欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (1): 105-118.doi: 10.3724/SP.J.1006.2023.24004

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

应用RNA重测序分析低硫条件下大豆基因表达谱

王慧(), 吴志医, 张玉娥, 喻德跃()   

  1. 南京农业大学 / 国家大豆改良中心 / 作物遗传与种质创新国家重点实验室 / 农业农村部大豆生物学与遗传育种重点实验室, 江苏南京 210095
  • 收稿日期:2022-01-04 接受日期:2022-03-25 出版日期:2023-01-12 网络出版日期:2022-04-20
  • 通讯作者: 喻德跃
  • 作者简介:E-mail: wanghui0@njau.edu.cn
  • 基金资助:
    国家自然科学基金项目(32072080)

Transcriptional expression profiling of soybean genes under sulfur-starved conditions by RNA-seq

WANG Hui(), WU Zhi-Yi, ZHANG Yu-E, YU De-Yue()   

  1. National Center for Soybean Improvement / National Key Laboratory of Crop Genetics and Germplasm Enhancement / Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs / Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
  • Received:2022-01-04 Accepted:2022-03-25 Published:2023-01-12 Published online:2022-04-20
  • Contact: YU De-Yue
  • Supported by:
    National Natural Science Foundation of China(32072080)

摘要:

大豆是重要的粮油兼用作物, 其硫利用的研究不足。本研究评价了云梦六月花叶和沁阳大豆对低硫的耐性, 以这2个品种为材料, 利用RNA重测序技术分析了对照(+S)和缺硫(-S)水平下根和叶中的表达谱。结果表明, 云梦六月花叶对低硫表现为耐性, 沁阳大豆对低硫表现为敏感。表达谱分析在云梦六月花叶和沁阳大豆的叶中分别鉴定到9064个和9795个低硫响应的差异表达基因, 根中分别鉴定到3185个和5006个差异表达基因。KEGG富集分析发现, 2个材料叶中有9个共有途径, 仅植物MAPK信号途径富集更多的上调表达基因。2个材料根中有18个共有途径, 其中9个途径在2个材料的中对低硫的响应一致, 4个途径包含更多的上调表达基因, 5个途径包含更多的下调表达基因。在其余9个途径中, 云梦六月花叶包含更多的上调表达基因。大豆硫酸根转运蛋白基因对硫酸根的吸收和转运非常重要, 在表达谱中鉴定到27个硫酸根转运蛋白基因, 分属4个亚组, 亚组1、2、4的基因多受低硫诱导, 亚组3的基因对低硫的响应较为复杂。基于富集分析结果, 本研究从植物MAPK信号途径中克隆了一个受低硫诱导的基因GmEIL1, 通过转化大豆毛状根证明该基因参与大豆硫利用的调控。本研究结果为深入探索大豆硫利用效率的遗传机理奠定了基础, 为大豆耐低硫育种提供了候选基因。

关键词: 大豆, 低硫, RNA重测序, 硫酸根转运蛋白, EIN3/EIL

Abstract:

Soybean is an important grain and oil crop. Few researches focused on soybean sulfur utilization. Here, the tolerance of Yunmengliuyuehuaye (YM) and Qinyangdadou (QY) to low sulfur were evaluated. The gene expression profiles of roots and leaves of the two materials under the control (+S) and sulfur deficiency (-S) environments were analyzed via RNA resequencing. The results showed that YM was tolerance to low sulfur and QY was susceptibility to low sulfur. 9064 and 9795 differentially expressed genes (DEGs) were identified in leaves of YM and QY, and 3185 and 5006 DEGs were identified in roots of YM and QY, respectively. KEGG enrichment revealed that nine pathways were common in the two material leaves, of which MAPK signaling pathway—plant specially enriched more upregulated expressed genes. There were 18 common pathways in both roots. Nine of them responded consistently to low sulfur in YM and QY, of which four contained more up-regulated genes and five contained more downregulated genes. In the remaining nine pathways, YM contained more upregulated expressed genes. Soybean sulfate transporter genes were important for the absorption and transportation of sulfate. In the transcriptome, 27 soybean sulfate transporter genes were identified. These genes belonged to 4 subgroups respectively. Most of the genes in subgroups 1, 2, and 4 were induced by low sulfur, and the genes in subgroup 3 responded to low sulfur in a complex way. KEGG showed that the upregulated gene of GmEIL1 (ethylene-insensitive 3-like) in the MAPK signaling pathway-plant was clone. The gene was involved in the regulation of soybean sulfur utilization in the soybean chimeras with transgenic hairy root. These results provide a basis for deeply exploring the genetic mechanism of soybean sulfur utilization efficiency and candidate genes for soybean tolerance to low sulfate breeding in the future.

Key words: soybean, low sulfur, RNA-seq, sulfate transporter, EIN3/EIL

表1

引物序列"

基因名称
Gene name
上游引物
Forward primer (5°-3°)
下游引物
Reverse primer (5°-3°)
用途
Application
GmEIL1 TTCAGCAGCCTTCTTTCCCAA AGCAAAACCATGGCGAGTTTC 定量PCR
qRT-PCR
GmTubulin GGAGTTCACAGAGGCAGAG CACTTACGCATCACATAGC 内参基因
Reference gene
EFR1 (Glyma.13G123100) TCCAAAGCCACTAACAAAAA CTCAGAACCCAAGTCCTCCA 定量PCR
qRT-PCR
GmEIL1 ACCACGGTGACCCATTTCTGTATCT TGATAATGATGATGAGGTTTCCAGC 基因克隆
Gene cloning
OE-GmEIL1 CAGGTCGACTCTAGAGGATCCGCCACCATGATGATGATGCTTGAAGA GGGAAATTCGAGCTCGGTACCTCACTGATACCAAATAGAGA 构建过表达载体
Construction of
overexpression vectors
RI-GmEIL1 GGGGACAAGTTTGTACAAAAAAGCAGGCTCCCTTGAAGATATGGGATTTTG GGGGACCACTTTGTACAAGAAAGCTGGGTGAACCGAACTTTATCCTTCCA 构建干扰载体
Construction of RNAi vectors

图1

云梦六月花叶和沁阳大豆的低硫表型鉴定 +S和-S分别表示对照和缺硫处理。YM: 云梦六月花叶; QY: 沁阳大豆; *、**、***分别表示在0.05、0.01、0.001水平显著差异。"

附图1

21个差异表达基因的qRT-PCR与转录组重测序结果 log2(FC): YM和QY间差异表达基因改变倍数的对数(log2)转换值。L和R分别表示叶和根。YM: 云梦六月花叶; QY: 沁阳大豆。"

图2

云梦六月花叶和沁阳大豆的叶和根中的差异表达基因数 L和R分别表示叶和根。YM: 云梦六月花叶; QY: 沁阳大豆。"

图3

KEGG途径 L和R分别表示叶和根。YM: 云梦六月花叶; QY: 沁阳大豆。"

图4

共同富集途径中上调和下调差异表达基因的占比 富集在该途径的差异表达基因数列在括号内。L和R分别表示叶和根。YM: 云梦六月花叶; QY: 沁阳大豆。"

图5

硫酸根转运蛋白基因的表达谱 数值为对照和处理间差异表达基因改变倍数的对数(log2)转换值, 灰色空格表示没有显著差异。L和R分别表示叶和根。YM: 云梦六月花叶; QY: 沁阳大豆。"

图6

EILs蛋白序列的系统进化树(A)与大豆EIL基因的表达热图(B) 数字为对照和处理间差异表达基因改变倍数的对数(log2)转换值, 灰色空格表示没有显著差异。L和R分别表示叶和根。YM: 云梦六月花叶; QY: 沁阳大豆。"

附表1

2个大豆材料间差异表达的硫酸根转运蛋白基因"

基因名
Gene name
R-YM/R-QY L-YM/L-QY
对照 Control 缺硫 Low sulfate 对照 Control 缺硫 Low sulfate
GmSULTR1;1a 2.93
GmSULTR2;1b -2.50 1.57
GmSULTR2;1c -2.15 2.66
GmSULTR2;2c -1.38
GmSULTR3;1a -1.45 1.38
GmSULTR3;2a -1.48 -1.97 1.86
GmSULTR3;3b -3.09 -2.25
GmSULTR3;4b 2.63 4.80
GmSULTR3;4c 1.41
GmSULTR3;5b 6.17 6.92
GmSULTR4;1 -1.05
GmSULTR4;2 1.31

图7

GmNIL1的组织表达"

图8

大豆转基因嵌合体中GmEIL1基因表达量(A)、地上部和毛根中硫酸根含量(B和C)和ERF1 (Glyma.13G123100)基因的表达量(D) +S: 对照; -S: 缺硫。OE-EV、OE-EIL1、RI-EV、RI-EIL1分别表示转过表达空载、GmEIL1基因过表达、干扰空载、GmEIL1基因干扰的转基因嵌合体。*、**、***分别表示在0.05、0.01、0.001水平显著差异。"

[1] Li Q, Gao Y, Yang A. Sulfur homeostasis in plants. Int J Mol Sci, 2020, 21: 8926.
doi: 10.3390/ijms21238926
[2] Ding Y, Zhou X, Zuo L, Wang H, Yu D. Identification and functional characterization of the sulfate transporter gene GmSULTR1;2b in soybean. BMC Genomics, 2016, 17: 373.
doi: 10.1186/s12864-016-2705-3
[3] Phartiyal P, Kim W S, Cahoon R E, Jez J M, Krishnan H B. Soybean ATP sulfurylase, a homodimeric enzyme involved in sulfur assimilation, is abundantly expressed in roots and induced by cold treatment. Arch Biochem Biophys, 2006, 450: 20-29.
pmid: 16684499
[4] Phartiyal P, Kim W S, Cahoon R E, Jez J M, Krishnan H B. The role of 5’-adenylylsulfate reductase in the sulfur assimilation pathway of soybean: molecular cloning, kinetic characterization, and gene expression. Phytochemistry, 2008, 69: 356-364.
pmid: 17761201
[5] Krishnana H B, Jez J M. Review: the promise and limits for enhancing sulfur-containing amino acid content of soybean seed. Plant Sci, 2018, 272: 14-21.
doi: S0168-9452(18)30016-5 pmid: 29807584
[6] Chronis D, Krishnan H B. Sulfur assimilation in soybean (Glycine max [L.] Merr.): molecular cloning and characterization of a cytosolic isoform of serine acetyltransferase. Planta, 2004, 218: 417-426.
doi: 10.1007/s00425-003-1123-3
[7] Zhang C, Meng Q, Zhang M, Huang F, Gai J, Yu D. Characterization of O-acetylserine (thiol) lyase-encoding genes reveals their distinct but cooperative expression in cysteine synthesis of soybean [Glycine max (L.) Merr.]. Plant Mol Biol Rep, 2008, 26: 277-291.
doi: 10.1007/s11105-008-0047-2
[8] Chronis D, Krishnan H B. Sulfur assimilation in soybean: molecular cloning and characterization of O-acetylserine (thiol) lyase (cysteine synthase). Crop Sci, 2003, 43: 1819-1827.
doi: 10.2135/cropsci2003.1819
[9] 陈燕宁, 吴志医, 元文杰, 阚贵珍, 黄方, 喻德跃, 王慧. 核糖体基因GmRPL12对大豆低硫耐性的调控作用研究. 大豆科学, 2020, 39: 518-526.
Chen Y N, Wu Z Y, Yuan W J, Kan G Z, Huang F, Yu D Y, Wang H. Research on the regulation effect of ribosomal gene GmRPL12 on low sulfur tolerance in soybean. Soybean Sci, 2020, 39: 518-526. (in Chinese with English abstract)
[10] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[11] Pertea M, Pertea G M, Antonescu C M, Chang T C, Mendell J T, Salzberg S L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol, 2015, 33: 290-295.
doi: 10.1038/nbt.3122 pmid: 25690850
[12] Xie C, Mao X, Huang J, Ding Y, Wu J M, Dong S, Kong L, Gao G, Li C Y, Wei L P. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res, 2011, 39: W316-W322.
doi: 10.1093/nar/gkr483
[13] Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol, 2013, 30: 2725-2729.
doi: 10.1093/molbev/mst197 pmid: 24132122
[14] Holsters M, de Waele D, Depicker A, Messens E, van Montagu M, Schell J. Transfection and transformation of Agrobacterium tumefaciens. Mol Gen Genet, 1978, 163: 181-187.
doi: 10.1007/BF00267408
[15] Kereszt A, Li D X, Indrasumunar A, Nguyen C D T, Nontachaiyapoom S, Kinkema M, Gresshoff P M. Agrobacterium rhizogenes-mediated transformation of soybean to study root biology. Nat Protoc, 2007, 2: 948-952.
pmid: 17446894
[16] Hirai M Y, Fujiwara T, Awazuhara M, Kimura T, Noji M, Saito K. Global expression profiling of sulfur-starved Arabidopsis by DNA macroarray reveals the role of O-acetyl-L-serine as a general regulator of gene expression in response to sulfur nutrition. Plant J, 2003, 33: 651-663.
doi: 10.1046/j.1365-313X.2003.01658.x
[17] Luo A, Zhan H, Zhang X, Du H, Zhang Y, Peng X. Cytoplasmic ribosomal protein L14B is essential for fertilization in Arabidopsis. Plant Sci, 2020, 292: 110394.
doi: 10.1016/j.plantsci.2019.110394
[18] Lin D, Jiang Q, Zheng K, Chen S, Zhou H, Gong X, Xu J, Teng S, Dong Y. Mutation of the rice ASL2 gene encoding plastid ribosomal protein L21 causes chloroplast developmental defects and seedling death. Plant Biol, 2015, 17: 599-607.
doi: 10.1111/plb.12271
[19] Ludwig A, Tenhaken R. Suppression of the ribosomal L2 gene reveals a novel mechanism for stress adaptation in soybean. Planta, 2001, 212: 792-798.
pmid: 11346953
[20] Kim K Y, Park S W, Chung Y S, Chung C H, Kim J I, Lee J H. Molecular cloning of low-temperature-inducible ribosomal proteins from soybean. J Exp Bot, 2004, 55: 1153-1155.
doi: 10.1093/jxb/erh125
[21] Dong X, Duan S, Wang H B, Jin H L. Plastid ribosomal protein LPE2 is involved in photosynthesis and the response to C/N balance in Arabidopsis thaliana. J Integr Plant Biol, 2020, 62: 1418-1432.
doi: 10.1111/jipb.12907
[22] Gururani M A, Upadhyaya C P, Strasser R J, Yu J W, Park S W. Evaluation of abiotic stress tolerance in transgenic potato plants with reduced expression of PSII manganese stabilizing protein. Plant Sci, 2013, 198: 7-16.
doi: 10.1016/j.plantsci.2012.09.014 pmid: 23199682
[23] Kang L, Kim H S, Kwon Y S, Ke Q, Ji C Y, Park S, Lee H, Deng X, Kwak S. IbOr regulates photosynthesis under heat stress by stabilizing IbPsbP in sweet potato. Front Plant Sci, 2017, 8: 989.
doi: 10.3389/fpls.2017.00989 pmid: 28642783
[24] Yabuta S, Ifuku K, Takabayashi A, Ishihara S, Ido K, Ishikawa N, Endo T, Sato F.Three PsbQ-like proteins are required for the function of the chloroplast NAD(P)H dehydrogenase complex in Arabidopsis. Plant Cell Physiol, 2018, 51: 866-876.
doi: 10.1093/pcp/pcq060
[25] Dietzen C, Koprivova A, Whitcomb S J, Langen G, Jobe T O, Hoefgen R, Kopriva S. The transcription factor EIL1 participates in the regulation of sulfur-deficiency response. Plant Physiol, 2020, 84: 2120-2136.
[26] Maruyama-Nakashita A, Nakamura Y, Tohge T, Saito K, Takahashi H. Arabidopsis SLIM1 is a central transcriptional regulator of plant sulfur response and metabolism. Plant Cell, 2006, 18: 3235-3251.
doi: 10.1105/tpc.106.046458
[27] Wawrzyńska A, Lewandowska M, Sirko A. Nicotiana tabacum EIL2 directly regulates expression of at least one tobacco gene induced by sulphur starvation. J Exp Bot, 2010, 61: 889-900.
doi: 10.1093/jxb/erp356 pmid: 20018902
[28] Zuber H, Davidian J C, Aubert G, Aimé D, Belghazi M, Lugan R, Heintz D, Wirtz M, Hell R, Thompson R, Gallardo K. The seed composition of Arabidopsis mutants for the group 3 sulfate transporters indicates a role in sulfate translocation within developing seeds. Plant Physiol, 2010, 154: 913-926.
doi: 10.1104/pp.110.162123
[29] Cao M J, Wang Z, Wirtz M, Hell R, Oliver D J, Xiang C B. The chloroplast-localized sulfate transporter SULTR3;1 affects ABA biosynthesis in Arabidopsis thaliana. Plant J, 2013, 73: 607-616.
doi: 10.1111/tpj.12059
[30] Kataoka T, Hayashi N, Yamaya T, Takahashi H. Root-to-shoot transport of sulfate in Arabidopsis: evidence for the role of SULTR3;5 as a component of low affinity sulfate transport system in the root vasculature. Plant Physiol, 2004, 136: 4198-4204.
doi: 10.1104/pp.104.045625
[31] Zhao H, Frank T, Tan Y, Zhou C, Jabnoune M, Arpat A B, Cui H, Huang J, He Z, Poirier Y, Engel K H, Shu Q. Disruption of OsSULTR3;3 reduces phytate and phosphorus concentrations and alters the metabolite profile in rice grains. New Phytol, 2016, 211: 926-939.
doi: 10.1111/nph.13969
[32] Yamaji N, Takemoto Y, Miyaji T, Mitani-Ueno N, Yoshida K T, Ma J F. Reducing phosphorus accumulation in rice grains with an impaired transporter in the node. Nature, 2017, 541: 92-95.
doi: 10.1038/nature20610
[1] 杨硕, 武阳春, 刘鑫磊, 唐晓飞, 薛永国, 曹旦, 王婉, 刘亭萱, 祁航, 栾晓燕邱丽娟. 大豆蛋白含量主效位点qPRO-20-1的精细定位[J]. 作物学报, 2023, 49(2): 310-320.
[2] 才晓溪, 胡冰霜, 沈阳, 王研, 陈悦, 孙明哲, 贾博为, 孙晓丽. GsERF6基因过表达对水稻耐盐碱性的影响[J]. 作物学报, 2023, 49(2): 561-569.
[3] 梁政, 柯美玉, 陈志威, 陈栩, 高震. 大豆GmPIN2家族基因调控根系发育功能初探[J]. 作物学报, 2023, 49(1): 24-35.
[4] 白智媛, 陈向阳, 郑阿香, 张力, 邹军, 张大同, 陈阜, 尹小刚. 1991—2019年美国大豆区试品种(系)农艺和品质性状时空变化特征[J]. 作物学报, 2023, 49(1): 177-187.
[5] 齐阳阳, 窦汝娜, 赵彩桐, 张帜, 李文滨, 姜振峰. 大豆生长节间响应温度和外源GA诱导的赤霉素途径关键基因分析[J]. 作物学报, 2023, 49(1): 62-72.
[6] 刘成, 张雅轩, 陈先连, 韩伟, 邢光南, 贺建波, 张焦平, 张逢凯, 孙磊, 李宁, 王吴彬, 盖钧镒. 野生大豆染色体片段代换系群体中与百粒重关联的野生片段及其候选基因[J]. 作物学报, 2022, 48(8): 1884-1893.
[7] 怀园园, 张晟瑞, 武婷婷, 李静, 孙石, 韩天富, 李斌, 孙君明. 大豆主要营养品质性状相关分子标记的育种应用潜力评价[J]. 作物学报, 2022, 48(8): 1957-1976.
[8] 柯丹霞, 霍娅娅, 刘怡, 李锦颖, 刘晓雪. 大豆TGA转录因子基因GmTGA26在盐胁迫中的功能分析[J]. 作物学报, 2022, 48(7): 1697-1708.
[9] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[10] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[11] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[12] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[13] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[14] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[15] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .