欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (12): 3302-3314.doi: 10.3724/SP.J.1006.2023.34010

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甜菜HIPPs基因家族鉴定与镉胁迫下的表达分析

赵晓鑫1,2(), 黄烁淇1,2, 谭文勃1,2, 兴旺1,2, 刘大丽1,2,*()   

  1. 1黑龙江大学国家甜菜种质中期库, 黑龙江哈尔滨 150080
    2黑龙江省普通高等学校甜菜遗传育种重点实验室 / 黑龙江大学现代农业与生态环境学院, 黑龙江哈尔滨 150080
  • 收稿日期:2023-01-13 接受日期:2023-05-24 出版日期:2023-12-12 网络出版日期:2023-06-16
  • 通讯作者: * 刘大丽, E-mail: daliliu_hlju@163.com* E-mail: daliliu_hlju@163.com
  • 作者简介:E-mail: 953511214@qq.com
  • 基金资助:
    国家自然科学基金青年基金项目(31606229);黑龙江省自然科学基金项目(LH2019C057);财政部和农业农村部国家现代农业产业技术体系建设专项(Sugar, CARS-170102);农业农村部项目(19221878);农业农村部项目(19211031);农业农村部项目(19210911);黑龙江省普通本科高等学校青年创新人才培养计划项目(UNPYSCT-2020)

Identification and relative expression profile of HIPPs gene family cadmium stress in sugar beet

ZHAO Xiao-Xin1,2(), HUANG Shuo-Qi1,2, TAN Wen-Bo1,2, XING Wang1,2, LIU Da-Li1,2,*()   

  1. 1National Beet Germplasm Mid-term Bank, Heilongjiang University, Harbin 150080, Heilongjiang, China
    2Key Laboratory of Beet Genetics and Breeding / College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, Heilongjiang, China
  • Received:2023-01-13 Accepted:2023-05-24 Published:2023-12-12 Published online:2023-06-16
  • Supported by:
    Youth Program of National Natural Science Foundation of China(31606229);Natural Science Foundation of Heilongjiang Province(LH2019C057);China Agriculture Research System of MOF and MARA(Sugar, CARS-170102);Ministry of Agriculture and Rural Affairs Project(19221878);Ministry of Agriculture and Rural Affairs Project(19211031);Ministry of Agriculture and Rural Affairs Project(19210911);Innovative Training Plan for Young Talents in Heilongjiang Ordinary Undergraduate Colleges and Universities(UNPYSCT-2020)

摘要:

镉离子平衡和解毒调控是探索甜菜镉胁迫耐受机制的核心, 也是利用甜菜进行重金属生物修复的基础。重金属相关的异戊二烯植物蛋白(HIPPs)是一类多功能金属伴侣蛋白, 在镉离子吸收、转运及区隔化中发挥关键作用。前期甜菜响应镉胁迫的转录组表达谱研究中, 发现BvHIPPs存在差异表达。基于此, 本研究通过生物信息学方法全基因组鉴定了BvHIPPs基因家族成员, 并对其理化性质、进化关系、基因结构、顺式作用元件、染色体定位及在镉胁迫下的转录表达特性进行了深入的分析。结果表明, 甜菜基因组中共有23个BvHIPPs家族成员, 均含有HMA结构域和异戊二烯化基序, 其中16个BvHIPPs被定位于细胞核。顺式作用元件分析发现BvHIPPs可参与多种生物与非生物胁迫响应。转录组数据表明23个BvHIPPs均不同程度的参与到甜菜对镉胁迫的应答过程, 并且进一步的qRT-PCR分析验证了BvHIPPs应答镉胁迫的调控特点。结果表明, BvHIPPs可能在甜菜适应镉胁迫的过程中发挥着重要作用, 研究结果为甜菜在重金属污染生物修复的分子机制研究奠定基础。

关键词: 甜菜, HIPPs, 镉胁迫, 基因家族鉴定, 转录表达特性

Abstract:

Cadmium (Cd) ion balance and detoxification regulation are the cores of exploring cadmium tolerance mechanism in sugar beet, and the basis of heavy metal bioremediation using sugar beet. Heavy metal-associated isoprene plant proteins (HIPPs) are a class of multifunctional metal chaperone proteins, which may play a key role in absorption, transport, and compartmentalization of Cd ions. In the transcriptome expression profile of sugar beet responding to cadmium stress, BvHIPPs were found to be differentially expressed. Based on the above results, the whole BvHIPPs gene family members in beet genome was identified by bioinformatics method, and their physicochemical properties, evolutionary relationships, gene structure, cis-acting elements, chromosome localization, transcription, and expression characteristics under cadmium stress were analyzed. The results showed that there were 23 BvHIPPs family members in the beet genome, all of which contained HMA domains and isoprenylation motif, and 16 BvHIPPs were predicted to be located in the nucleus. According to cis-acting element analysis, beet BvHIPPs can participate in a variety of biological and abiotic stress responses. Transcriptomic analysis showed that all 23 BvHIPPs differentially participated in sugar beet in response to Cd, and qRT-PCR analysis verified furtherly the regulatory characteristics of the BvHIPPs correlated with Cd response. BvHIPPs might play an essential role in the adaptation of sugar beet to cadmium stress. The results suggest that BvHIPPs may play an important role in the process of beet adaptation to cadmium stress, and the results will lay a foundation for the molecular mechanism of beet bioremediation in heavy metal pollution.

Key words: sugar beet, HIPPs, cadmium stress, gene family identification, transcriptional expression characteristics

表1

荧光定量引物及序列"

基因Gene name 上游引物Forward primer (5°-3°) 下游引物Reverse primer (5°-3°)
BVRB_1g021330 AAGCAACAGAAGGTGACGGT GGGTGTGCCACCATAGTGTA
BVRB_3g050800 ATAAAAGGCGTGGTGGAGCC GGGTTCACCCTCATTTGCCG
BVRB_4g075740 AACACGGCGTATCCTAGCAG TATCAGACGGTGGAACTGCG
BVRB_6g135550 GCAAAAGCCACAGGGAAGAAG GTCCACCTTCCTGACATGACC
BVRB_3g053310 CTCAGTTGGGCCAGCAAAAG GTACGGAGGGTTGTAGCCG
BVRB_6g129220 GCCCGATCTGAAGTGTCCAT CTATGGGCCTGCCATCACAA
BVRB_7g161540 TTGTCCGCAAGTGTGATGGA CCTTCTTTGCAGGAGCAAGC
BVRB_5g126430 TCCTATTCCGAAACCACCCG GCATGTGAACCTTGAGCACC
BVRB_2g043150 TGTGGAGCCAAATAGGGTGC TTTGACATAGCCGGAGGGTG
BVRB_2g027600 ACAGGGCACGTAGATCCAAA GCCAGCAGGTGCTCTCTTAT
BVRB_9g214040 CGTGTGAAGCATCGAACAGG ACTCCAGGAGCGTAAGGGT
BVRB_5g104360 GTTCTGGCCTTACCCTAACCC GAGGGTGCCATGTCTATCACC
BVRB_3g055490 ATCAAAAGGGCAGGCAAAGC CCGTCGGAAGTGTCGTAGTAA
BVRB_4g081750 TTGCCAGCTTCCCACATGAT TGCGGATTCATCGGTACTGG
BVRB_3g069170 AAATGGGCCCTATGGGTTCG TGGAAGTATTCGGGTGCTGC
BVRB_7g164120 CTACCCGCACAGGCCATATC GTTGCTACTGCTCGATTGCG
BVRB_1g004050 AGGCGAAGCAGAAAGCTCTTA TGTTGTTGGCCAATACTTGCG
BVRB_5g122000 AGGTTGAGCCAGTGCCAATC ACTGCCTCTGTTGCTGATCG
BVRB_8g184430 TGTGGCGGTGGATCGAAAA GCATTTCGGCCCGTTTTGT
BVRB_3g053290 CACAGAAATTGTCTCAGTTGGGC GAAAGCCCGTTACAATCTCGC
BVRB_3g053300 TTGGCGATGTGGATCCTGTAG TTTGCAGGCCCAACTGAGAC
BVRB_6g142690 TGACCGGAAATGTGGAACCAA TGAGCAACGTAAGGGTAGGAC
BVRB_3g048110 CGTAGTATACCACCATCCGCC TTGATGGCTGCTCCAGTGTC
BvGAPDH GCTTTGAACGACCACTTCGC ACGCCGAGAGCAACTTGAAC

表2

BvHIPPs基因家族的基本信息"

基因
Gene name
氨基酸数
Amino acid
number
分子量
Relative molecular
mas (kD)
等电点
Isoelectric
point
不稳定系数
Instability
index
脂肪系数
Aliphatic
index
平均亲水性
Hydrophilic
coefficient
亚细胞定位
Subcellular
localization
BVRB_6g129220 131 14.52 6.76 39.11 72.82 -0.355 未定位Not located
BVRB_7g161540 355 38.77 9.06 32.26 50.45 -1.251 细胞核 Nucleus
BVRB_5g126430 343 38.33 6.00 48.78 51.40 -1.301 细胞核 Nucleus
BVRB_3g050800 340 37.64 4.91 71.30 65.06 -0.926 细胞核 Nucleus
BVRB_2g043150 149 16.82 9.45 43.45 71.81 -0.556 细胞核 Nucleus
BVRB_2g027600 147 16.52 9.28 50.11 66.26 -0.559 细胞核 Nucleus
BVRB_6g135550 155 17.25 9.42 33.95 64.71 -0.561 未定位Not located
BVRB_1g021330 147 16.38 9.39 17.54 65.65 -0.416 线粒体 Mitochondrion
BVRB_9g214040 158 18.07 9.01 40.36 65.82 -0.676 线粒体, 细胞核
Mitochondrion, nucleus
BVRB_5g104360 143 16.47 9.17 34.27 70.77 -0.617 细胞核 Nucleus
BVRB_3g055490 134 14.84 6.28 36.58 72.84 -0.249 未定位Not located
BVRB_4g081750 508 53.07 9.35 47.01 32.62 -1.273 细胞核 Nucleus
BVRB_3g069170 562 55.92 9.85 49.7 34.63 -0.894 细胞核 Nucleus
BVRB_7g164120 417 44.63 8.11 67.82 58.56 -0.823 细胞核 Nucleus
BVRB_1g004050 167 19.32 7.60 52.93 65.93 -1.255 细胞核 Nucleus
BVRB_4g075740 345 37.67 6.19 52.19 45.16 -1.208 细胞核 Nucleus
BVRB_5g122000 137 14.99 9.05 41.58 73.14 -0.381 细胞核 Nucleus
BVRB_8g184430 297 34.30 6.62 56.84 62.59 -1.118 细胞核 Nucleus
BVRB_3g053290 132 14.88 8.85 40.62 73.03 -0.767 细胞核 Nucleus
BVRB_3g053300 127 14.16 8.28 27.07 94.88 -0.181 细胞核 Nucleus
BVRB_6g142690 101 11.21 9.67 48.14 100.99 -0.149 叶绿体, 细胞核
Chloroplast, nucleus
BVRB_3g048110 370 41.00 5.70 76.65 42.16 -1.253 细胞核 Nucleus
BVRB_3g053310 113 12.70 8.37 24.08 81.77 -0.295 叶绿体, 细胞质, 细胞核Chloroplast, cytoplasm, nucleus

图1

甜菜及拟南芥的HIPPs家族进化分析 红色星号代表BvHIPPs, 蓝色圆形代表AtHIPPs。"

图2

BvHIPPs基因家族染色体分布 蓝色和黄色线段代表染色体密度。"

图3

甜菜BvHIPPs基因家族保守基序、结构域和基因结构分析 A: motif; B: 蛋白结构域; C: 基因结构; D: motif氨基酸序列。"

图4

甜菜BvHIPPs基因家族顺式元件分析"

图5

甜菜BvHIPPs家族基因在镉胁迫下的差异表达分析 CV_L和CV_R分别代表正常生长条件下BvHIPPs基因在叶部和根部的表达量; Cd_L和Cd_R分别代表0.5 mmol L-1的CdCl2处理6 h条件下BvHIPPs基因在叶部和根部的表达量。"

图6

镉胁迫下BvHIPPs基因的转录表达分析 不同大写字母表示不同时间下各组之间的显著性差异(P < 0.05); 不同小写字母表示同一时间下根和叶之间的显著性差异(P < 0.05)。"

[1] Eapen S, D’Souza S F. Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnol Adv, 2005, 23: 97-114.
pmid: 15694122
[2] Miransari M. Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol Adv, 2011, 29: 645-653.
doi: 10.1016/j.biotechadv.2011.04.006 pmid: 21557996
[3] Singh S, Parihar P, Singh R, Singh V P, Prasad S M. Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and lonomics. Frontiers Plant Sci, 2016, 6: 1143.
[4] Ying R R, Qiu R L, Tang Y T, Hu P J, Qiu H, Chen H R, Shi T H, Morel J L. Cadmium tolerance of carbon assimilation enzymes and chloroplast in Zn/Cd hyperaccumulator Picris divaeicata. J Plant Physiol, 2010, 167: 81-87.
doi: 10.1016/j.jplph.2009.07.005
[5] Niekerk L A, Carelse M F, Bakare O O, Mavumengwana V, Keyster M, Gokul A. The relationship between cadmium toxicity and the modulation of epigenetic traits in plants. Int J Mol Sci, 2021, 22: 7046.
doi: 10.3390/ijms22137046
[6] Bali A S, Sidhu G P S, Kumar V. Root exudates ameliorate cadmium tolerance in plants: a review. Environ Chem Lett, 2020, 18: 1243-1275.
doi: 10.1007/s10311-020-01012-x
[7] Lynch M, Conery J S. The evolutionary fate and consequences of duplicate genes. Science, 2000, 290: 1151-1155.
doi: 10.1126/science.290.5494.1151 pmid: 11073452
[8] Nguyen A H, Hoying C R, Urbina T M, Drennan P. Effects of cadmium on growth, short-term photosynthetic acclimation and metal accumulation in radish plants (Raphanus sativus L.). Yearb Med Inform, 2017, 20: 78-86.
[9] Lei G J, Fujii-Kashino M, Wu D Z, Hisano H, Saisho D, Deng F L, Yamaji N, Sato K, Zhao F J, Ma J F. Breeding for low cadmium barley by introgression of a Sukkula-like transposable element. Nat Food, 2020, 1: 489-499.
doi: 10.1038/s43016-020-0130-x pmid: 37128077
[10] de Abreu-Neto J B, Turchetto-Zolet A C, de Oliveira L F V, Zanettini M H B, Margis-Pinheiro M. Heavy metal-associated isoprenylated plant protein (HIPP): characterization of a family of proteins exclusive to plants. FEBS J, 2013, 280: 1604-1616.
doi: 10.1111/febs.12159 pmid: 23368984
[11] Zschiesche W, Barth O, Daniel K, Bohme S, Rausche J, Humbeck K. The zinc-binding nuclear protein HIPP3 acts as an upstream regulator of the salicylate-dependent plant immunity pathway and of flowering time in Arabidopsis thaliana. New Phytol, 2015, 207: 1084-1096.
doi: 10.1111/nph.13419 pmid: 25913773
[12] Dykema P E, Sipes P R, Marie A, Biermann B J, Crowell D N, Randall S K. A new class of proteins capable of binding transition metals. Plant Mol Biol, 1999, 41: 139.
pmid: 10561075
[13] Tehseen M, Cairns N, Sherson S, Cobbett C S. Metallochaperone-like genes in Arabidopsis thaliana. Adv Exp Med Biol, 2010, 2: 556-564.
[14] Khan I U, Rono J K, Zhang B Q, Liu X S, Wang M Q, Wang L L, Wu X C, Chen X, Cao H W, Yang Z M. Identification of novel rice (Oryza sativa) HPP and HIPP genes tolerant to heavy metal toxicity. Ecotoxicol Environ Saf, 2019, 175: 8-18.
doi: 10.1016/j.ecoenv.2019.03.040
[15] Zhang B Q, Liu X S, Feng S J, Zhao Y N, Wang L L, Rono J K, Li H, Yang Z M. Developing a cadmium resistant rice genotype with OsHIPP29 locus for limiting cadmium accumulation in the paddy crop. Chemosphere, 2020, 247: 125985.
