作物学报 ›› 2023, Vol. 49 ›› Issue (12): 3302-3314.doi: 10.3724/SP.J.1006.2023.34010
赵晓鑫1,2(), 黄烁淇1,2, 谭文勃1,2, 兴旺1,2, 刘大丽1,2,*()
ZHAO Xiao-Xin1,2(), HUANG Shuo-Qi1,2, TAN Wen-Bo1,2, XING Wang1,2, LIU Da-Li1,2,*()
摘要:
镉离子平衡和解毒调控是探索甜菜镉胁迫耐受机制的核心, 也是利用甜菜进行重金属生物修复的基础。重金属相关的异戊二烯植物蛋白(HIPPs)是一类多功能金属伴侣蛋白, 在镉离子吸收、转运及区隔化中发挥关键作用。前期甜菜响应镉胁迫的转录组表达谱研究中, 发现BvHIPPs存在差异表达。基于此, 本研究通过生物信息学方法全基因组鉴定了BvHIPPs基因家族成员, 并对其理化性质、进化关系、基因结构、顺式作用元件、染色体定位及在镉胁迫下的转录表达特性进行了深入的分析。结果表明, 甜菜基因组中共有23个BvHIPPs家族成员, 均含有HMA结构域和异戊二烯化基序, 其中16个BvHIPPs被定位于细胞核。顺式作用元件分析发现BvHIPPs可参与多种生物与非生物胁迫响应。转录组数据表明23个BvHIPPs均不同程度的参与到甜菜对镉胁迫的应答过程, 并且进一步的qRT-PCR分析验证了BvHIPPs应答镉胁迫的调控特点。结果表明, BvHIPPs可能在甜菜适应镉胁迫的过程中发挥着重要作用, 研究结果为甜菜在重金属污染生物修复的分子机制研究奠定基础。
[1] |
Eapen S, D’Souza S F. Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnol Adv, 2005, 23: 97-114.
pmid: 15694122 |
[2] |
Miransari M. Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol Adv, 2011, 29: 645-653.
doi: 10.1016/j.biotechadv.2011.04.006 pmid: 21557996 |
[3] | Singh S, Parihar P, Singh R, Singh V P, Prasad S M. Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and lonomics. Frontiers Plant Sci, 2016, 6: 1143. |
[4] |
Ying R R, Qiu R L, Tang Y T, Hu P J, Qiu H, Chen H R, Shi T H, Morel J L. Cadmium tolerance of carbon assimilation enzymes and chloroplast in Zn/Cd hyperaccumulator Picris divaeicata. J Plant Physiol, 2010, 167: 81-87.
doi: 10.1016/j.jplph.2009.07.005 |
[5] |
Niekerk L A, Carelse M F, Bakare O O, Mavumengwana V, Keyster M, Gokul A. The relationship between cadmium toxicity and the modulation of epigenetic traits in plants. Int J Mol Sci, 2021, 22: 7046.
doi: 10.3390/ijms22137046 |
[6] |
Bali A S, Sidhu G P S, Kumar V. Root exudates ameliorate cadmium tolerance in plants: a review. Environ Chem Lett, 2020, 18: 1243-1275.
doi: 10.1007/s10311-020-01012-x |
[7] |
Lynch M, Conery J S. The evolutionary fate and consequences of duplicate genes. Science, 2000, 290: 1151-1155.
doi: 10.1126/science.290.5494.1151 pmid: 11073452 |
[8] | Nguyen A H, Hoying C R, Urbina T M, Drennan P. Effects of cadmium on growth, short-term photosynthetic acclimation and metal accumulation in radish plants (Raphanus sativus L.). Yearb Med Inform, 2017, 20: 78-86. |
[9] |
Lei G J, Fujii-Kashino M, Wu D Z, Hisano H, Saisho D, Deng F L, Yamaji N, Sato K, Zhao F J, Ma J F. Breeding for low cadmium barley by introgression of a Sukkula-like transposable element. Nat Food, 2020, 1: 489-499.
