欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (7): 1800-1812.doi: 10.3724/SP.J.1006.2022.14085

• 耕作栽培·生理生化 • 上一篇    下一篇

基于耐低氮综合指数的棉花苗期耐低氮品种筛选

祝令晓1(), 宋世佳2, 李浩然1, 孙红春1, 张永江1, 白志英1, 张科1, 李安昌1, 刘连涛1,*(), 李存东1,*()   

  1. 1河北农业大学农学院 / 省部共建华北作物改良与调控国家重点实验室 / 河北省作物生长调控实验室, 河北保定 071001
    2河北省农林科学院, 河北石家庄 050031
  • 收稿日期:2021-05-12 接受日期:2021-09-09 出版日期:2022-07-12 网络出版日期:2021-10-19
  • 通讯作者: 刘连涛,李存东
  • 作者简介:E-mail: 574740516@qq.com
  • 基金资助:
    华北作物改良与调控国家重点实验室开放课题和国家自然科学基金项目(31871569)

Screening of low nitrogen tolerant cultivars based on low nitrogen tolerance comprehensive index at seeding stage in cotton

ZHU Ling-Xiao1(), SONG Shi-Jia2, LI Hao-Ran1, SUN Hong-Chun1, ZHANG Yong-Jiang1, BAI Zhi-Ying1, ZHANG Ke1, LI An-Chang1, LIU Lian-Tao1,*(), LI Cun-Dong1,*()   

  1. 1College of Agronomy, Hebei Agricultural University / State Key Laboratory of North China Crop Improvement and Regulation / Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding 071001, Hebei, China
    2Hebei Academy of Agriculture and Forestry Science, Shijiazhuang 050031, Hebei, China
  • Received:2021-05-12 Accepted:2021-09-09 Published:2022-07-12 Published online:2021-10-19
  • Contact: LIU Lian-Tao,LI Cun-Dong
  • Supported by:
    State Key Laboratory of North China Crop Improvement and Regulation, and the National Natural Science Foundation of China(31871569)

摘要:

在棉花生产中, 氮肥的过量施用, 不仅增加了生产成本, 还造成了氮肥的大量流失, 对环境造成了破坏。筛选耐低氮棉花品种是解决该问题的有效途径之一。本研究以21个在我国各大棉区主栽的棉花品种为试验材料, 采用苗期土培的方式, 设置正常氮(138 mg kg-1)和低氮(0 mg N kg-1) 2个处理, 测定了23个农艺性状, 采用主成分分析、模糊隶属函数、聚类分析、相关性分析评价各品种的耐低氮能力。结果表明, 所测定的大部分性状的变异系数均大于10%, 说明所选择品种具有很好的代表性。根据主成分分析和相关性分析得出作为棉花低氮耐受性评价的7个性状, 分别为根长、根表面积、根体积、地上部干重、总干重、实际光化学效率、最大光化学效率。根据耐低氮综合指数, 筛选出鲁无403、新海12号、中棉所64号、新陆早23号4个耐低氮品种, 丰抗棉1号、TM-1、农大棉601、中棉所35、新陆早53号5个低氮敏感型品种。4个耐低氮品种的耐低氮综合指数介于0.5723~0.6818, 而5个低氮敏感型品种的耐低氮综合指数介于0.2914~0.3962。本研究提出的基于耐低氮综合指数的筛选方法, 为作物耐低氮品种的筛选提供了新的借鉴。

关键词: 棉花, 低氮耐受性, 评价指标, 综合评价, 耐低氮综合指数, 筛选

Abstract:

In cotton production, excessive application of nitrogen fertilizers leads to the increasing cost of agricultural production and a large amount of nitrogen loss, causing damage to the environment. Screening cotton cultivars with low nitrogen tolerance is one of the most effective approaches to solve this problem. In this study, 21 cotton cultivars mainly planted in cotton regions were used as the experimental materials, and 23 agronomic traits were measured. The low nitrogen tolerance was evaluated by means of principal component analysis, the fuzzy membership function, cluster analysis, and correlation analysis under normal nitrogen treatment (N 138 mg kg-1) and low nitrogen treatment (N 0 g kg-1) using soil culture experiment at seeding stage. The results showed that the coefficient variation of most indexes were greater than 10%, which indicated that the selected varieties had good representativeness. Based on principal component analysis and correlation analysis, seven traits including root length, root surface area, root volume, shoot dry weight, total dry weight, actual photochemical efficiency, and maximum photochemical efficiency were used as evaluating indices for low nitrogen tolerance of cotton cultivars. Based on the low nitrogen tolerance comprehensive index, four low nitrogen tolerance cultivars (Luwu 403, Xinhai 12, Zhongmiansuo 64, and Xinluzao 23) and five low nitrogen sensitive cultivars (Fengkangmian 1, TM-1, Nongda 601, Zhongmiansuo 35, and Xinluzao 53) were screened out. The low nitrogen tolerance comprehensive index of the four low nitrogen tolerance cultivars ranged from 0.5723 to 0.6817, while the low nitrogen tolerance comprehensive index of five low nitrogen sensitive cultivars ranged from 0.2914 to 0.3962. In summary, the screening method based on the low nitrogen tolerance comprehensive index provided a new reference for the selection of crop cultivars with low nitrogen tolerance.

Key words: cotton, low nitrogen tolerance, evaluating indices, comprehensive evaluation, low nitrogen tolerance comprehensive index, screening

表1

2种氮处理下棉花各性状值及耐低氮系数"

性状
Trait
正常氮处理
Normal N
低氮处理
Low N
耐低氮系数
Low N tolerance coefficient
平均值 Mean 标准差 SD 变异系数
CV (%)
平均值 Mean 标准差 SD 变异系数 CV (%) 平均值 Mean 标准差 SD 变异系数 CV (%)
PH 9.50 A 2.26 23.74 7.40 B 2.06 27.79 0.79 0.20 24.77
SD 2.23 A 0.25 11.32 2.04 B 0.21 10.05 0.92 0.07 7.76
LA 109.45 A 41.82 38.21 60.19 B 16.23 26.97 0.59 0.02 34.11
SPAD 34.30 A 4.61 13.43 31.04 B 4.65 14.98 0.91 0.06 6.31
Pn 8.33 A 2.19 26.35 4.05 B 2.43 59.98 0.50 0.02 38.18
Gs 0.17 A 0.08 50.06 0.07 B 0.05 74.10 0.50 0.03 66.09
Ci 285.46 A 67.07 23.50 291.29 A 73.34 25.18 1.02 0.01 14.43
Tr 2.95 A 1.27 43.05 1.37 B 0.95 69.53 0.52 0.03 48.69
性状
Trait
正常氮处理
Normal N
低氮处理
Low N
耐低氮系数
Low N tolerance coefficient
平均值 Mean 标准差 SD 变异系数
CV (%)
平均值 Mean 标准差 SD 变异系数 CV (%) 平均值 Mean 标准差 SD 变异系数 CV (%)
WUE 3.18 A 1.48 46.64 2.73 B 1.26 45.99 0.90 0.03 29.25
ΦPSII 0.73 A 0.05 6.59 0.63 B 0.14 22.23 0.86 0.16 18.12
Fv/Fm 0.78 A 0.04 5.71 0.69 B 0.12 17.43 0.89 0.13 14.77
RL 1886.90 A 547.42 29.01 1197.54 B 229.34 19.15 0.69 0.24 34.67
RPA 76.74 A 22.93 29.88 49.23 B 9.96 20.23 0.70 0.24 34.60
RSA 241.07 A 72.04 29.88 154.66 B 31.30 20.23 0.70 0.24 34.60
RD 0.40 A 0.02 4.76 0.39 A 0.02 5.22 0.99 0.04 4.39
RV 2.47 A 0.83 33.46 1.59 B 0.38 23.76 0.71 0.25 35.98
SDW 0.96 A 0.22 22.77 0.68 B 0.08 12.52 0.74 0.21 28.78
RDW 0.28 A 0.06 21.15 0.26 B 0.04 16.06 0.97 0.23 23.62
TDW 1.25 A 0.27 21.87 0.94 B 0.10 11.03 0.79 0.21 26.07
RSR 0.30 B 0.04 12.22 0.40 A 0.07 18.08 1.34 0.24 17.59
NC 21.86 A 2.39 10.95 11.71 B 1.32 11.28 0.54 0.09 17.48
NA 27.32 A 6.64 24.30 11.00 B 1.41 12.85 0.43 0.14 32.54
NUE 46.33 B 5.40 11.66 86.45 A 9.58 11.08 1.89 0.30 15.87

图1

21个棉花品种间各性状耐低氮系数聚类热图 缩写同表1。1: 新陆早20号; 2: 新海21号; 3: 中棉所16; 4: 中棉所35; 5: 新陆早12号; 6: 新陆早23号; 7: 中棉所69; 8: 丰抗棉1号; 9: 鲁无403; 10: 新海12号; 11: 农大601; 12: K837; 13: K836; 14: 国欣棉9号; 15: 新陆中15号; 16: 农大23; 17: 新陆早53号; 18: TM-1; 19: 冀棉958; 20: 中棉所64; 21: 新海20。"

表2

各综合指标载荷系数及累计贡献率"

性状
Trait
因子1
Factor 1
因子2
Factor 2
因子3
Factor 3
因子4
Factor 4
因子5
Factor 5
PH 0.6016 0.5188 0.1885 -0.0533 -0.1670
SD 0.7346 0.2687 -0.2699 0.1351 -0.2524
LA 0.8487 0.2417 0.2264 0.3237 -0.0836
SPAD 0.0801 -0.0215 -0.5582 0.4065 0.0760
Pn 0.1505 0.7097 0.6004 0.1444 0.0625
Gs 0.1771 0.7399 0.4081 0.2034 -0.2743
Ci -0.3702 0.0309 -0.2280 0.0511 -0.8427
Tr 0.2441 0.7653 0.4531 -0.0468 0.0400
WUE 0.6152 0.2309 -0.0267 0.2765 0.5526
ΦPSII 0.2661 0.1531 0.8713 0.0969 0.1768
Fv/Fm 0.2643 0.1092 0.8892 0.1371 0.1712
RL 0.9462 0.0295 0.0974 0.0873 0.2154
RSA 0.9603 0.0558 0.1561 0.0347 0.1781
RD 0.3938 -0.1375 0.4252 -0.1770 -0.2911
RV 0.9440 0.0978 0.1715 0.0483 0.1483
性状
Trait
因子1
Factor 1
因子2
Factor 2
因子3
Factor 3
因子4
Factor 4
因子5
Factor 5
SDW 0.9364 0.0592 0.1770 0.2315 0.1205
RDW 0.8415 0.0501 0.1518 -0.4670 0.0889
TDW 0.9635 0.0485 0.1942 0.0631 0.1072
RSR -0.2077 0.0314 -0.0657 -0.9154 -0.0182
NC 0.0384 -0.9336 0.1041 0.0729 -0.0729
NA 0.8340 -0.4650 0.2276 0.0740 0.0453
NUE -0.0369 0.9310 -0.1122 -0.0371 0.1065
累计贡献率
Cumulative contribution (%)
47.031 64.705 74.562 81.152 86.844

表3

各性状耐低氮系数与D值相关性"

性状
Trait
相关系数
Correlation coefficient
P
P-value
性状
Trait
相关系数
Correlation coefficient
P
P-value
PH 0.724 0.000 RL 0.726 0.000
SD 0.478 0.028 RSA 0.743 0.000
LA 0.788 0.000 RD 0.299 0.188
SPAD 0.091 0.694 RV 0.742 0.000
Pn 0.619 0.003 SDW 0.730 0.000
Gs 0.462 0.003 RDW 0.551 0.010
Ci -0.545 0.011 TDW 0.720 0.000
Tr 0.564 0.008 RSR -0.269 0.239
WUE 0.746 0.000 NC -0.373 0.096
ΦPSII 0.538 0.012 NA 0.418 0.059
Fv/Fm 0.559 0.008 NUE 0.388 0.083

表4

各品种耐低氮综合指标值、权重、D值及综合评价"

品种
Cultivar
因子1
Factor 1
因子2
Factor 2
因子3
Factor 3
因子4
Factor 4
因子5
Factor 5
D
D-value
排序
Rank
新陆早20号 Xinluzao 20 -0.9564 0.3077 1.5239 -0.4691 0.0916 0.3852 11
新海21号 Xinhai 21 -1.0092 2.4066 1.1253 -2.4847 -1.3845 0.3961 10
中棉所16 Zhongmiansuo 16 -4.3197 -3.4555 -3.1731 -1.1166 -1.1868 0.1118 20
中棉所35 Zhongmiansuo 35 0.5350 -0.5879 1.8340 -0.8934 -0.6888 0.4085 9
新陆早12号 Xinluzao 12 -2.1007 0.6503 0.4105 -0.5769 -0.9120 0.3344 17
新陆早23号 Xinluzao 23 1.2706 2.1269 0.4159 2.2817 0.8221 0.5428 6
中棉所69 Zhongmiansuo 69 -1.2036 0.7515 -1.5538 -0.3693 0.7294 0.3670 13
丰抗棉1号 Fengkangmian 1 0.1170 -1.1065 -0.5612 -0.3528 -0.5557 0.3679 12
鲁无403 Luwu 403 -0.8602 1.5783 -0.4994 -0.1377 0.7774 0.8391 2
新海12号 Xinhai 12 1.5487 3.3288 1.5858 -0.9922 0.2796 0.5468 5
农大601 Nongda 601 -0.5588 -4.5430 -1.3566 0.8227 0.5991 0.2739 19
K837 0.3977 -0.6372 -3.1372 -1.5791 0.5061 0.3596 15
K836 10.4976 1.6463 5.6370 3.3847 4.7610 0.9515 1
国欣棉9号 Guoxinmian 9 2.7775 2.4231 2.3144 2.6178 2.3349 0.6359 3
新陆中15号 Xinluzhong 15 -1.4136 -0.8155 -2.3434 -1.2135 -0.3324 0.2950 18
农大23 Nongda 23 -1.7046 -0.4832 1.0049 -0.1880 0.4743 0.3402 16
新陆早53号 Xinluzao 53 -0.5483 -1.0800 0.7267 -0.5284 0.3915 0.3598 14
TM-1 -4.4425 -2.9849 -7.7051 -0.1541 -4.5841 0.0692 21
冀棉958 Jimian 958 -0.9118 -1.3400 -1.1111 0.3833 0.8979 0.4939 7
中棉所64 Zhongmiansuo 64 0.5484 3.5817 2.4610 2.7213 -2.2305 0.5547 4
新海20号 Xinhai 20 2.3369 -1.7673 2.4015 -1.1556 -0.7902 0.4450 8
权重 Weight 0.5416 0.2035 0.1135 0.0759 0.0655

图2

各性状耐低氮系数值分布及相关性 缩写同表1。*、**和***分别表示在0.05、0.01、0.001水平显著相关。"

图3

21个棉花品种D值系统聚类图 1~21同图1。"

表5

21个棉花品种在不同氮处理下的氮效率综合值"

品种
Cultivar
N效率综合值
N efficiency comprehensive value
品种
Cultivar
N效率综合值
N efficiency comprehensive value
低氮处理
Low N
正常氮处理
Normal N
低氮处理
Low N
正常氮处理
Normal N
新陆早20号 Xinluzao 20 0.58 0.62 K837 0.54 0.59
新海21号 Xinhai 21 0.49 0.49 K836 0.33 0.19
中棉所16 Zhongmiansuo 16 0.37 0.86 国欣棉9号 Guoxinmian 9 0.46 0.34
中棉所35 Zhongmiansuo 35 0.32 0.39 新陆中15号 Xinluzhong 15 0.56 0.73
新陆早12号 Xinluzao 12 0.43 0.62 农大23 Nongda 23 0.56 0.63
品种
Cultivar
N效率综合值
N efficiency comprehensive value
品种
Cultivar
N效率综合值
N efficiency comprehensive value
低氮处理
Low N
正常氮处理
Normal N
低氮处理
Low N
正常氮处理
Normal N
新陆早23号 Xinluzao 23 0.64 0.54 新陆早53号 Xinluzao 53 0.30 0.53
中棉所69 Zhongmiansuo 69 0.52 0.66 TM-1 0.10 0.71
丰抗棉1号 Fengkangmian 1 0.23 0.49 冀棉958 Jimian 958 0.37 0.56
鲁无403 Luwu 403 0.57 0.64 中棉所64 Zhongmiansuo 64 0.72 0.55
新海12号 Xinhai 12 0.82 0.57 新海20号 Xinhai 20 0.49 0.51
农大601 Nongda 601 0.28 0.55

图4

21个棉花品种在不同氮处理下的氮效率综合值散点图 1~21同图1。"

图5

主成分分析 a: 耐低氮系数; b: 低氮处理; c: 正常氮处理。1~21同图1。"

表6

21个棉花品种的耐低氮综合指数"

品种
Cultivar
耐低氮综合指数
Low nitrogen tolerance
comprehensive index
品种
Cultivar
耐低氮综合指数
Low nitrogen tolerance
comprehensive index
新陆早20号Xinluzao 20 0.5286 K837 0.4952
新海21号Xinhai 21 0.4597 K836 0.4913
中棉所16 Zhongmiansuo 16 0.4472 国欣棉9号Guoxinmian 9 0.4784
中棉所35 Zhongmiansuo 35 0.3734 新陆中15号Xinluzhong 15 0.5292
新陆早12号Xinluzao 12 0.4623 农大23 Nongda 23 0.5112
新陆早23号Xinluzao 23 0.5723 新陆早53号Xinluzao 53 0.3962
中棉所69 Zhongmiansuo 69 0.5169 TM-1 0.2914
丰抗棉1号Fengkangmian 1 0.3629 冀棉958 Jimian 958 0.4760
鲁无403 Luwu 403 0.6818 中棉所64 Zhongmiansuo 64 0.6097
新海12号Xinhai 12 0.6437 新海20号Xinhai 20 0.4817
农大601 Nongda 601 0.3670

图6

21个棉花品种的耐低氮综合指数系统聚类图 1~21同图1。"

图7

总干重与根系干重相关性分析 a: 低氮处理; b: 正常氮处理。a: low nitrogen treatment; b: normal nitrogen treatment."

图8

氮积累量与根长、根表面积、根体积相关性分析"

图9

不同氮处理下各品种照片 a: K836; b: TM-1; c: 鲁无403; 标尺为2 cm。a: K836; b: TM-1; c: Luwu 403. Bar: 2 cm."

[1] Ma Z, He S, Wang X, Sun J, Zhang Y, Zhang G, Wu L, Li Z, Liu Z, Sun G. Resequencing a core ppub of upland cotton identifies genomic variation and loci influencing fiber quality and yield. Nat Genet, 2018, 50: 803-813.
[2] 国家统计局. 中国统计年鉴. 2019. http://www.stats.gov.cn/tjsj/ndsj/2019/indexch.htm.
National Bureau of Statistics.China Statistical Yearbook. 2019. http://www.stats.gov.cn/tjsj/ndsj/2019/indexch.htm. (in Chinese)
[3] Zhang H H, Fu X Q, Wang X R, Gui H P, Dong Q. Identification and screening of nitrogen efficient cotton genotypes under low and normal nitrogen environments at the seedling stage. J Cotton Res, 2018, 1: 6.
[4] Raun W R, Johnson G V. Improving nitrogen use efficiency for cereal production. Agron J, 1999, 91: 357-363.
[5] Tilman D, Balzer C, Befort H B L. Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci USA, 2011, 108: 20260-20264.
[6] Giles J. Nitrogen study fertilizes fears of pollution. Nature, 2005, 433: 791.
[7] Xia G M, Wang Y J, Hu J Q, Wang S J, Zhang Y, Wu Q, Chi D C. Effects of supplemental irrigation on water and nitrogen use, yield, and kernel quality of peanut under nitrogen-supplied conditions. Agric Water Manage, 2020, 243: 106518.
[8] 贵会平, 张西岭, 宋美珍, 董强, 张恒恒, 王香茹, 庞念厂, 王准, 刘记, 郑苍松. 棉花苗期耐低氮基因型初步筛选. 棉花学报, 2018, 30: 326-337.
Gui H P, Zhang X L, Song M Z, Dong Q, Zhang H H, Wang X R, Pang N G, Wang Z, Liu J, Zheng C S. Preliminary screening of low nitrogen-tolerant cotton genotypes at seeding stage. Cotton Sci, 2018, 30: 326-337. (in Chinese with English abstract)
[9] 王准, 张恒恒, 董强, 贵会平, 王香茹, 庞念广, 李永年, 牛静, 靳丁沙, 汪苏洁, 张西岭, 宋美珍. 棉花苗期耐低氮基因型初步筛选. 棉花学报, 2020, 32: 60-73.
Wang Z, Zhang H H, Dong Q, Gui H P, Wang X R, Pang N G, Li Y N, Niu J, Jin D S, Wang S J, Zhang X L, Song M Z. Screening and verification of low nitrogen tolerant and nitrogen sensitive cotton germplasm. Cotton Sci, 2020, 32: 60-73. (in Chinese with English abstract)
[10] 韩璐, 张薇. 棉花苗期氮营养高效品种筛选. 中国农学通报, 2011, 27(1): 84-88.
Han L, Zhang W. Screening of cotton varieties with high nitrogen efficiency at seeding stage. Chin Agric Sci Bull, 2011, 27(1): 84-88. (in Chinese with English abstract)
[11] 李春艳, 张宏, 马龙, 李诚. 冬小麦苗期氮素吸收利用生理指标的综合评价. 植物营养与肥料学报, 2012, 18: 523-530.
Li C Y, Zhang H, Ma L, Li C. Comprehensive evaluation on physiological indices of nitrogen absorption and utilization in winter wheat at the seedling stage. J Plant Nutr Fert, 2012, 18: 523-530. (in Chinese with English abstract)
[12] Shimon R, Hans L, Bingru H. Root respiratory characteristics associated with plant adaptation to high soil temperature for geothermal and turf-type Agrostis species. J Exp Bot, 2006, 57: 623-631.
[13] Ehdaie B, Merhaut D J, Ahmadian S, Hoops A C, Waines J G. Root system size influences water-nutrient uptake and nitrate leaching potential in wheat. J Agron Crop Sci, 2010, 196: 455-466.
[14] Lynch J P. Roots of the second green revolution. Aust J Bot, 2007, 55: 493-512.
[15] Coviella C E, Stipanovic R D, Trumble J T. Plant allocation to defensive compounds: interactions between elevated CO2 and nitrogen in transgenic cotton plants. J Exp Bot, 2002, 53: 323-331.
[16] Wang Y. Mechanism of phytohormone involvement in feedback regulation of cotton leaf senescence induced by potassium deficiency. J Exp Bot, 2012, 63: 5887-5901.
[17] Read J J, Reddy K R, Jenkins J N. Yield and fiber quality of Upland cotton as influenced by nitrogen and potassium nutrition. Eur J Agron, 2006, 24: 282-290.
[18] Mao L L, Zhang L Z, Zhao X H, Liu S D, Werf W D, Zhang S P, Spiertz H, Li Z H. Crop growth, light utilization and yield of relay intercropped cotton as affected by plant density and a plant growth regulator. Field Crops Res, 2014, 155: 67-76.
[19] 鲍士旦. 土壤农化分析(第2版). 北京: 中国农业出版社, 1986. pp 213-216.
Bao S D. Soil Agro-chemistrical Analysis, 2nd edn. Beijing: China Agriculture Press, 1986. pp 213-216. (in Chinese)
[20] 张楚, 张永清, 路之娟, 刘丽琴. 苗期耐低氮基因型苦荞的筛选及其评价指标. 作物学报, 2017, 43: 1205-1215.
