作物学报 ›› 2023, Vol. 49 ›› Issue (1): 105-118.doi: 10.3724/SP.J.1006.2023.24004
WANG Hui(), WU Zhi-Yi, ZHANG Yu-E, YU De-Yue()
摘要:
大豆是重要的粮油兼用作物, 其硫利用的研究不足。本研究评价了云梦六月花叶和沁阳大豆对低硫的耐性, 以这2个品种为材料, 利用RNA重测序技术分析了对照(+S)和缺硫(-S)水平下根和叶中的表达谱。结果表明, 云梦六月花叶对低硫表现为耐性, 沁阳大豆对低硫表现为敏感。表达谱分析在云梦六月花叶和沁阳大豆的叶中分别鉴定到9064个和9795个低硫响应的差异表达基因, 根中分别鉴定到3185个和5006个差异表达基因。KEGG富集分析发现, 2个材料叶中有9个共有途径, 仅植物MAPK信号途径富集更多的上调表达基因。2个材料根中有18个共有途径, 其中9个途径在2个材料的中对低硫的响应一致, 4个途径包含更多的上调表达基因, 5个途径包含更多的下调表达基因。在其余9个途径中, 云梦六月花叶包含更多的上调表达基因。大豆硫酸根转运蛋白基因对硫酸根的吸收和转运非常重要, 在表达谱中鉴定到27个硫酸根转运蛋白基因, 分属4个亚组, 亚组1、2、4的基因多受低硫诱导, 亚组3的基因对低硫的响应较为复杂。基于富集分析结果, 本研究从植物MAPK信号途径中克隆了一个受低硫诱导的基因GmEIL1, 通过转化大豆毛状根证明该基因参与大豆硫利用的调控。本研究结果为深入探索大豆硫利用效率的遗传机理奠定了基础, 为大豆耐低硫育种提供了候选基因。
[1] |
Li Q, Gao Y, Yang A. Sulfur homeostasis in plants. Int J Mol Sci, 2020, 21: 8926.
doi: 10.3390/ijms21238926 |
[2] |
Ding Y, Zhou X, Zuo L, Wang H, Yu D. Identification and functional characterization of the sulfate transporter gene GmSULTR1;2b in soybean. BMC Genomics, 2016, 17: 373.
doi: 10.1186/s12864-016-2705-3 |
[3] |
Phartiyal P, Kim W S, Cahoon R E, Jez J M, Krishnan H B. Soybean ATP sulfurylase, a homodimeric enzyme involved in sulfur assimilation, is abundantly expressed in roots and induced by cold treatment. Arch Biochem Biophys, 2006, 450: 20-29.
pmid: 16684499 |
[4] |
Phartiyal P, Kim W S, Cahoon R E, Jez J M, Krishnan H B. The role of 5’-adenylylsulfate reductase in the sulfur assimilation pathway of soybean: molecular cloning, kinetic characterization, and gene expression. Phytochemistry, 2008, 69: 356-364.
pmid: 17761201 |
[5] |
Krishnana H B, Jez J M. Review: the promise and limits for enhancing sulfur-containing amino acid content of soybean seed. Plant Sci, 2018, 272: 14-21.
doi: S0168-9452(18)30016-5 pmid: 29807584 |
[6] |
Chronis D, Krishnan H B. Sulfur assimilation in soybean (Glycine max [L.] Merr.): molecular cloning and characterization of a cytosolic isoform of serine acetyltransferase. Planta, 2004, 218: 417-426.
doi: 10.1007/s00425-003-1123-3 |
[7] |
Zhang C, Meng Q, Zhang M, Huang F, Gai J, Yu D. Characterization of O-acetylserine (thiol) lyase-encoding genes reveals their distinct but cooperative expression in cysteine synthesis of soybean [Glycine max (L.) Merr.]. Plant Mol Biol Rep, 2008, 26: 277-291.
doi: 10.1007/s11105-008-0047-2 |
[8] |
Chronis D, Krishnan H B. Sulfur assimilation in soybean: molecular cloning and characterization of O-acetylserine (thiol) lyase (cysteine synthase). Crop Sci, 2003, 43: 1819-1827.
doi: 10.2135/cropsci2003.1819 |
[9] | 陈燕宁, 吴志医, 元文杰, 阚贵珍, 黄方, 喻德跃, 王慧. 核糖体基因GmRPL12对大豆低硫耐性的调控作用研究. 大豆科学, 2020, 39: 518-526. |
Chen Y N, Wu Z Y, Yuan W J, Kan G Z, Huang F, Yu D Y, Wang H. Research on the regulation effect of ribosomal gene GmRPL12 on low sulfur tolerance in soybean. Soybean Sci, 2020, 39: 518-526. (in Chinese with English abstract) | |
[10] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[11] |
Pertea M, Pertea G M, Antonescu C M, Chang T C, Mendell J T, Salzberg S L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol, 2015, 33: 290-295.