[16] Khan I U, Rono J K, Liu X S, Feng S J, Li H, Chen X, Yang Z M. Functional characterization of a new metallochaperone for reducing cadmium concentration in rice crop. J Clean Prod, 2020, 272: 123152.
doi: 10.1016/j.jclepro.2020.123152
[17] Wiebke Z, Olaf B, Katharina D, Sandra B, Juliane R, Klaus H. The zinc-binding nuclear protein HIPP3 acts as an upstream regulator of the salicylate-dependent plant immunity pathway and of flowering time in Arabidopsis thaliana. New Phytol, 2015, 207: 1084-1096.
doi: 10.1111/nph.2015.207.issue-4
[18] Radakovic Z S, Anjam M S, Escobar E, Chopra D, Cabrera J, Silva A C, Escobar C, Sobczak M, Grundler F M W, Siddique S. Arabidopsis HIPP27 is a host susceptibility gene for the beet cyst nematode Heterodera schachtii. Mol Plant Pathol, 2018, 19: 1917-1928.
doi: 10.1111/mpp.2018.19.issue-8
[19] Zhang X, Feng H, Feng C, Xu H, Huang X, Wang Q, Duan X, Wang X, Wei G, Huang L, Kang Z. Isolation and characterization of cDNA encoding a wheat heavy metal-associated isoprenylated protein involved in stress responses. Plant Biol (Stuttg), 2015, 17: 1176-1186.
doi: 10.1111/plb.2015.17.issue-6
[20] Cowan G H, Roberts A G, Jones S, Kumar P, Kalyandurg P B, Gil J F, Savenkov E I, Hemsley P A, Torrance L. Potato mop-top virus co-opts the stress sensor HIPP26 for long-distance movement. Plant Physiol, 2018, 176: 2052-2070.
doi: 10.1104/pp.17.01698 pmid: 29374107
[21] Suzuki N, Yamaguchi Y, Koizumi N, Sano H. Functional characterization of a heavy metal binding protein CdI19 from Arabidopsis. Plant J, 2002, 32: 165-173.
doi: 10.1046/j.1365-313X.2002.01412.x
[22] Zhang H, Zhang X, Liu J, Niu Y, Chen Y M, Hao Y L, Zhao J, Sun L, Wang H Y, Xiao J, Wang X E. Characterization of the heavy-metal-associated isoprenylated plant protein (HIPP) gene family from Triticeae species. Int J Mol Sci, 2020, 21: 6191.
doi: 10.3390/ijms21176191
[23] 王琪, 许志茹, 陈瑾元, 张双, 黄佳欢, 刘关君. 杨树重金属相关异戊二烯化植物蛋白(HIPPs)基因的鉴定及表达分析. 植物研究, 2019, 39: 935-946.
doi: 10.7525/j.issn.1673-5102.2019.06.017
Wang Q, Xu Z R, Chen J Y, Zang S, Huang J H, Liu G J. Identification and expression analysis of heavy metal- associated isoprenylated plant proteins (HIPPs) genes in Populus. Bull Bot Res, 2019, 39: 935-946. (in Chinese with English abstract)
[24] 钱方, 胡利娟, 余婕, 冯群, 左丹, 方正, 朱斌, 伍晓明. 甘蓝型油菜HIPPs基因家族的鉴定与表达分析. 植物遗传资源学报, 2022, 23: 1187-1201.
doi: 10.13430/j.cnki.jpgr.20211130001
Qian F, Hu L J, Yu J, Feng Q, Zuo D, Fang Z, Zhu B, Wu X M. Identification and expression analysis of HIPPs gene family in Brassica napus L. J Plant Genet Resour, 2022, 23: 1187-1201. (in Chinese with English abstract)
[25] 史淑芝, 程大友, 马凤鸣, 崔杰. 生物质能源作物: 能源甜菜的开发利用. 中国农学通报, 2007, 23(11): 416-419.
Shi S Z, Cheng D Y, Ma F M, Cui J. Exploitation and utilization of biomass energy crop-energy beet. Chin Agric Sci Bull, 2007, 23(11): 416-419. (in Chinese with English abstract)