doi: 10.1038/s43016-020-0130-x pmid: 37128077 |
[10] |
de Abreu-Neto J B, Turchetto-Zolet A C, de Oliveira L F V, Zanettini M H B, Margis-Pinheiro M. Heavy metal-associated isoprenylated plant protein (HIPP): characterization of a family of proteins exclusive to plants. FEBS J, 2013, 280: 1604-1616.
doi: 10.1111/febs.12159 pmid: 23368984 |
[11] |
Zschiesche W, Barth O, Daniel K, Bohme S, Rausche J, Humbeck K. The zinc-binding nuclear protein HIPP3 acts as an upstream regulator of the salicylate-dependent plant immunity pathway and of flowering time in Arabidopsis thaliana. New Phytol, 2015, 207: 1084-1096.
doi: 10.1111/nph.13419 pmid: 25913773 |
[12] |
Dykema P E, Sipes P R, Marie A, Biermann B J, Crowell D N, Randall S K. A new class of proteins capable of binding transition metals. Plant Mol Biol, 1999, 41: 139.
pmid: 10561075 |
[13] | Tehseen M, Cairns N, Sherson S, Cobbett C S. Metallochaperone-like genes in Arabidopsis thaliana. Adv Exp Med Biol, 2010, 2: 556-564. |
[14] |
Khan I U, Rono J K, Zhang B Q, Liu X S, Wang M Q, Wang L L, Wu X C, Chen X, Cao H W, Yang Z M. Identification of novel rice (Oryza sativa) HPP and HIPP genes tolerant to heavy metal toxicity. Ecotoxicol Environ Saf, 2019, 175: 8-18.
doi: 10.1016/j.ecoenv.2019.03.040 |
[15] | Zhang B Q, Liu X S, Feng S J, Zhao Y N, Wang L L, Rono J K, Li H, Yang Z M. Developing a cadmium resistant rice genotype with OsHIPP29 locus for limiting cadmium accumulation in the paddy crop. Chemosphere, 2020, 247: 125985. |
[16] |
Khan I U, Rono J K, Liu X S, Feng S J, Li H, Chen X, Yang Z M. Functional characterization of a new metallochaperone for reducing cadmium concentration in rice crop. J Clean Prod, 2020, 272: 123152.
doi: 10.1016/j.jclepro.2020.123152 |
[17] |
Wiebke Z, Olaf B, Katharina D, Sandra B, Juliane R, Klaus H. The zinc-binding nuclear protein HIPP3 acts as an upstream regulator of the salicylate-dependent plant immunity pathway and of flowering time in Arabidopsis thaliana. New Phytol, 2015, 207: 1084-1096.
doi: 10.1111/nph.2015.207.issue-4 |
[18] |
Radakovic Z S, Anjam M S, Escobar E, Chopra D, Cabrera J, Silva A C, Escobar C, Sobczak M, Grundler F M W, Siddique S. Arabidopsis HIPP27 is a host susceptibility gene for the beet cyst nematode Heterodera schachtii. Mol Plant Pathol, 2018, 19: 1917-1928.
doi: 10.1111/mpp.2018.19.issue-8 |
[19] |
Zhang X, Feng H, Feng C, Xu H, Huang X, Wang Q, Duan X, Wang X, Wei G, Huang L, Kang Z. Isolation and characterization of cDNA encoding a wheat heavy metal-associated isoprenylated protein involved in stress responses. Plant Biol (Stuttg), 2015, 17: 1176-1186.
doi: 10.1111/plb.2015.17.issue-6 |
[20] |
Cowan G H, Roberts A G, Jones S, Kumar P, Kalyandurg P B, Gil J F, Savenkov E I, Hemsley P A, Torrance L. Potato mop-top virus co-opts the stress sensor HIPP26 for long-distance movement. Plant Physiol, 2018, 176: 2052-2070.
doi: 10.1104/pp.17.01698 pmid: 29374107 |
[21] |
Suzuki N, Yamaguchi Y, Koizumi N, Sano H. Functional characterization of a heavy metal binding protein CdI19 from Arabidopsis. Plant J, 2002, 32: 165-173.
