作物学报 ›› 2022, Vol. 48 ›› Issue (6): 1558-1565.doi: 10.3724/SP.J.1006.2022.14093
• 研究简报 • 上一篇
李海芬(), 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强*()
LI Hai-Fen(), WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang*()
摘要:
为研究电压依赖性阴离子通道基因(AhVDAC)与花生果针向地性生长的相关性, 本研究克隆了花生AhVDAC基因全长cDNA序列, 并对其编码蛋白结构、亚细胞定位、原核表达蛋白及其在果针向地性反应过程的表达特性进行分析。结果表明, AhVDAC基因含有831 bp的开放阅读框, 编码一个含有276个氨基酸、分子量大小为29.7 kD、pI值为6.38的蛋白。亚细胞定位分析结果显示, AhVDAC基因主要定位在细胞质。构建了pPROEXHTa-AhVDAC原核表达载体, 诱导及分离纯化了37 kD的AhVDAC纯化蛋白。采用RT-PCR对花生果针入土前不同发育时期AhVDAC的表达进行分析发现, AhVDAC基因表达量在果针发育的第2天最高, 随后逐渐下降后维持在较低的表达水平。通过对离体培养的花生果针施加外源CaCl2和LaCl3发现, CaCl2明显促进花生果针向地性弯曲和AhVDAC的表达, 而LaCl3则减缓果针弯曲和AhVDAC的表达, 推测Ca2+的积累可能促进了AhVDAC的表达, 并通过生物膜上AhVDAC的运输对Ca2+进行不对称分布, 从而使得花生果针改变生长方向, 发生向地性弯曲。
[1] |
Li H F, Zhu F H, Li H Y, Zhu W, Chen X P, Hong Y B, Liu H Y, Hong W, Liang X Q. Proteomic identification of gravitropic response genes in peanut gynophores. J Proteomics, 2013, 93: 303-313.
doi: 10.1016/j.jprot.2013.08.006 |
[2] |
Takahashi Y, Tateda C. The functions of voltage-dependent anion channels in plants. Apoptosis, 2013, 18: 917-924.
doi: 10.1007/s10495-013-0845-3 |
[3] |
Yan J P, He H, Tong S B, Zhang W R, Wang J M, Li X F, Yang Y. Voltage-dependent anion channel 2 of Arabidopsis thaliana (AtVDAC2) is involved in aba-mediated early seedling development. Int J Mol Sci, 2009, 10: 2476-2486.
doi: 10.3390/ijms10062476 |
[4] |
Tateda C, Watanabe K, Kusano T, Takahashi Y. Molecular and genetic characterization of the gene family encoding the voltage- dependent anion channel in Arabidopsis. J Exp Bot, 2011, 62: 4773-4785.
doi: 10.1093/jxb/err113 pmid: 21705391 |
[5] |
Wandrey M, Trevaskis B, Brewin N, Udvardi M K. Molecular and cell biology of a family of voltage-dependent anion channel porins in Lotus japonicus. Plant Physiol, 2004, 134: 182-193.
pmid: 14657408 |
[6] |
Smack D P, Colombini M. Voltage-dependent channels found in the membrane fraction of corn mitochondria. Plant Physiol, 1985, 79: 1094-1097.
doi: 10.1104/pp.79.4.1094 pmid: 16664537 |
[7] | Al Bitar F, Roosens N, Smeyers M, Vauterin M, Van B J, Jacobs M, Homble F. Sequence analysis, transcriptional and posttranscriptional regulation of the rice vdac family. Biochim Biophys Acta, 2003, 1625: 43-51. |
[8] |
Heins L, Mentzel H, Schmid A, Benz R, Schmitz U K. Biochemical, molecular, and functional characterization of porin isoforms from potato mitochondria. J Biol Chem, 1994, 269: 26402-26410.
pmid: 7929361 |
[9] |
Elkeles A, Breiman A, Zizi M. Functional differences among wheat voltage-dependent anion channel (VDAC) isoforms expressed in yeast. Indication for the presence of a novel VDAC-modulating protein? J Biol Chem, 1997, 272: 6252-6260.
doi: 10.1074/jbc.272.10.6252 pmid: 9045642 |
[10] |
Elkeles A, Devos K M, Graur D, Zizi M, Breiman A. Multiple cDNAs of wheat voltage-dependent anion channels (VDAC): isolation, differential expression, mapping and evolution. Plant Mol Biol, 1995, 29: 109-124.
pmid: 7579156 |
[11] |
Hodge T, Colombini M. Regulation of metabolite flux through voltage-gating of VDAC channels. J Membr Biol, 1997, 157: 271-279.
doi: 10.1007/s002329900235 |
[12] |
Shimizu S, Narita M, Tsujimoto Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature, 1999, 399: 483-487.
doi: 10.1038/20959 |
[13] | 田绍泽, 刘思禹, 王坤, 殷倩, 岳远征, 胡惠蓉. 植物线粒体电压依赖性阴离子通道蛋白VDAC综述. 分子植物育种, 2019, 17: 7401-7407. |
Tian S Z, Liu S Y, Wang K, Yin Q, Yue Y Z, Hu H R. The review of voltage-dependent anion channels VDACs in plants. Mol Plant Breed, 2019, 17: 7401-7407 (in Chinese with English abstract). | |
[14] |
Szabadkai G, Bianchi K, Várnai P, Stefani D D, Wieckowski M R, Cavagna D, Nagy A I, Balla T, Rizzuto R. Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J Cell Biol, 2006, 175: 901-911.
pmid: 17178908 |
[15] |
Shoshan-Barmatz V, Pinto V D, Zweckstetter M, Raviv Z, Keinan N, Arbel N. VDAC, a multi-functional mitochondrial protein regulating cell life and death. Mol Aspects Med, 2010, 31: 227-285.
doi: 10.1016/j.mam.2010.03.002 pmid: 20346371 |
[16] |
Hepler P. Tip growth in pollen tubes: calcium leads the way. Trends Plant Sci, 1997, 2: 79-80.
doi: 10.1016/S1360-1385(97)88385-9 |
[17] |
Malho R, Read N D, Trewavas A J, Pais M S. Calcium channel activity during pollen tube growth and reorientation. Plant Cell, 1995, 7: 1173-1184.
doi: 10.2307/3870093 |
[18] |
Young M J, Bay D C, Hausner G, Court D A. The evolutionary history of mitochondrial porins. BMC Evol Biol, 2007, 7: 31.
doi: 10.1186/1471-2148-7-31 |
[19] | Gincel D, Vardi N, Shoshan-Barmatz V. Retinal voltage- dependent anion channel: characterization and cellular localization. Invest Ophthalmol Vis Sci, 2002, 43: 2097-2104. |
[20] |
Shoshan-Barmatz V, Gincel D. The voltage-dependent anion channel: characterization, modulation, and role in mitochondrial function in cell life and death. Cell Biochem Biophys, 2003, 39: 279-292.
pmid: 14716081 |
[21] |
Deniaud A, Rossi C, Berquand A, Homand J, Campagna S, Knoll W, Brenner C, Chopineau J. Voltage-dependent anion channel transports calcium ions through biomimetic membranes. Langmuir, 2007, 23: 3898-3905.
doi: 10.1021/la063105+ |
[22] | Tan W, Colombini M. VDAC closure increases calcium ion flux. Biochim Biophys Acta, 2007, 1768: 2510-2515. |
[23] |
Bathori G, Csordas G, Garcia-Perez C, Davies E, Hajnoczky G. Ca2+-dependent control of the permeability properties of the mitochondrial outer membrane and voltage-dependent anion- selective channel (VDAC). J Biol Chem, 2006, 281: 17347-17358.
doi: 10.1074/jbc.M600906200 |
[24] |
Kordyum E L. Calcium signaling in plant cells in altered gravity. Adv Space Res, 2003, 32: 1621-1630.
doi: 10.1016/S0273-1177(03)90403-0 pmid: 15002419 |
[25] |
Sinclair W, Trewavas A J. Calcium in gravitropism. A re-examination. Planta, 1997, 203: S85-S90.
doi: 10.1007/pl00008120 pmid: 11540333 |
[26] |
Trewavas A J, Malhó R. Ca2+ signalling in plant cells: the big network! Curr Opin Plant Biol, 1998, 1: 428-433.
pmid: 10066614 |
[27] |
Shoshan-Barmatz V, Israelson A. The voltage-dependent anion channel in endoplasmic/ sarcoplasmic reticulum: characterization, modulation and possible function. J Membr Biol, 2004, 204: 57-66.
doi: 10.1007/s00232-005-0749-4 |
[28] |
Sabirov R Z, Okada Y. The maxi-anion channel: a classical channel playing novel roles through an unidentified molecular entity. J Physiol Sci, 2009, 59: 3-21.
doi: 10.1007/s12576-008-0008-4 |
[29] |
Zhou L M, Lan W Z, Jiang Y Q, Fang W, Luan S. A calcium-dependent protein kinase interacts with and activates A calcium channel to regulate pollen tube growth. Mol Plant, 2014, 7: 369-376.
doi: 10.1093/mp/sst125 |
[30] |
Messerli M, Robinson K R. Tip localized Ca2+ pulses are coincident with peak pulsatile growth rates in pollen tubes of Lilium longiflorum. J Cell Sci, 1997, 110: 1269-1278.
doi: 10.1242/jcs.110.11.1269 |
[1] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[2] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[3] | 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190. |
[4] | 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026. |
[5] | 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034. |
[6] | 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579. |
[7] | 杨昕, 林文忠, 陈思远, 杜振国, 林杰, 祁建民, 方平平, 陶爱芬, 张立武. 黄麻双生病毒CoYVV的分子鉴定和抗性种质筛选[J]. 作物学报, 2022, 48(3): 624-634. |
[8] | 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703. |
[9] | 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291. |
[10] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
[11] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[12] | 余国武, 青芸, 何珊, 黄玉碧. 玉米SSIIb蛋白多克隆抗体的制备及其应用[J]. 作物学报, 2022, 48(1): 259-264. |
[13] | 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120. |
[14] | 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653. |
[15] | 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679. |
|