[26] Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok S O, Wicker T, Radchuk V, Dockter C, Hedley P E, Russell J, Bayer M, Ramsay L, Liu H, Haberer G, Zhang X Q, Zhang Q S, Barrero R A, Li L, Taudien S, Groth M, Felder M, Hastie A, Simkova H, Stankova H, Vrana J, Chan S, Munoz-Amatrian M, Ounit R, Wanamaker S, Bolser D, Colmsee C, Schmutzer T, Aliyeva-Schnorr L, Grasso S, Tanskanen J, Chailyan A, Sampath D, Heavens D, Clissold L, Cao S J, Chapman B, Dai F, Han Y, Li H, Li X, Lin C Y, McCooke J K, Tan C, Wang P H, Wang S B, Yin S Y, Zhou G F, Poland J A, Bellgard M I, Borisjuk L, Houben A, Dolezel J, Ayling S, Lonardi S, Kersey P, Lagridge P, Muehlbauer G J, Clark M D, Caccamo M, Schulman A H, Mayer K F X, Platzer M, Close T J, Scholz U, Hansson M, Zhang G P, Braumann I, Spannagl M, Li C D, Waugh R, Stein N. A chromosome conformation capture ordered sequence of the barley genome. Nature, 2017, 544: 427-433.
doi: 10.1038/nature22043
[27] Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190
[28] Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol, 2016, 33: 1870-1874.
doi: 10.1093/molbev/msw054 pmid: 27004904
[29] Nguyen L T, Schmidt H A, Von Haeseler A, Minh B Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol, 2015, 32: 268-274.
doi: 10.1093/molbev/msu300
[30] Bailey T L, Johnson J, Grant C E, Noble W S. The MEME suite. Nucleic Acids Res, 2015, 43: W39-W49.
doi: 10.1093/nar/gkv416
[31] Hu B, Jin J P, Guo A Y, Zhang H, Luo J C, Gao G. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics, 2015, 31: 1296-1297.
doi: 10.1093/bioinformatics/btu817 pmid: 25504850
[32] Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res, 2002, 30: 325-327.
[33] de Souza M R, Teixeira R C, Daude M M, Augusto A N L, Sagio S A, de Almeida A F, Barreto H G. Comparative assessment of three RNA extraction methods for obtaining high-quality RNA from Candida viswanathii biomass. J Microbiol Methods, 2021, 184: 106200.
doi: 10.1016/j.mimet.2021.106200
[34] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[35] Zhang X Y, Chen D M, Zhong T Y, Zhang X M, Cheng M, Li X H. Assessment of cadmium (Cd) concentration in arable soil in China. Environ Sci Pollut Res Int, 2015, 22: 4932-4941.
doi: 10.1007/s11356-014-3892-6
[36] Bastabak B, Godekmerdan E, Kocar G. A holistic approach to soil contamination and sustainable phytoremediation with energy crops in the Aegean Region of Turkey. Chemosphere, 2021, 276: 130192.
doi: 10.1016/j.chemosphere.2021.130192
[37] Xu C H, Zhao Y Q, Yang B S. Mediating roles of metal ions in the structures and functions of metalloproteins. Prog Chem, 2013, 25: 520.
doi: 10.7536/PC121007
[38] Chu C C, Lee W C, Guo W Y, Pan S M, Chen L J, Li H M, Jinn T L. A copper chaperone for superoxide dismutase that confers three types of copper/zinc superoxide dismutase activity in Arabidopsis. Plant Physiol, 2005, 139: 425-436.
doi: 10.1104/pp.105.065284
[39] Barth O, Vogt S, Uhlemann R, Zschiesche W, Humbeck K. Stress induced and nuclear localized HIPP 26 from Arabidopsis thaliana interacts via its heavy metal associated domain with the drought stress related zinc finger transcription factor ATHB29. Plant Mol Biol, 2009, 69: 213-226.
doi: 10.1007/s11103-008-9419-0 pmid: 18974936
[40] Cao H W, Li C, Zhang B Q, Zhang B Q, Rono J K, Yang Z M. A metallochaperone HIPP33 is required for rice zinc and iron homeostasis and productivity. Agronomy, 2022, 12: 488.
doi: 10.3390/agronomy12020488