doi: 10.1038/nbt.3122 pmid: 25690850 |
[12] |
Xie C, Mao X, Huang J, Ding Y, Wu J M, Dong S, Kong L, Gao G, Li C Y, Wei L P. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res, 2011, 39: W316-W322.
doi: 10.1093/nar/gkr483 |
[13] |
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol, 2013, 30: 2725-2729.
doi: 10.1093/molbev/mst197 pmid: 24132122 |
[14] |
Holsters M, de Waele D, Depicker A, Messens E, van Montagu M, Schell J. Transfection and transformation of Agrobacterium tumefaciens. Mol Gen Genet, 1978, 163: 181-187.
doi: 10.1007/BF00267408 |
[15] |
Kereszt A, Li D X, Indrasumunar A, Nguyen C D T, Nontachaiyapoom S, Kinkema M, Gresshoff P M. Agrobacterium rhizogenes-mediated transformation of soybean to study root biology. Nat Protoc, 2007, 2: 948-952.
pmid: 17446894 |
[16] |
Hirai M Y, Fujiwara T, Awazuhara M, Kimura T, Noji M, Saito K. Global expression profiling of sulfur-starved Arabidopsis by DNA macroarray reveals the role of O-acetyl-L-serine as a general regulator of gene expression in response to sulfur nutrition. Plant J, 2003, 33: 651-663.
doi: 10.1046/j.1365-313X.2003.01658.x |
[17] |
Luo A, Zhan H, Zhang X, Du H, Zhang Y, Peng X. Cytoplasmic ribosomal protein L14B is essential for fertilization in Arabidopsis. Plant Sci, 2020, 292: 110394.
doi: 10.1016/j.plantsci.2019.110394 |
[18] |
Lin D, Jiang Q, Zheng K, Chen S, Zhou H, Gong X, Xu J, Teng S, Dong Y. Mutation of the rice ASL2 gene encoding plastid ribosomal protein L21 causes chloroplast developmental defects and seedling death. Plant Biol, 2015, 17: 599-607.
doi: 10.1111/plb.12271 |
[19] |
Ludwig A, Tenhaken R. Suppression of the ribosomal L2 gene reveals a novel mechanism for stress adaptation in soybean. Planta, 2001, 212: 792-798.
pmid: 11346953 |
[20] |
Kim K Y, Park S W, Chung Y S, Chung C H, Kim J I, Lee J H. Molecular cloning of low-temperature-inducible ribosomal proteins from soybean. J Exp Bot, 2004, 55: 1153-1155.
doi: 10.1093/jxb/erh125 |
[21] |
Dong X, Duan S, Wang H B, Jin H L. Plastid ribosomal protein LPE2 is involved in photosynthesis and the response to C/N balance in Arabidopsis thaliana. J Integr Plant Biol, 2020, 62: 1418-1432.
doi: 10.1111/jipb.12907 |
[22] |
Gururani M A, Upadhyaya C P, Strasser R J, Yu J W, Park S W. Evaluation of abiotic stress tolerance in transgenic potato plants with reduced expression of PSII manganese stabilizing protein. Plant Sci, 2013, 198: 7-16.
doi: 10.1016/j.plantsci.2012.09.014 pmid: 23199682 |
[23] |
Kang L, Kim H S, Kwon Y S, Ke Q, Ji C Y, Park S, Lee H, Deng X, Kwak S. IbOr regulates photosynthesis under heat stress by stabilizing IbPsbP in sweet potato. Front Plant Sci, 2017, 8: 989.
doi: 10.3389/fpls.2017.00989 pmid: 28642783 |
[24] |
Yabuta S, Ifuku K, Takabayashi A, Ishihara S, Ido K, Ishikawa N, Endo T, Sato F.Three PsbQ-like proteins are required for the function of the chloroplast NAD(P)H dehydrogenase complex in Arabidopsis. Plant Cell Physiol, 2018, 51: 866-876.
doi: 10.1093/pcp/pcq060 |
[25] | Dietzen C, Koprivova A, Whitcomb S J, Langen G, Jobe T O, Hoefgen R, Kopriva S. The transcription factor EIL1 participates in the regulation of sulfur-deficiency response. Plant Physiol, 2020, 84: 2120-2136. |
[26] |
Maruyama-Nakashita A, Nakamura Y, Tohge T, Saito K, Takahashi H. Arabidopsis SLIM1 is a central transcriptional regulator of plant sulfur response and metabolism. Plant Cell, 2006, 18: 3235-3251.
doi: 10.1105/tpc.106.046458 |
[27] |
Wawrzyńska A, Lewandowska M, Sirko A. Nicotiana tabacum EIL2 directly regulates expression of at least one tobacco gene induced by sulphur starvation. J Exp Bot, 2010, 61: 889-900.
doi: 10.1093/jxb/erp356 pmid: 20018902 |
[28] |
Zuber H, Davidian J C, Aubert G, Aimé D, Belghazi M, Lugan R, Heintz D, Wirtz M, Hell R, Thompson R, Gallardo K. The seed composition of Arabidopsis mutants for the group 3 sulfate transporters indicates a role in sulfate translocation within developing seeds. Plant Physiol, 2010, 154: 913-926.
doi: 10.1104/pp.110.162123 |
[29] |
Cao M J, Wang Z, Wirtz M, Hell R, Oliver D J, Xiang C B. The chloroplast-localized sulfate transporter SULTR3;1 affects ABA biosynthesis in Arabidopsis thaliana. Plant J, 2013, 73: 607-616.
doi: 10.1111/tpj.12059 |
[30] |
Kataoka T, Hayashi N, Yamaya T, Takahashi H. Root-to-shoot transport of sulfate in Arabidopsis: evidence for the role of SULTR3;5 as a component of low affinity sulfate transport system in the root vasculature. Plant Physiol, 2004, 136: 4198-4204.
doi: 10.1104/pp.104.045625 |
[31] |
Zhao H, Frank T, Tan Y, Zhou C, Jabnoune M, Arpat A B, Cui H, Huang J, He Z, Poirier Y, Engel K H, Shu Q. Disruption of OsSULTR3;3 reduces phytate and phosphorus concentrations and alters the metabolite profile in rice grains. New Phytol, 2016, 211: 926-939.
doi: 10.1111/nph.13969 |
[32] |
Yamaji N, Takemoto Y, Miyaji T, Mitani-Ueno N, Yoshida K T, Ma J F. Reducing phosphorus accumulation in rice grains with an impaired transporter in the node. Nature, 2017, 541: 92-95.
doi: 10.1038/nature20610 |
[1] | 杨硕, 武阳春, 刘鑫磊, 唐晓飞, 薛永国, 曹旦, 王婉, 刘亭萱, 祁航, 栾晓燕邱丽娟. 大豆蛋白含量主效位点qPRO-20-1的精细定位[J]. 作物学报, 2023, 49(2): 310-320. |
[2] | 才晓溪, 胡冰霜, 沈阳, 王研, 陈悦, 孙明哲, 贾博为, 孙晓丽. GsERF6基因过表达对水稻耐盐碱性的影响[J]. 作物学报, 2023, 49(2): 561-569. |
[3] | 梁政, 柯美玉, 陈志威, 陈栩, 高震. 大豆GmPIN2家族基因调控根系发育功能初探[J]. 作物学报, 2023, 49(1): 24-35. |
[4] | 白智媛, 陈向阳, 郑阿香, 张力, 邹军, 张大同, 陈阜, 尹小刚. 1991—2019年美国大豆区试品种(系)农艺和品质性状时空变化特征[J]. 作物学报, 2023, 49(1): 177-187. |
[5] | 齐阳阳, 窦汝娜, 赵彩桐, 张帜, 李文滨, 姜振峰. 大豆生长节间响应温度和外源GA诱导的赤霉素途径关键基因分析[J]. 作物学报, 2023, 49(1): 62-72. |
[6] | 刘成, 张雅轩, 陈先连, 韩伟, 邢光南, 贺建波, 张焦平, 张逢凯, 孙磊, 李宁, 王吴彬, 盖钧镒. 野生大豆染色体片段代换系群体中与百粒重关联的野生片段及其候选基因[J]. 作物学报, 2022, 48(8): 1884-1893. |
[7] | 怀园园, 张晟瑞, 武婷婷, 李静, 孙石, 韩天富, 李斌, 孙君明. 大豆主要营养品质性状相关分子标记的育种应用潜力评价[J]. 作物学报, 2022, 48(8): 1957-1976. |
[8] | 柯丹霞, 霍娅娅, 刘怡, 李锦颖, 刘晓雪. 大豆TGA转录因子基因GmTGA26在盐胁迫中的功能分析[J]. 作物学报, 2022, 48(7): 1697-1708. |
[9] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[10] | 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557. |
[11] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[12] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[13] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[14] | 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209. |
[15] | 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800. |
|