Zhang C, Zhang Y Q, Lu Z J, Liu L Q. Screening Fagopyrum tararicum genotypes tolerant to low nitrogen stress at seeding stage and its evaluating indices. Acta Agron Sin, 2017, 43: 1205-1215. (in Chinese with English abstract)
[21] 钟思荣, 陈仁霄, 陶瑶, 龚丝雨, 何宽信, 张启明, 张世川, 刘齐元. 耐低氮烟草基因型的筛选及其氮效率类型. 作物学报, 2017, 43: 993-1002.
Zhong S R, Chen R X, Tao Y, Gong S Y, He K X, Zhang Q M, Zhang S C, Liu Q Y. Screening of tobacco genotypes tolerant to low-nitrogen and their nitrogen efficiency types. Acta Agron Sin, 2017, 43: 993-1002. (in Chinese with English abstract)
[22] Andreas S, Mara P, Matthias F, Benjamin W, Snowdon R J. Recent genetic gains in nitrogen use efficiency in oilseed rape. Front Plant Sci, 2017, 8: 963.
[23] 郝青南, 王程, 陈水莲, 沙爱华, 单志慧, 陈海峰, 周蓉, 周新安. 大豆苗期氮高效和氮敏感资源的筛选研究. 大豆科学, 2011, 30: 910-915.
Hao Q N, Wang C, Chen S L, Sha A H, Shan Z H, Chen H F, Zhou R, Zhou X A. Screening of soybean varieties with different nitrogen efficiency at seedling stage. Soybean Sci, 2011, 30: 910-915. (in Chinese with English abstract)
[24] Singh U, Ladha J K, Castillo E G, Punzalan G, Duqueza M. Genotypic variation in nitrogen use efficiency in medium- and long-duration rice. Field Crops Res, 1998, 58: 35-53.
[25] 代小伟, 王庆, 薛卫青, 马晗煦, 孙宝启, 孙群. 4个玉米品种种子耐老化能力的模糊隶属函数法分析. 玉米科学, 2012, 20(5): 82-85.
Dai X W, Wang Q, Xue W Q, Ma H X, Sun B Q, Sun Q. Anti-aging property analysis of four maize hybrid varieties by fuzzy subordinate function. J Maize Sci, 2012, 20(5): 82-85. (in Chinese with English abstract)
[26] 李霞, 孙志伟, 吕川根, 任承刚, 曹昆, 王超. 田间杂交水稻单年单点5种不同逆境的批量筛选及聚类分析. 中国生态农业学报, 2010, 18: 528-534.
Li X, Sun Z W, Lyu C G, Ren C G, Cao K, Wang C. Mass screening and cluster analysis for tolerance to stress of hybrid rice variety under field conditions. Chin J Ecol Agric, 2010, 18: 528-534. (in Chinese with English abstract)
[27] 李强, 罗延宏, 谭杰, 孔凡磊, 杨世民, 袁继超. 玉米杂交种苗期耐低氮指标的筛选与综合评价. 中国生态农业学报, 2014, 22: 1190-1199.
Li Q, Luo H Y, Tan J, Kong F L, Yang S M, Yuan J C. Indexes screening and comprehensive evaluation of low nitrogen tolerance of hybrid maize cultivars at seedling stage. Chin J Ecol Agric, 2014, 12: 1190-1199. (in Chinese with English abstract)
[28] Nagel K A, Lenz H, Kastenholz B, Gilmer F, Schurr U. The platform GrowScreen-Agar enables identification of phenotypic diversity in root and shoot growth traits of agar grown plants. Plant Methods, 2020, 16: 89.
[29] Lynch J P, Tobias W. Opportunities and challenges in the subsoil: pathways to deeper rooted crops. J Exp Bot, 2015, 66: 2199-2210.
[1] 白冬梅, 薛云云, 黄莉, 淮东欣, 田跃霞, 王鹏冬, 张鑫, 张蕙琪, 李娜, 姜慧芳, 廖伯寿. 不同花生品种芽期耐寒性鉴定及评价指标筛选[J]. 作物学报, 2022, 48(8): 2066-2079.
[2] 郭家鑫, 鲁晓宇, 陶一凡, 郭慧娟, 闵伟. 棉花在盐碱胁迫下代谢产物及通路的分析[J]. 作物学报, 2022, 48(8): 2100-2114.
[3] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[4] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[5] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[6] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[7] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[8] 胡亮亮, 王素华, 王丽侠, 程须珍, 陈红霖. 绿豆种质资源苗期耐盐性鉴定及耐盐种质筛选[J]. 作物学报, 2022, 48(2): 367-379.
[9] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[10] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[11] 赵雪, 周顺利. 玉米抗茎倒伏能力相关性状与评价研究进展[J]. 作物学报, 2022, 48(1): 15-26.
[12] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[13] 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723.
[14] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752.
[15] 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[4] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[5] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[6] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[7] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[8] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[9] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[10] 王逸群. 根瘤菌对水稻的感染[J]. 作物学报, 2002, 28(01): 32 -35 .