[41] Niu M Y, Bao C J, Zhan J Y, Yue X M, Zou J N, Su N A, Cui J. Plasma membrane-localized protein BcHIPP16 promotes the uptake of copper and cadmium in planta. Ecotoxicol Environ Saf, 2021, 227: 112920.
doi: 10.1016/j.ecoenv.2021.112920
[42] Xu Z C, Pu X D, Gao R R, Demurtas O C, Fleck S J, Richter M, He C N, Ji A J, Sun W, Kong J Q, Hu K Z, Ren F M, Song J J, Wang Z, Gao T, Xiong C, Yu H Y, Xin T Y, Albert V A, Giuliano G, Chen S L, Song J Y. Tandem gene duplications drive divergent evolution of caffeine and crocin biosynthetic pathways in plants. BMC Biol, 2020, 18: 63.
doi: 10.1186/s12915-020-00795-3 pmid: 32552824
[43] Gautam B. Study of HIPP25, HIPP26, HIPP27 gene expression and glucosinolate content in Arabidopsis thaliana and Noccaea caerulescens upon heavy metal treatments. MS Thesis of Norwegian University of Science and Technology, Trondheim, Norway, 2017.
[44] Robinson N J, Winge D R. Copper metallochaperones. Annu Rev Biochem, 2010, 79: 537-562.
doi: 10.1146/annurev-biochem-030409-143539 pmid: 20205585
[45] Huang X Y, Deng F L, Yamaji N, Pinson S R M, Fujii-Kashino M, Danku J, Douglas A, Guerinot M L, Salt D E, Ma J F. A heavy metal P-type ATPase OsHMA4 prevents copper accumulation in rice grain. Nat Commun, 2016, 7: 12138.
doi: 10.1038/ncomms12138
[46] Zheng P, Cao L, Zhang C, Pan W, Wang W, Yu X, Li Y, Fan T, Miao M, Tang X, Liu Y, Cao S. MYB43 as a novel substrate for CRL4 (PRL1) E3 ligases negatively regulates cadmium tolerance through transcriptional inhibition of HMAs in Arabidopsis. New Phytol, 2022, 234: 884-901.
doi: 10.1111/nph.v234.3
[47] Fukuoka S, Saka N, Koga H, Ono K, Shimizu T, Ebana K, Hayashi N, Takahashi A, Hirochika H, Okuno K, Yano M. Loss of function of a proline-containing protein confers durable disease resistance in rice. Science, 2009, 325: 998-1001.
doi: 10.1126/science.1175550 pmid: 19696351
[1] 李明月, 张文婷, 李阳, 张保龙, 杨立明, 王金彦. 小肽Ospep5对水稻耐镉性的影响[J]. 作物学报, 2024, 50(1): 67-75.
[2] 于超, 李国龙, 孙亚卿, 李宁宁, 张少英. 甜菜块根生长发育中呼吸代谢的特性研究[J]. 作物学报, 2023, 49(12): 3377-3386.
[3] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[4] 张加康, 李斐, 史树德, 杨海波. 内蒙古地区甜菜临界氮浓度稀释模型的构建及应用[J]. 作物学报, 2022, 48(2): 488-496.
[5] 曲梦雪, 宋杰, 孙菁, 胡旦旦, 王洪章, 任昊, 赵斌, 张吉旺, 任佰朝, 刘鹏. 镉胁迫对不同耐镉型玉米品种苗期根系生长的影响[J]. 作物学报, 2022, 48(11): 2945-2952.
[6] 卢海, 李增强, 唐美琼, 罗登杰, 曹珊, 岳娇, 胡亚丽, 黄震, 陈涛, 陈鹏. 红麻DNA甲基化响应镉胁迫及甲基化差异基因的表达分析[J]. 作物学报, 2021, 47(12): 2324-2334.
[7] 张云, 王丹媚, 王孝源, 任晴雯, 唐可, 张丽宇, 吴玉环, 刘鹏. 外源茉莉酸对菊芋镉胁迫下光合特性及镉积累的影响[J]. 作物学报, 2021, 47(12): 2490-2500.
[8] 严青青,张巨松,代健敏,窦巧巧. 甜菜碱对盐碱胁迫下海岛棉幼苗光合作用及生物量积累的影响[J]. 作物学报, 2019, 45(7): 1128-1135.
[9] 黄春燕,苏文斌,张少英,樊福义,郭晓霞,李智,菅彩媛,任霄云,宫前恒. 施钾量对膜下滴灌甜菜光合性能以及对产量和品质的影响[J]. 作物学报, 2018, 44(10): 1496-1505.
[10] 李智,李国龙,张永丰,于超,苏文斌,樊福义,张少英. 膜下滴灌条件下高产甜菜灌溉的生理指标[J]. 作物学报, 2017, 43(11): 1724-1730.
[11] 李阳阳,费聪,崔静,王开勇,马富裕,樊华. 滴灌甜菜对块根膨大期水分亏缺的补偿性响应[J]. 作物学报, 2016, 42(11): 1727-1732.
[12] 喻时周,杨成龙,郭建春,段瑞军. 海马齿甜菜碱醛脱氢酶基因克隆、高效表达及酶学特性分析[J]. 作物学报, 2016, 42(10): 1569-1574.
[13] 王茂芊,李博,王华忠. 甜菜遗传连锁图谱初步构建[J]. 作物学报, 2014, 40(02): 222-230.
[14] 李伟,申家恒,郭德栋. 栽培甜菜中央细胞受精前后的超微结构[J]. 作物学报, 2014, 40(01): 166-173.
[15] 李伟,申家恒,郭德栋. 栽培甜菜助细胞退化进程的超微结构观察[J]. 作物学报, 2013, 39(12): 2220-2227.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .