling stage and nitrogen application on storage protein accumulation and its different components in rice grains. Acta Agron Sin, 2020, 46:1087-1098 (in Chinese with English abstract).
[74] Huang M, Zhang H, Zhao C, Chen G H, Zou Y B. Amino acid content in rice grains is affected by high temperature during the early grain-filling period. Sci Rep, 2019, 9:2700.
doi: 10.1038/s41598-019-38883-2 pmid: 30804353
[75] 汤利, 周米平, 马振江, 刘波. 钾肥对稻米蛋白质组分和氨基酸含量的影响. 吉林农业大学学报, 1994, 16(增刊1):121-124.
Tang L, Zhou M P, Ma Z J, Liu B. Effects of potash on grain protein components and amino acid contents of rice. J Jilin Agric Univ, 1994, 16(S1):121-124 (in Chinese with English abstract).
[76] Liu Q H, Zhou X B, Sun Z W. Application of silicon fertilizer affects nutritional quality of rice. Chilean J Agric Res, 2017, 77:163-170.
doi: 10.4067/S0718-58392017000200163
[77] Zou Z H, Deng G Q, Peng X M, Xie H K, Li X, Peng L, Zhang Z Y. Effects of exogenous amino acids application on nitrogen accumulation, yield and grain quality in rice. Intern J Agric Biol, 2018, 20:2053-2058.
[78] 彭辉辉, 刘强, 荣湘民, 彭建伟, 谢桂先, 张玉平, 陈煦, 石其伟. 不同栽培法对水稻谷草转氨酶与天冬氨酸激酶活性的影响. 湖南农业大学学报(自然科学版), 2005, 31:233-237.
Peng H H, Liu Q, Rong X M, Peng J W, Xie G X, Zhang Y P, Chen X, Shi Q W. Effects of different cultural methods on activities of GOT and AK of rice. J Hunan Agric Univ, 2005, 31:233-237 (in Chinese with English abstract).
[79] 荣湘民, 谢桂先, 刘强, 彭建伟, 朱红梅. 不同栽培法对高蛋白饲料稻籽粒氨基酸含量的影响. 中国农业气象, 2007, 28:149-153.
Rong X M, Xie G X, Liu Q, Peng J W, Zhu H M. Influence of different cultivation methods on amino acid content of high protein forage rice grains. Chin J Agrometeorol, 2007, 28:149-153 (in Chinese with English abstract).
[80] Huang M, Zhao C, Zou Y. Increased grain amino acid content in rice with earthworm castings. Appl Sci, 2019, 9:1090.
doi: 10.3390/app9061090
[81] 罗兰芳, 郑圣先, 廖育林, 聂军, 谢坚, 向艳文. 控释氮肥对杂交水稻糙米蛋白质品质和氮代谢关键酶活性的影响. 中国水稻科学, 2007, 21:403-410.
Luo L F, Zheng S X, Liao Y L, Nie J, Xie J, Xiang Y W. Effect of controlled release nitrogen fertilizer on protein quality of brown rice and key enzyme activity involved in nitrogen metabolism in hybrid rice. Chin J Rice Sci, 2007, 21:403-410 (in Chinese with English abstract).
[82] 戴平安, 郑圣先, 李学斌, 聂军, 易国英, 袁迪仁, 黄科延. 穗肥氮施用比例对两系杂交水稻氮素吸收、籽粒氨基酸含量和产量的影响. 中国水稻科学, 2006, 20:79-83.
Dai P A, Zheng S X, Li X B, Nie J, Yi G Y, Yuan D R, Huang K Y. Effect of proportion of nitrogen fertilizer for promoting panicle development on nitrogen uptake, grain amino acid contents and grain yield of two-line hybrid rice. Chin J Rice Sci, 2006, 20:79-83 (in Chinese with English abstract).
[83] 张志兴, 陈军, 李忠, 李兆伟, 黄锦文, 陈婷, 方长旬, 陈鸿飞, 林文雄. 水稻籽粒灌浆过程中蛋白质表达特性及其对氮肥运筹的响应. 生态学报, 2012, 32:3209-3224.
Zhang Z X, Chen J, Li Z, Li Z W, Huang J W, Chen T, Fang C X, Chen H F, Lin W X. Protein expression characteristics and their response to nitrogen application during grain-filling stage of rice (Oryza sativa L.). Acta Ecol Sin, 2012, 32:3209-3224 (in Chinese with English abstract).
[84] 赵艳玲. 中期氮肥调控影响水稻产量及稻米品质的生理机制. 南京农业大学博士学位论文, 江苏南京, 2014.
Zhao Y L. Effect of Nitrogen on Rice Yield and Quality and Its Physiological Mechanism. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2014 (in Chinese with English abstract).
[85] Zhao Y L, Xi M, Zhang X C, Lin Z M, Ding C Q, Tang S, Liu Z H, Wang S H, Ding Y F. Nitrogen effect on amino acid composition in leaf and grain of japonica rice during grain filling stage. J Cereal Sci, 2015, 64:29-33.
doi: 10.1016/j.jcs.2015.03.011
[86] Zhang X C, Lei J C, Zheng D Y, Liu Z H, Li G H, Wang S H, Ding Y F. Amino acid composition of leaf, grain and bracts of japonica rice(Oryza sativa ssp. japonica) and its response to nitrogen. Plant Growth Regul, 2017, 82:1-9.
doi: 10.1007/s10725-016-0232-5
[87] Cao F B, Fu M M, Wang R F, Cheng W D, Zhang G P, Wu F B. Genotypic-dependent effects of N fertilizer, glutathione, silicon, zinc, and selenium on proteomic profiles, amino acids contents, and quality of rice genotypes with contrasting grain Cd accumulation. Funct Integr Genomics, 2017, 17:387-397.
doi: 10.1007/s10142-016-0540-x
[88] 申勇. 不同粳稻品种稻米品质对施氮量的响应差异及其原因分析. 扬州大学硕士学位论文, 江苏扬州, 2021.
Shen Y. Difference in Response of Grain Quality to Nitrogen Application Rates among Japonica Rice Varieties and Its Causes. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2021 (in Chinese with English abstract).
[89] Ning H F, Qiao J F, Liu Z H, Lin Z M, Li G H, Wang S H, Ding Y F. Distribution of proteins and amino acids in milled and brown rice as affected by nitrogen fertilization and genotype. J Cereal Sci, 2010, 52:90-95.
doi: 10.1016/j.jcs.2010.03.009
[90] Liu Q H, Ma H, Lion X Q, Zhou X B, Zhao Q L. Effects of different types of fertilizers application on rice grain quality. Chilean J Agric Res, 2019, 79:202-209.
doi: 10.4067/S0718-58392019000200202
[91] 周婵婵, 黄元财, 贾宝艳, 王岩, 李瑞峰, 王术, 冯跃, Dou F G. 施氮量和灌溉方式的交互作用对东北粳稻稻米品质的影响. 中国水稻科学, 2019, 33:357-367.
Zhou C C, Huang Y C, Jia B Y, Wang Y, Li R F, Wang S, Feng Y, Dou F G. Effect of interaction between nitrogen rate and irrigation regime on grain quality of japonica rice in northeast China. Chin J Rice Sci, 2019, 33:357-367 (in Chinese with English abstract).
[92] Barnaby J Y, Rohila J S, Henry C G, Sicher R C, Reddy V R, McClung A M. Physiological and metabolic responses of rice to reduced soil moisture: relationship of water stress tolerance and grain production. Inter J Mol Sci, 2019, 20:1846.
doi: 10.3390/ijms20081846
[93] Zhang H, Hou D P, Peng X L, Ma B J, Shao S M, Jing W J, Gu J F, Liu L J, Wang Z Q, Liu Y Y, Yang J C. Optimizing integrative cultivation management improves grain quality while increasing yield and nitrogen use efficiency in rice. J Integr Agric, 2019, 18:2716-2731.
doi: 10.1016/S2095-3119(19)62836-4
[94] Zhang H, Zhang S F, Yang J C, Zhang J H, Wang Z Q. Postanthesis moderate wetting drying improves both quality and quantity of rice yield. Agron J, 2008, 100:726-734.
doi: 10.2134/agronj2007.0169
[95] 杨建昌, 张建华. 水稻高产节水灌溉. 北京: 科学出版社, 2019. pp 35-70.
Yang J C, Zhang J H. High-yielding and Water-saving Irrigation in Rice. Beijing: Science Press, 2019. pp 35-70(in Chinese).
[96] 蔡一霞, 王维, 朱庆森. 水分胁迫对水稻籽粒蛋白质积累及营养品质的影响. 植物生态学报, 2007, 31:536-543.
doi: 10.17521/cjpe.2007.0067
Cai Y X, Wang W, Zhu Q S. Effects of water stress on nutrient quality and accumulation of protein in rice grains. J Plant Ecol, 2007, 31:536-543 (in Chinese with English abstract).
[97] 陶进. 干湿交替灌溉对水稻农艺生理性状与米质的影响. 扬州大学硕士学位论文, 江苏扬州, 2017.
Tao J. Effects of Alternate Wetting and Drying Irrigation on Agronomic and Physiological Traits and Grain Quality of Rice. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2017.
[98] Xu Y J, Gu D J, Li K, Zhang W Y, Zhang H, Wang Z Q, Yang J C. Response of grain quality to alternate wetting and moderate soil drying irrigation in rice. Crop Sci, 2019, 59:1261-1272.
doi: 10.2135/cropsci2018.11.0700
[99] Sathee L, Jha S K, Singh Rajput O S, Singh D, Kumar S, Kumar A. Expression dynamics of genes encoding nitrate and ammonium assimilation enzymes in rice genotypes exposed to reproductive stage salinity stress. Plant Physiol Biochem, 2021, 165:161-172.
doi: 10.1016/j.plaphy.2021.05.013
[100] Sevanthi A M, Sinha S K, Sureshkumar V, Rani M, Saini M R, Kumari S, Kaushik M, Prakash C, Venkatesh K, Singh G P, Mohapatra T, Mandal P K. Integration of dual stress transcriptomes and major QTLs from a pair of genotypes contrasting for drought and chronic nitrogen starvation identifies key stress responsive genes in rice. Rice, 2021, 14:49.
doi: 10.1186/s12284-021-00487-8 pmid: 34089405
[101] 李强, 任云, 邹勇, 刘静, 袁继超. 低氮胁迫下不同氮效率玉米品种的氮代谢与物质生产差异. 西北农业学报, 2021, 30:672-680.
Li Q, Ren Y, Zou Y, Liu J, Yuan J C. Differences in nitrogen metabolism and dry matter production between maize cultivars and different nitrogen efficiencies under low nitrogen stress. Acta Agric Boreali-Occident Sin, 2021, 30:672-680 (in Chinese with English abstract).
[102] 王军可, 王亚梁, 陈惠哲, 向镜, 张义凯, 朱德峰, 张玉屏. 灌浆初期高温影响水稻籽粒碳氮代谢的机制. 中国农业气象, 2020, 12:774-784.
Wang J K, Wang Y L, Chen H Z, Xiang J, Zhang Y K, Zhu D F, Zhang Y P. Mechanism of high temperature affecting carbon and nitrogen metabolism of rice grain at the early stage of grain filling. Chin J Agrom, 2020, 12:774-784 (in Chinese with English abstract).
[103] Kyung S J, Choe Y J L, Ha S, Sonn Y K, Lee J S. Effect of customized fertilizer application and soil properties on amino acids composition in rice grain. Korean J Soil Sci Fert, 2015, 48:464-468.
doi: 10.7745/KJSSF.2015.48.5.464
[104] 吴婷婷, 陈佳宝, 袁虎威, 郑炳松, 闫道良. 叶面喷施有机碳对铁皮石斛碳水化合物代谢及Fe、Zn含量的影响. 生态科学, 2021, 40(1):31-36.
Wu T T, Chen J B, Yuan H W, Zheng B S, Yan D L. Effects of foliar spraying organic carbon on carbohydrate metabolism and Fe, Zn content of Dendrobium officinale. Ecol Sci, 2021, 40(1):31-36 (in Chinese with English abstract).
[105] Lanza M G D B, dos Reis A R. Roles of selenium in mineral plant nutrition: ROS scavenging responses against abiotic stresses. Plant Physiol Biochem, 2021, 164:27-43.
doi: 10.1016/j.plaphy.2021.04.026
[106] Carlisle A E, Lee N, Matthew-Onabanjo A N, Spears M E, Park S J, Youkana D, Doshi M B, Peppers A, Li R, Joseph A B, Smith M, Simin K, Zhu L J, Greer P L, Shaw L M, Kim D. Selenium detoxification is required for cancer-cell survival. Nature Metabol, 2020, 2:603-611.
doi: 10.1038/s42255-020-0224-7
[107] 方勇, 陈曦, 陈悦, 罗佩竹, 杨文建, 马宁, 辛志宏, 赵立艳, 胡秋辉. 外源硒对水稻籽粒营养品质和重金属含量的影响. 江苏农业学报, 2013, 29:760-765.
Fang Y, Chen X, Chen Y, Luo P Z, Yang W J, Ma N, Xin Z H, Zhao L Y, Hu Q H. Effects of exogenous selenium on nutritional quality and heavy metal content of rice grain. Jiangsu J Agric Sci, 2013, 29:760-765 (in Chinese with English abstract).
[108] 余侃, 黄思思, 龙小玲, 蔡端午, 刘金龙, 郑威, 程水源. 生物有机硒对稻米品质性状及硒吸收分配的影响. 食品科技, 2019, 44(11):168-173.
Yu K, Huang S S, Long X L, Cai D W, Liu J L, Zheng W, Cheng S Y. Effects of bioorganic selenium on rice quality characters and selenium absorption and distribution. Food Sci Technol, 2019, 44(11):168-173 (in Chinese with English abstract).
[109] 余侃, 肖秋水, 黄思思, 龙小玲, 蔡端午, 刘金龙, 郑威. 生物有机硒对不同水稻品种主要性状、重金属含量及硒吸收的影响. 南方农业学报, 2021, 52:1206-1214.
Yu K, Xiao Q S, Huang S S, Long X L, Cai D W, Liu J L, Zheng W. Effects of bioorganic selenium on main characters, heavy metal content and selenium absorption of different rice varieties. J Southern Agric, 2021, 52:1206-1214 (in Chinese with English abstract).
[110] Mallikarjuna Swamy B P, Marathi B, Ribeiro-Barros A I F, Ricachenevsky F K. Development of healthy and nutritious cereals: recent insights on molecular advances in breeding (Editorial). Front Genet, 2021, 12:635006.
doi: 10.3389/fgene.2021.635006 pmid: 33868374
[111] Wu K, Xu X, Zhong N, Huang H, Yu J, Ye Y, Wu Y, Fu X. The rational design of multiple molecular module-based assemblies for simultaneously improving rice yield and grain quality. J Genet Genom, 2018, 46:337-341.
[112] Zhang J, Zhang H, Botella J R, Zhu J. Generation of new glutinous rice by CRISPR/Cas9-targeted mutagenesis of the Waxy gene in elite rice varieties. J Integr Plant Biol, 2018, 60:369-375.
doi: 10.1111/jipb.v60.5
[113] Xu Q, Liu Q, Chen Z, Yue Y, Liu Y, Zhang Y, Zhou D X. Histone deacetylases control lysine acetylation of ribosomal proteins in rice. Nucleic Acids Res, 2021, 49:4613-4628.
doi: 10.1093/nar/gkab244
[114] Huang L, Li Q, Zhang C, Chu R, Gu Z, Tan H, Zhao D, Fan X, Liu Q. Creating novel Wx alleles with fine-tuned amylose levels and improved grain quality in rice by promoter editing using CRISPR/Cas9 system. Plant Biotech J, 2020, 18:2164-2166.
doi: 10.1111/pbi.v18.11
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[7] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[8] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[9] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[10] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[11] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[12] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[13] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[14] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
[15] 杨谨, 白爱宁, 白雪, 陈娟, 郭林, 刘春明. 水稻胚胎和胚乳双缺陷突变体eed1的表型与遗传分析[J]. 作物学报, 2022, 48(2): 292-303.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!