doi: 10.1046/j.1365-313X.2002.01412.x |
[22] |
Zhang H, Zhang X, Liu J, Niu Y, Chen Y M, Hao Y L, Zhao J, Sun L, Wang H Y, Xiao J, Wang X E. Characterization of the heavy-metal-associated isoprenylated plant protein (HIPP) gene family from Triticeae species. Int J Mol Sci, 2020, 21: 6191.
doi: 10.3390/ijms21176191 |
[23] |
王琪, 许志茹, 陈瑾元, 张双, 黄佳欢, 刘关君. 杨树重金属相关异戊二烯化植物蛋白(HIPPs)基因的鉴定及表达分析. 植物研究, 2019, 39: 935-946.
doi: 10.7525/j.issn.1673-5102.2019.06.017 |
Wang Q, Xu Z R, Chen J Y, Zang S, Huang J H, Liu G J. Identification and expression analysis of heavy metal- associated isoprenylated plant proteins (HIPPs) genes in Populus. Bull Bot Res, 2019, 39: 935-946. (in Chinese with English abstract) | |
[24] |
钱方, 胡利娟, 余婕, 冯群, 左丹, 方正, 朱斌, 伍晓明. 甘蓝型油菜HIPPs基因家族的鉴定与表达分析. 植物遗传资源学报, 2022, 23: 1187-1201.
doi: 10.13430/j.cnki.jpgr.20211130001 |
Qian F, Hu L J, Yu J, Feng Q, Zuo D, Fang Z, Zhu B, Wu X M. Identification and expression analysis of HIPPs gene family in Brassica napus L. J Plant Genet Resour, 2022, 23: 1187-1201. (in Chinese with English abstract) | |
[25] | 史淑芝, 程大友, 马凤鸣, 崔杰. 生物质能源作物: 能源甜菜的开发利用. 中国农学通报, 2007, 23(11): 416-419. |
Shi S Z, Cheng D Y, Ma F M, Cui J. Exploitation and utilization of biomass energy crop-energy beet. Chin Agric Sci Bull, 2007, 23(11): 416-419. (in Chinese with English abstract) | |
[26] |
Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok S O, Wicker T, Radchuk V, Dockter C, Hedley P E, Russell J, Bayer M, Ramsay L, Liu H, Haberer G, Zhang X Q, Zhang Q S, Barrero R A, Li L, Taudien S, Groth M, Felder M, Hastie A, Simkova H, Stankova H, Vrana J, Chan S, Munoz-Amatrian M, Ounit R, Wanamaker S, Bolser D, Colmsee C, Schmutzer T, Aliyeva-Schnorr L, Grasso S, Tanskanen J, Chailyan A, Sampath D, Heavens D, Clissold L, Cao S J, Chapman B, Dai F, Han Y, Li H, Li X, Lin C Y, McCooke J K, Tan C, Wang P H, Wang S B, Yin S Y, Zhou G F, Poland J A, Bellgard M I, Borisjuk L, Houben A, Dolezel J, Ayling S, Lonardi S, Kersey P, Lagridge P, Muehlbauer G J, Clark M D, Caccamo M, Schulman A H, Mayer K F X, Platzer M, Close T J, Scholz U, Hansson M, Zhang G P, Braumann I, Spannagl M, Li C D, Waugh R, Stein N. A chromosome conformation capture ordered sequence of the barley genome. Nature, 2017, 544: 427-433.
doi: 10.1038/nature22043 |
[27] |
Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190 |
[28] |
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol, 2016, 33: 1870-1874.
doi: 10.1093/molbev/msw054 pmid: 27004904 |
[29] |
Nguyen L T, Schmidt H A, Von Haeseler A, Minh B Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol, 2015, 32: 268-274.
doi: 10.1093/molbev/msu300 |
[30] |
Bailey T L, Johnson J, Grant C E, Noble W S. The MEME suite. Nucleic Acids Res, 2015, 43: W39-W49.
doi: 10.1093/nar/gkv416 |
[31] |
Hu B, Jin J P, Guo A Y, Zhang H, Luo J C, Gao G. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics, 2015, 31: 1296-1297.
doi: 10.1093/bioinformatics/btu817 pmid: 25504850 |
[32] | Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res, 2002, 30: 325-327. |
[33] |
de Souza M R, Teixeira R C, Daude M M, Augusto A N L, Sagio S A, de Almeida A F, Barreto H G. Comparative assessment of three RNA extraction methods for obtaining high-quality RNA from Candida viswanathii biomass. J Microbiol Methods, 2021, 184: 106200.
doi: 10.1016/j.mimet.2021.106200 |
[34] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[35] |
Zhang X Y, Chen D M, Zhong T Y, Zhang X M, Cheng M, Li X H. Assessment of cadmium (Cd) concentration in arable soil in China. Environ Sci Pollut Res Int, 2015, 22: 4932-4941.
doi: 10.1007/s11356-014-3892-6 |
[36] |
Bastabak B, Godekmerdan E, Kocar G. A holistic approach to soil contamination and sustainable phytoremediation with energy crops in the Aegean Region of Turkey. Chemosphere, 2021, 276: 130192.
doi: 10.1016/j.chemosphere.2021.130192 |
[37] |
Xu C H, Zhao Y Q, Yang B S. Mediating roles of metal ions in the structures and functions of metalloproteins. Prog Chem, 2013, 25: 520.
doi: 10.7536/PC121007 |
[38] |
Chu C C, Lee W C, Guo W Y, Pan S M, Chen L J, Li H M, Jinn T L. A copper chaperone for superoxide dismutase that confers three types of copper/zinc superoxide dismutase activity in Arabidopsis. Plant Physiol, 2005, 139: 425-436.
doi: 10.1104/pp.105.065284 |
[39] |
Barth O, Vogt S, Uhlemann R, Zschiesche W, Humbeck K. Stress induced and nuclear localized HIPP 26 from Arabidopsis thaliana interacts via its heavy metal associated domain with the drought stress related zinc finger transcription factor ATHB29. Plant Mol Biol, 2009, 69: 213-226.
doi: 10.1007/s11103-008-9419-0 pmid: 18974936 |
[40] |
Cao H W, Li C, Zhang B Q, Zhang B Q, Rono J K, Yang Z M. A metallochaperone HIPP33 is required for rice zinc and iron homeostasis and productivity. Agronomy, 2022, 12: 488.
doi: 10.3390/agronomy12020488 |
[41] |
Niu M Y, Bao C J, Zhan J Y, Yue X M, Zou J N, Su N A, Cui J. Plasma membrane-localized protein BcHIPP16 promotes the uptake of copper and cadmium in planta. Ecotoxicol Environ Saf, 2021, 227: 112920.
doi: 10.1016/j.ecoenv.2021.112920 |
[42] |
Xu Z C, Pu X D, Gao R R, Demurtas O C, Fleck S J, Richter M, He C N, Ji A J, Sun W, Kong J Q, Hu K Z, Ren F M, Song J J, Wang Z, Gao T, Xiong C, Yu H Y, Xin T Y, Albert V A, Giuliano G, Chen S L, Song J Y. Tandem gene duplications drive divergent evolution of caffeine and crocin biosynthetic pathways in plants. BMC Biol, 2020, 18: 63.
doi: 10.1186/s12915-020-00795-3 pmid: 32552824 |
[43] | Gautam B. Study of HIPP25, HIPP26, HIPP27 gene expression and glucosinolate content in Arabidopsis thaliana and Noccaea caerulescens upon heavy metal treatments. MS Thesis of Norwegian University of Science and Technology, Trondheim, Norway, 2017. |
[44] |
Robinson N J, Winge D R. Copper metallochaperones. Annu Rev Biochem, 2010, 79: 537-562.
doi: 10.1146/annurev-biochem-030409-143539 pmid: 20205585 |
[45] |
Huang X Y, Deng F L, Yamaji N, Pinson S R M, Fujii-Kashino M, Danku J, Douglas A, Guerinot M L, Salt D E, Ma J F. A heavy metal P-type ATPase OsHMA4 prevents copper accumulation in rice grain. Nat Commun, 2016, 7: 12138.
