欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (6): 1558-1565.doi: 10.3724/SP.J.1006.2022.14093

• 研究简报 • 上一篇    

花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析

李海芬(), 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强*()   

  1. 广东省农业科学院作物研究所 / 广东省农作物遗传改良重点实验室, 广东广州 510640
  • 收稿日期:2021-05-18 接受日期:2021-09-10 出版日期:2022-06-12 网络出版日期:2021-10-12
  • 通讯作者: 梁炫强
  • 作者简介:E-mail: lihaifen@gdaas.cn
  • 基金资助:
    广东省重点领域研发计划项目(2020B020219003);财政部和农业农村部: 国家现代农业产业技术体系建设专项和广东省农业科学院学科团队建设项目(202104TD)

Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores

LI Hai-Fen(), WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang*()   

  1. Crops Research Institute, Guangdong Academy of Agricultural Science / Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Guangzhou 510640, Guangdong, China
  • Received:2021-05-18 Accepted:2021-09-10 Published:2022-06-12 Published online:2021-10-12
  • Contact: LIANG Xuan-Qiang
  • Supported by:
    Key-Area Research and Development Program of Guangdong Province(2020B020219003);China Agriculture Research System of the Ministry of Finance and Ministry of Agriculture and Rural Affairs, and the Agricultural Competitive Industry Discipline Team Building Project of Guangdong Academy of Agricultural Science(202104TD)

摘要:

为研究电压依赖性阴离子通道基因(AhVDAC)与花生果针向地性生长的相关性, 本研究克隆了花生AhVDAC基因全长cDNA序列, 并对其编码蛋白结构、亚细胞定位、原核表达蛋白及其在果针向地性反应过程的表达特性进行分析。结果表明, AhVDAC基因含有831 bp的开放阅读框, 编码一个含有276个氨基酸、分子量大小为29.7 kD、pI值为6.38的蛋白。亚细胞定位分析结果显示, AhVDAC基因主要定位在细胞质。构建了pPROEXHTa-AhVDAC原核表达载体, 诱导及分离纯化了37 kD的AhVDAC纯化蛋白。采用RT-PCR对花生果针入土前不同发育时期AhVDAC的表达进行分析发现, AhVDAC基因表达量在果针发育的第2天最高, 随后逐渐下降后维持在较低的表达水平。通过对离体培养的花生果针施加外源CaCl2和LaCl3发现, CaCl2明显促进花生果针向地性弯曲和AhVDAC的表达, 而LaCl3则减缓果针弯曲和AhVDAC的表达, 推测Ca2+的积累可能促进了AhVDAC的表达, 并通过生物膜上AhVDAC的运输对Ca2+进行不对称分布, 从而使得花生果针改变生长方向, 发生向地性弯曲。

关键词: 花生, 果针, 电压依赖性阴离子通道基因(AhVDAC), 克隆, 基因表达

Abstract:

Peanut is a plant that blooms above ground and bears fruit underground. In our earlier studies, the voltage dependent anion channel (AhVDAC) gene was detected to be involved in gravitropism of peanut gynophores. In this study, the full-length cDNA of peanut AhVDAC gene was cloned, and the prokaryotic expression, subcellular localization, and the relative expression level of AhVDAC gene in gravitropism were analyzed. The results showed that the open reading frame of AhVDAC gene was 831 bp encoding a protein containing 276 amino acids, with a molecular weight of 29.7 kD and pI 6.38. Subcellular localization showed that AhVDAC gene was mainly located in cytoplasm. The prokaryotic expression vector pPROEXHTa-AhVDAC was constructed, and the 37 kD AhVDAC protein was induced, isolated, and purified. The relative expression level of AhVDAC in gynophores at different developmental days was analyzed by RT-PCR, and the results showed that the relative expression level of AhVDAC gene was the highest at the 2nd day, and then decreased gradually and maintained at a lower level. The application of exogenous CaCl2 and LaCl3 to peanut gynophores in vitro revealed that CaCl2 treatment could significantly promote the relative expression of AhVDAC gene and the geotropic bending of gynophores, whereas LaCl3 treatment could decelerate the relative expression of AhVDAC gene and geotropic bending of gynophores. In conclusion, we speculated that Ca2+ accumulation may promote the expression of AhVDAC and Ca2+was asymmetrically distributed through the transport of AhVDAC on biological membrane, so that the growth direction of peanut gynophore was changed and geotropic bending occurs.

Key words: peanut, gynophore, the voltage dependent anion channel gene (AhVDAC), clone, gene expression

表1

研究所用引物"

引物用途
Primer function
引物名称
Primer name
引物序列
Primer sequence (5°-3°)
基因克隆
Gene cloning
AhVDAC-F ATGGTGAATGGTCCAGGTCTCTACT
AhVDAC-R CTAAGGCTTCAAGGCCACGG
亚细胞定位
Subcellular localization
VDAC-M3 CGGGATCCATGGTGAATGGTCCAGGTCTC
VDAC-M4 AACTGCAGAGGCTTCAAGGCCACGG
原核表达载体构建
Construction of prokaryotic expression vector
VDAC-M1 AACTGCAGTGGTGAATGGTCCAGGTCTCTACT
VDAC-M2 CCCAAGCTTCTA AGGCTTCAAGGCCACGG
荧光定量
Fluorescence quantitative PCR
AhVDAC-qF GTAAGCCCGTTGACAAACACTG
AhVDAC-qR CACCAATGTTAGGGGGTCAAG
内参引物
Reference gene primer
18S rRNA-F CAGCTCGCGTTGACTACG
18S rRNA-R CGAACACTTCACCGGACCAT

图1

AhVDAC的cDNA序列及氨基酸序列(A)、AhVDAC蛋白二级(B)和三级结构预测(C)"

图2

AhVDAC和其他植物VDAC系统进化树分析 图中小红星表示模式植物拟南芥中的VDAC蛋白, 小红点表示花生中与本次克隆基因相似性达100%的VDAC蛋白。"

图3

AhVDAC在洋葱表皮细胞的亚细胞定位 A: 空白对照; B: pCAMBIA1301-CaMV35S-GFP定位图; C: pCAMBIA1301-CaMV35S-AhVDAC-GFP定位图。"

图4

AhVDAC原核表达载体质粒PCR鉴定、菌液PCR鉴定和质粒双酶切鉴定 A: 重组质粒PCR鉴定; B: 菌液PCR鉴定; C: 双酶切鉴定。"

图5

AhVDAC原核表达SDS-PAGE分析及其蛋白纯化 1: 未诱导的pPROEXHTa-AhVDAC/BL21(DE3)pLysS的蛋白; 2~7: 诱导1~6 h的pPROEX HTa-AhVDAC/BL21(DE3)pLysS的蛋白; M: 蛋白marker。B: 诱导6 h的pPROEXHTa-AhVDAC/BL21(DE3)pLysS的蛋白。"

图6

花生果针不同发育时期AhVDAC的表达水平 不同小写字母表示不同时期间差异显著(P<0.05)。"

图7

CaCl2 和LaCl3 处理对花生离体果针弯曲度(A)和AhVDAC表达的影响(B)"

[1] Li H F, Zhu F H, Li H Y, Zhu W, Chen X P, Hong Y B, Liu H Y, Hong W, Liang X Q. Proteomic identification of gravitropic response genes in peanut gynophores. J Proteomics, 2013, 93: 303-313.
doi: 10.1016/j.jprot.2013.08.006
[2] Takahashi Y, Tateda C. The functions of voltage-dependent anion channels in plants. Apoptosis, 2013, 18: 917-924.
doi: 10.1007/s10495-013-0845-3
[3] Yan J P, He H, Tong S B, Zhang W R, Wang J M, Li X F, Yang Y. Voltage-dependent anion channel 2 of Arabidopsis thaliana (AtVDAC2) is involved in aba-mediated early seedling development. Int J Mol Sci, 2009, 10: 2476-2486.
doi: 10.3390/ijms10062476
[4] Tateda C, Watanabe K, Kusano T, Takahashi Y. Molecular and genetic characterization of the gene family encoding the voltage- dependent anion channel in Arabidopsis. J Exp Bot, 2011, 62: 4773-4785.
doi: 10.1093/jxb/err113 pmid: 21705391
[5] Wandrey M, Trevaskis B, Brewin N, Udvardi M K. Molecular and cell biology of a family of voltage-dependent anion channel porins in Lotus japonicus. Plant Physiol, 2004, 134: 182-193.
pmid: 14657408
[6] Smack D P, Colombini M. Voltage-dependent channels found in the membrane fraction of corn mitochondria. Plant Physiol, 1985, 79: 1094-1097.
doi: 10.1104/pp.79.4.1094 pmid: 16664537
[7] Al Bitar F, Roosens N, Smeyers M, Vauterin M, Van B J, Jacobs M, Homble F. Sequence analysis, transcriptional and posttranscriptional regulation of the rice vdac family. Biochim Biophys Acta, 2003, 1625: 43-51.
[8] Heins L, Mentzel H, Schmid A, Benz R, Schmitz U K. Biochemical, molecular, and functional characterization of porin isoforms from potato mitochondria. J Biol Chem, 1994, 269: 26402-26410.
pmid: 7929361
[9] Elkeles A, Breiman A, Zizi M. Functional differences among wheat voltage-dependent anion channel (VDAC) isoforms expressed in yeast. Indication for the presence of a novel VDAC-modulating protein? J Biol Chem, 1997, 272: 6252-6260.
doi: 10.1074/jbc.272.10.6252 pmid: 9045642
[10] Elkeles A, Devos K M, Graur D, Zizi M, Breiman A. Multiple cDNAs of wheat voltage-dependent anion channels (VDAC): isolation, differential expression, mapping and evolution. Plant Mol Biol, 1995, 29: 109-124.
pmid: 7579156
[11] Hodge T, Colombini M. Regulation of metabolite flux through voltage-gating of VDAC channels. J Membr Biol, 1997, 157: 271-279.
doi: 10.1007/s002329900235
[12] Shimizu S, Narita M, Tsujimoto Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature, 1999, 399: 483-487.
doi: 10.1038/20959
[13] 田绍泽, 刘思禹, 王坤, 殷倩, 岳远征, 胡惠蓉. 植物线粒体电压依赖性阴离子通道蛋白VDAC综述. 分子植物育种, 2019, 17: 7401-7407.
Tian S Z, Liu S Y, Wang K, Yin Q, Yue Y Z, Hu H R. The review of voltage-dependent anion channels VDACs in plants. Mol Plant Breed, 2019, 17: 7401-7407 (in Chinese with English abstract).
[14] Szabadkai G, Bianchi K, Várnai P, Stefani D D, Wieckowski M R, Cavagna D, Nagy A I, Balla T, Rizzuto R. Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J Cell Biol, 2006, 175: 901-911.
pmid: 17178908
[15] Shoshan-Barmatz V, Pinto V D, Zweckstetter M, Raviv Z, Keinan N, Arbel N. VDAC, a multi-functional mitochondrial protein regulating cell life and death. Mol Aspects Med, 2010, 31: 227-285.
doi: 10.1016/j.mam.2010.03.002 pmid: 20346371
[16] Hepler P. Tip growth in pollen tubes: calcium leads the way. Trends Plant Sci, 1997, 2: 79-80.
doi: 10.1016/S1360-1385(97)88385-9
[17] Malho R, Read N D, Trewavas A J, Pais M S. Calcium channel activity during pollen tube growth and reorientation. Plant Cell, 1995, 7: 1173-1184.
doi: 10.2307/3870093
[18] Young M J, Bay D C, Hausner G, Court D A. The evolutionary history of mitochondrial porins. BMC Evol Biol, 2007, 7: 31.
doi: 10.1186/1471-2148-7-31
[19] Gincel D, Vardi N, Shoshan-Barmatz V. Retinal voltage- dependent anion channel: characterization and cellular localization. Invest Ophthalmol Vis Sci, 2002, 43: 2097-2104.
[20] Shoshan-Barmatz V, Gincel D. The voltage-dependent anion channel: characterization, modulation, and role in mitochondrial function in cell life and death. Cell Biochem Biophys, 2003, 39: 279-292.
pmid: 14716081
[21] Deniaud A, Rossi C, Berquand A, Homand J, Campagna S, Knoll W, Brenner C, Chopineau J. Voltage-dependent anion channel transports calcium ions through biomimetic membranes. Langmuir, 2007, 23: 3898-3905.
doi: 10.1021/la063105+
[22] Tan W, Colombini M. VDAC closure increases calcium ion flux. Biochim Biophys Acta, 2007, 1768: 2510-2515.
[23] Bathori G, Csordas G, Garcia-Perez C, Davies E, Hajnoczky G. Ca2+-dependent control of the permeability properties of the mitochondrial outer membrane and voltage-dependent anion- selective channel (VDAC). J Biol Chem, 2006, 281: 17347-17358.
doi: 10.1074/jbc.M600906200
[24] Kordyum E L. Calcium signaling in plant cells in altered gravity. Adv Space Res, 2003, 32: 1621-1630.
doi: 10.1016/S0273-1177(03)90403-0 pmid: 15002419
[25] Sinclair W, Trewavas A J. Calcium in gravitropism. A re-examination. Planta, 1997, 203: S85-S90.
doi: 10.1007/pl00008120 pmid: 11540333
[26] Trewavas A J, Malhó R. Ca2+ signalling in plant cells: the big network! Curr Opin Plant Biol, 1998, 1: 428-433.
pmid: 10066614
[27] Shoshan-Barmatz V, Israelson A. The voltage-dependent anion channel in endoplasmic/ sarcoplasmic reticulum: characterization, modulation and possible function. J Membr Biol, 2004, 204: 57-66.
doi: 10.1007/s00232-005-0749-4
[28] Sabirov R Z, Okada Y. The maxi-anion channel: a classical channel playing novel roles through an unidentified molecular entity. J Physiol Sci, 2009, 59: 3-21.
doi: 10.1007/s12576-008-0008-4
[29] Zhou L M, Lan W Z, Jiang Y Q, Fang W, Luan S. A calcium-dependent protein kinase interacts with and activates A calcium channel to regulate pollen tube growth. Mol Plant, 2014, 7: 369-376.
doi: 10.1093/mp/sst125
[30] Messerli M, Robinson K R. Tip localized Ca2+ pulses are coincident with peak pulsatile growth rates in pollen tubes of Lilium longiflorum. J Cell Sci, 1997, 110: 1269-1278.
doi: 10.1242/jcs.110.11.1269
[1] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190.
[4] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[5] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[6] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[7] 杨昕, 林文忠, 陈思远, 杜振国, 林杰, 祁建民, 方平平, 陶爱芬, 张立武. 黄麻双生病毒CoYVV的分子鉴定和抗性种质筛选[J]. 作物学报, 2022, 48(3): 624-634.
[8] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[9] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[10] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[11] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[12] 余国武, 青芸, 何珊, 黄玉碧. 玉米SSIIb蛋白多克隆抗体的制备及其应用[J]. 作物学报, 2022, 48(1): 259-264.
[13] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[14] 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653.
[15] 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!