doi: 10.1038/ncomms12138 |
[46] |
Zheng P, Cao L, Zhang C, Pan W, Wang W, Yu X, Li Y, Fan T, Miao M, Tang X, Liu Y, Cao S. MYB43 as a novel substrate for CRL4 (PRL1) E3 ligases negatively regulates cadmium tolerance through transcriptional inhibition of HMAs in Arabidopsis. New Phytol, 2022, 234: 884-901.
doi: 10.1111/nph.v234.3 |
[47] |
Fukuoka S, Saka N, Koga H, Ono K, Shimizu T, Ebana K, Hayashi N, Takahashi A, Hirochika H, Okuno K, Yano M. Loss of function of a proline-containing protein confers durable disease resistance in rice. Science, 2009, 325: 998-1001.
doi: 10.1126/science.1175550 pmid: 19696351 |
[1] | 李明月, 张文婷, 李阳, 张保龙, 杨立明, 王金彦. 小肽Ospep5对水稻耐镉性的影响[J]. 作物学报, 2024, 50(1): 67-75. |
[2] | 于超, 李国龙, 孙亚卿, 李宁宁, 张少英. 甜菜块根生长发育中呼吸代谢的特性研究[J]. 作物学报, 2023, 49(12): 3377-3386. |
[3] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[4] | 张加康, 李斐, 史树德, 杨海波. 内蒙古地区甜菜临界氮浓度稀释模型的构建及应用[J]. 作物学报, 2022, 48(2): 488-496. |
[5] | 曲梦雪, 宋杰, 孙菁, 胡旦旦, 王洪章, 任昊, 赵斌, 张吉旺, 任佰朝, 刘鹏. 镉胁迫对不同耐镉型玉米品种苗期根系生长的影响[J]. 作物学报, 2022, 48(11): 2945-2952. |
[6] | 卢海, 李增强, 唐美琼, 罗登杰, 曹珊, 岳娇, 胡亚丽, 黄震, 陈涛, 陈鹏. 红麻DNA甲基化响应镉胁迫及甲基化差异基因的表达分析[J]. 作物学报, 2021, 47(12): 2324-2334. |
[7] | 张云, 王丹媚, 王孝源, 任晴雯, 唐可, 张丽宇, 吴玉环, 刘鹏. 外源茉莉酸对菊芋镉胁迫下光合特性及镉积累的影响[J]. 作物学报, 2021, 47(12): 2490-2500. |
[8] | 严青青,张巨松,代健敏,窦巧巧. 甜菜碱对盐碱胁迫下海岛棉幼苗光合作用及生物量积累的影响[J]. 作物学报, 2019, 45(7): 1128-1135. |
[9] | 黄春燕,苏文斌,张少英,樊福义,郭晓霞,李智,菅彩媛,任霄云,宫前恒. 施钾量对膜下滴灌甜菜光合性能以及对产量和品质的影响[J]. 作物学报, 2018, 44(10): 1496-1505. |
[10] | 李智,李国龙,张永丰,于超,苏文斌,樊福义,张少英. 膜下滴灌条件下高产甜菜灌溉的生理指标[J]. 作物学报, 2017, 43(11): 1724-1730. |
[11] | 李阳阳,费聪,崔静,王开勇,马富裕,樊华. 滴灌甜菜对块根膨大期水分亏缺的补偿性响应[J]. 作物学报, 2016, 42(11): 1727-1732. |
[12] | 喻时周,杨成龙,郭建春,段瑞军. 海马齿甜菜碱醛脱氢酶基因克隆、高效表达及酶学特性分析[J]. 作物学报, 2016, 42(10): 1569-1574. |
[13] | 王茂芊,李博,王华忠. 甜菜遗传连锁图谱初步构建[J]. 作物学报, 2014, 40(02): 222-230. |
[14] | 李伟,申家恒,郭德栋. 栽培甜菜中央细胞受精前后的超微结构[J]. 作物学报, 2014, 40(01): 166-173. |
[15] | 李伟,申家恒,郭德栋. 栽培甜菜助细胞退化进程的超微结构观察[J]. 作物学报, 2013, 39(12): 2220-2227. |
|