欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (3): 808-820.doi: 10.3724/SP.J.1006.2023.22032

• 耕作栽培·生理生化 • 上一篇    下一篇

干湿交替灌溉耦合施氮量对水稻籽粒灌浆生理和根系生理的影响

付景1(), 王亚1, 杨文博1, 王越涛1, 李本银2, 王付华1, 王生轩1, 白涛1, 尹海庆1,*()   

  1. 1河南省农业科学院粮食作物研究所, 河南郑州 450002
    2河南省农业科学院植物营养与资源环境研究所, 河南郑州 450002
  • 收稿日期:2022-05-13 接受日期:2022-07-21 出版日期:2023-03-12 网络出版日期:2022-08-12
  • 通讯作者: 尹海庆
  • 作者简介:E-mail: fujing8210@sina.cn
  • 基金资助:
    河南省科技攻关计划项目(222102110019);河南省农业科学院自主创新基金项目(2022ZC09);河南省现代农业产业技术体系建设专项资金项目(HARS-22-03-S);河南省农业科学院水稻科技创新团队项目(2022TD29);河南省农业科学院基础性科研工作项目(2022JC05)

Effects of alternate wetting and drying irrigation and nitrogen coupling on grain filling physiology and root physiology in rice

FU Jing1(), WANG Ya1, YANG Wen-Bo1, WANG Yue-Tao1, LI Ben-Yin2, WANG Fu-Hua1, WANG Sheng-Xuan1, BAI Tao1, YIN Hai-Qing1,*()   

  1. 1Cereal Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
    2Institute of Plant Nutrition, Agricultural Resources and Environmental Science, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
  • Received:2022-05-13 Accepted:2022-07-21 Published:2023-03-12 Published online:2022-08-12
  • Contact: YIN Hai-Qing
  • Supported by:
    Henan Provincial Science and Technology Research Program(222102110019);Henan Academy of Agricultural Sciences Independent Innovation Fund Project(2022ZC09);Special Fund for Henan Agriculture Research System(HARS-22-03-S);Henan Academy of Agricultural Sciences Rice Science and Technology Innovation Team Project(2022TD29);Fundamental Research Project of Henan Academy of Agricultural Sciences(2022JC05)

摘要:

干湿交替灌溉耦合施氮量对水稻根系生长和产量形成有重要影响, 但其对籽粒灌浆生理的影响, 以及与根系生理的关系尚不明确。为探讨干湿交替灌溉和施氮量对水稻籽粒灌浆、籽粒淀粉合成相关酶活性和激素含量变化及其根系生理的影响, 以超级稻品种南粳9108为材料, 大田种植, 设置常规灌溉(conventional irrigation, CI)和干湿交替灌溉(alternate wetting and drying, AWD) 2种灌溉方式及5个施氮水平, 全生育期不施氮肥(0N)、全生育期施氮肥90 kg hm-2 (90N)、全生育期施氮肥180 kg hm-2 (180N)、全生育期施氮肥270 kg hm-2 (270N)和全生育期施氮肥360 kg hm-2 (360N)。结果表明: 灌溉方式与施氮量存在显著的互作效应, 干湿交替灌溉增加了南粳9108籽粒最大灌浆速率和平均灌浆速率, 提高了籽粒中蔗糖合成酶、腺苷二磷酸葡萄糖焦磷酸化酶、淀粉合成酶、淀粉分枝酶的活性和玉米素+玉米素核苷、3-吲哚乙酸、脱落酸的含量, 增加了花后根系氧化力和根系中玉米素+玉米素核苷含量, 促进水稻生育前期茎鞘中储存的NSC向籽粒的运转, 且与270N耦合后产量最高, 为本试验最佳水氮耦合模式。表明通过适宜的水肥调控发挥水氮耦合效应, 可以提高水稻根系生理性能和籽粒灌浆生理活性, 实现水稻高产。

关键词: 水稻, 干湿交替灌溉, 施氮量, 籽粒灌浆生理, 根系生理

Abstract:

Soil moisture and nitrogen nutrient are the two principal factors affecting rice production. Alternating dry and wet irrigation (AWD) coupled with nitrogen application plays important roles in root growth and yield formation in rice. However, its effect on grain filling physiology and their relationship with root physiology is not clearly understood. To explore the effects of alternating dry and wet irrigation and nitrogen application coupling on grain filling, changes of key enzyme activities involved in sucrose-to starch conversion and hormone contents, and root physiology of rice, the super rice variety Nanjing 9108 was cultivated as the material in the field. The field experiments were conducted with two irrigation regimes [conventional irrigation (CI) and AWD] and five nitrogen application rates [no nitrogen fertilizer (0N), 90 kg hm-2 (90N), 180 kg hm-2 (180N), 270 kg hm-2 (270N), and 360 kg hm-2 (360N) nitrogen fertilizer]. The results showed that there was a significant interaction effect between irrigation method and nitrogen application rate. Alternating dry and wet irrigation increased the maximum grain filling rate and average grain filling rate of Nanjing 9108, and increased the activities of the sucrose synthase enzymes, adenosine diphosphate glucose pyrophosphorylation enzymes, starch synthase enzymes, and starch branching enzymes, and the contents of zeatin + zeatin riboside, 3-indoleacetic acid and abscisic acid, increased root oxidation activity, and the content of zeatin + zeatin riboside in roots after heading, promoted the transfer of NSC stored in the stem sheath to the grain in the early growth stage of rice, and the highest yield was obtained after coupling with 270N, which was the best water-nitrogen coupling mode in this experiment. In conclusion, the water-nitrogen coupling effect can be exerted by appropriate regulation of water and fertilizer, which can improve the physiological performance of rice roots and grain-filling physiological activity, and achieve high rice yield.

Key words: rice, the alternate wetting and drying irrigation, nitrogen rate, grain filling physiology, root physiology

表1

水分和氮肥耦合下水稻产量及灌浆特性的方差分析"

变异来源
Source of variations
自由度
DF
产量
Grain yield
(t hm-2)
籽粒平均
灌浆速率
Average grain
filling rate
(mg grain-1 d-1)
籽粒细胞分裂素
含量
Z+ZR content
(pmol g-1 DW)
根系氧化力
Root oxidation
activity
(μg g-1 h-1)
根系细胞
分裂素含量
Z+ZR content
(pmol g-1 DW)
年度Year (Y) 1 NS NS NS NS NS
水分Water (W) 1 1248.6** 844.3** 437.6** 573.4** 681.7**
施氮量Nitrogen (N) 4 751.8** 658.6** 781.2** 429.6** 438.2**
年度×水分Y×W 1 NS NS NS NS NS
年度×施氮量Y×N 4 NS NS NS NS NS
水分×施氮量W×N 4 25.7** 34.8** 26.6** 29.7** 14.5**
年度×水分×施氮量Y×W×N 4 NS NS NS NS NS

表2

水分和氮肥耦合对水稻产量及产量构成因素的影响"

年份
Year
处理
Treatment
单位面积穗数
Panicle number
(×104 hm-2)
每穗粒数
Spikelets per panicle
总颖花量
Total spikelets
(×106 hm-2)
结实率
Seed-setting rate (%)
千粒重
1000-grain weight (g)
产量
Grain yield
(t hm-2)
2017 CI+0N 226.7 h 114.9 h 260.5 i 88.7 a 25.7 a 5.94 h
CI+90N 260.7 f 129.6 f 337.9 g 83.9 b 25.5 ab 7.23 f
CI+180N 290.3 d 138.4 e 401.8 e 80.7 bc 25.1 b 8.14 e
CI+270N 321.7 b 150.5 c 484.2 c 77.4 c 24.9 bc 9.33 b
CI+360N 324.3 b 158.6 b 514.3 b 68.4 d 23.9 c 8.41 d
AWD+0N 234.3 g 124.2 fg 291.0 h 90.2 a 25.9 a 6.80 g
AWD+90N 269.7 e 137.3 e 370.3 f 84.8 b 25.7 a 8.07 e
AWD+180N 296.7 c 145.7 d 432.3 d 81.1 bc 25.3 b 8.87 c
AWD+270N 328.7 a 156.6 b 514.7 b 78.3 c 25.1 b 10.11 a
AWD+360N 331.6 a 165.1 a 547.5 a 69.8 d 24.2 c 9.25 b
2018 CI+0N 228.1 h 113.7 h 259.3 i 89.5 a 25.8 a 5.99 h
CI+90N 263.3 f 127.9 fg 336.8 g 84.1 b 25.6 a 7.25 f
CI+180N 286.5 d 139.1 e 398.5 e 81.8 bc 25.1 b 8.18 e
CI+270N 324.7 b 148.5 cd 482.2 c 78.1 c 24.9 bc 9.38 b
CI+360N 323.8 b 156.8 b 507.7 b 68.9 d 24.1 c 8.43 d
AWD+0N 237.3 g 121.2 g 287.6 h 90.8 a 25.8 a 6.74 g
AWD+90N 272.7 e 136.3 e 371.7 f 85.2 b 25.7 a 8.14 e
AWD+180N 295.7 c 144.7 d 427.9 d 81.6 bc 25.5 ab 8.90 c
AWD+270N 331.7 a 155.6 b 516.1 b 78.7 c 25.2 b 10.24 a
AWD+360N 330.3 a 163.1 a 538.7 a 71.2 d 24.3 c 9.32 b

表3

不同灌溉方式下水稻获得最高产量时的施氮量"

年份Year 灌溉方式Irrigation model 施氮量(x, kg N hm-2)与产量(y, kg hm-2)关系方程
Equation between nitrogen fertilizer rate
(x, kg N hm-2) and grain yield (y, kg hm-2)
R2 xopt
(kg N hm-2)
ymax
(kg hm-2)
2017 CI y = -0.0365x2 + 20.981x + 5808.1 0.9343 287.4 8822.95
AWD y = -0.0338x2 + 19.889x + 6683.7 0.9299 294.2 9609.21
2018 CI y = -0.0366x2 + 20.975x + 5850.3 0.9309 286.5 8854.51
AWD y = -0.0358x2 + 20.974x + 6633.9 0.9294 292.9 9705.54

图1

水分和氮肥耦合下水稻籽粒增重动态和籽粒灌浆速率 CI: 常规灌溉; AWD: 干湿交替灌溉; 0N: 不施氮肥; 90N: 90 kg N hm-2; 180N: 180 kg N hm-2; 270N: 270 kg N hm-2; 360N: 360 kg N hm-2。"

表4

水分和氮肥耦合下水稻籽粒灌浆特征参数"

处理
Treatment
最大灌浆速率
Gmax
(mg grain-1 d-1)
到达最大灌浆速率的时间
Tmax
(d)
平均灌浆速率
Gmean
(mg grain-1 d-1)
活跃灌浆期
D
(d)
糙米重
BRW
(mg grain-1)
CI+0N 2.51 b 10.80 f 42.80 b 14.71 e 24.45 b
CI+90N 2.43 c 10.99 e 41.35 c 15.01 d 24.17 bc
CI+180N 2.09 e 11.78 c 38.17 e 17.36 b 23.80 d
CI+270N 2.07 e 11.92 c 36.50 f 17.29 b 23.67 d
CI+360N 1.73 f 12.48 a 29.48 h 19.37 a 22.08 f
AWD+0N 2.62 a 10.71 f 46.27 a 14.40 e 24.72 a
AWD+90N 2.51 b 10.89 ef 42.83 b 14.77 e 24.28 b
AWD+180N 2.41 c 10.99 e 41.38 c 15.12 d 24.08 c
AWD+270N 2.25 d 11.42 d 39.90 d 16.07 c 23.91 cd
AWD+360N 1.79 f 12.30 b 29.85 g 19.20 a 22.43 e

图2

水分和氮肥耦合下水稻籽粒蔗糖-淀粉代谢途径关键酶活性变化 CI: 常规灌溉; AWD: 干湿交替灌溉; 0N: 不施氮肥; 90N: 90 kg N hm-2; 180N: 180 kg N hm-2; 270N: 270 kg N hm-2; 360N: 360 kg N hm-2。"

表5

水分和氮肥耦合下水稻籽粒灌浆速率与籽粒中蔗糖-淀粉代谢途径关键酶活性的相关"

籽粒灌浆速率
Grain-filling rate
蔗糖合成酶
SuSase
腺苷二磷酸葡萄糖焦磷酸化酶
AGPase
淀粉合成酶
StSase
淀粉分支酶
SBE
CI+0N 0.916** 0.895** 0.802** 0.506
CI+90N 0.887** 0.883** 0.812** 0.494
CI+180N 0.892** 0.896** 0.835** 0.569
CI+270N 0.858** 0.869** 0.798** 0.527
CI+360N 0.825** 0.784* 0.689* 0.431
AWD+0N 0.903** 0.885** 0.800** 0.461
AWD+90N 0.875** 0.869** 0.803** 0.446
AWD+180N 0.832** 0.830** 0.798** 0.423
AWD+270N 0.806** 0.829** 0.763* 0.419
AWD+360N 0.815** 0.780* 0.677* 0.427

图3

水分和氮肥耦合下水稻籽粒激素含量变化 CI: 常规灌溉; AWD: 干湿交替灌溉; 0N: 不施氮肥; 90N: 90 kg N hm-2; 180N: 180 kg N hm-2; 270N: 270 kg N hm-2; 360N: 360 kg N hm-2。"

表6

水分和氮肥耦合下水稻籽粒灌浆速率与籽粒中激素含量的相关"

籽粒灌浆速率
Grain-filling rate
玉米素+玉米素核苷
Z+ZR
3-吲哚乙酸
IAA
脱落酸
ABA
CI+0N 0.875** 0.960** 0.379
CI+90N 0.867** 0.951** 0.333
CI+180N 0.862** 0.952** 0.390
CI+270N 0.821** 0.912** 0.246
CI+360N 0.735* 0.868** 0.025
AWD+0N 0.863** 0.947** 0.335
AWD+90N 0.857** 0.933** 0.295
AWD+180N 0.813** 0.894** 0.197
AWD+270N 0.781* 0.859** 0.133
AWD+360N 0.728* 0.832** 0.036

图4

水分和氮肥耦合下水稻根系氧化力变化 CI: 常规灌溉; AWD: 干湿交替灌溉; 0N: 不施氮肥; 90N: 90 kg N hm-2; 180N: 180 kg N hm-2; 270N: 270 kg N hm-2; 360N: 360 kg N hm-2。"

图5

水分和氮肥耦合下水稻根系玉米素及玉米素核苷含量的变化 CI: 常规灌溉; AWD: 干湿交替灌溉; 0N: 不施氮肥; 90N: 90 kg N hm-2; 180N: 180 kg N hm-2; 270N: 270 kg N hm-2; 360N: 360 kg N hm-2。"

表7

水分和氮肥耦合对茎鞘中非结构性碳水化合物(NSC)运转的影响"

处理
Treatment
抽穗期NSC
NSC at heading
(kg hm-2)
成熟期NSC
NSC at maturity
(kg hm-2)
NSC运转率
Remobilized NSC
(%)
NSC对产量贡献率
NSC contributed to grain yield
(%)
CI+0N 1662.2 i 723.4 h 56.5 d 15.7 b
CI+90N 1947.3 g 913.2 f 53.1 e 14.3 c
CI+180N 2378.9 e 1214.1 d 49.0 f 14.2 c
CI+270N 2663.3 c 1425.8 c 46.5 g 13.2 d
CI+360N 2845.3 b 1927.2 a 32.3 h 10.9 e
AWD+0N 1813.4 h 685.2 h 62.2 a 16.7 a
AWD+90N 2085.1 f 812.1 g 61.1 b 15.6 b
AWD+180N 2521.4 d 1041.3 e 58.7 c 16.6 a
AWD+270N 2824.3 b 1168.1 d 58.6 c 16.2 a
AWD+360N 2982.3 a 1537.8 b 47.2 g 15.1 b
[1] 朱兆良, 金继运. 保障我国粮食安全的肥料问题. 植物营养与肥料学报, 2013, 19: 259-273.
Zhu Z L, Jin J Y. Fertilizer use and food security in China. Plant Nutr Fert Sci, 2013, 19: 259-273 (in Chinese with English abstract).
[2] Peng S B, Tang Q Y, Zou Y B. Current status and challenges of rice production in China. Plant Product Sci, 2009, 12: 3-8.
doi: 10.1626/pps.12.3
[3] Tilman D K, Cassman K G, Matson P A. Agricultural sustain-ability and intensive production practices. Nature, 2002, 418: 671-678.
doi: 10.1038/nature01014
[4] Peng S B. Water resources strategy and agricultural development in China. J Exp Bot, 2011, 6: 1709-1713.
[5] Zhang J H. China’s success in increasing per capita food production. J Exp Bot, 2011, 62: 3707-3711.
doi: 10.1093/jxb/err132
[6] Kukal S S, Hira G S, Sidhu A S. Soil matric potential-based irrigation scheduling to rice (Oryza sativa). Irrig Sci, 2005, 23: 153-159.
doi: 10.1007/s00271-005-0103-8
[7] Carrijo D, Lundy M, Linquist B. Rice yields and water use under alternate wetting and drying irrigation: a meta-analysis. Field Crops Res, 2017, 203: 173-180.
doi: 10.1016/j.fcr.2016.12.002
[8] 孙永健. 水氮互作对水稻产量形成和氮素利用特征的影响及其生理基础. 四川农业大学博士学位论文, 四川温江, 2010.
Sun Y J. Effects of Water-nitrogen Interaction on Yield Formation and Characteristics of Nitrogen Utilization in Rice and its Physiological Basis. PhD Dissertation of Sichuan Agricultural University, Wenjiang, Sichuan, China, 2010. (in Chinese with English abstract)
[9] 杨建昌, 王志琴, 朱庆森. 不同土壤水分状况下氮素营养对水稻产量的影响及其生理机制的研究. 中国农业科学, 1996, 29(4): 58-66.
Yang J C, Wang Z Q, Zhu Q S. Effect of nitrogen nutrition on rice yield and its physiological mechanism under different status of soil moisture. Sci Agric Sin, 1996, 29(4): 58-66. (in Chinese with English abstract)
[10] Cabangon R, Tuong T, Castillo E. Effect of irrigation method and N-fertilizer management on rice yield, water productivity and nutrient use efficiencies in typical lowland rice conditions in China. Paddy Water Environ, 2004, 2: 195-206.
doi: 10.1007/s10333-004-0062-3
[11] Santiago-Arenas R, Hadi S N, Fanshuri B A, Ullah H, Datta A. Effect of nitrogen fertilizer and cultivation method on root systems of rice subjected to alternate wetting and drying irrigation. Ann Appl Biol, 2019, 175: 388-399.
doi: 10.1111/aab.12540
[12] 徐国伟, 陆大克, 王贺正, 陈明灿, 李友军. 干湿交替灌溉与施氮量对水稻叶片光合性状的耦合效应. 植物营养与肥料学报, 2017, 23: 1225-1237.
Xu G W, Lu D K, Wang H Z, Chen M C, Li Y J. Coupling effect of wetting and drying alternative irrigation and nitrogen application rate on photosynthetic characteristics of rice leaves. Plant Nutr Fert Sci, 2017, 23: 1225-1237. (in Chinese with English abstract)
[13] 褚光, 陈婷婷, 陈松, 徐春梅, 王丹英, 章秀福. 灌溉模式与施氮量交互作用对水稻产量以及水、氮利用效率的影响. 中国水稻科学, 2017, 31: 513-523.
doi: 10.16819/j.1001-7216.2017.7048 513
Chu G, Chen T T, Chen S, Xu C M, Wang D Y, Zhang X F. Effects of interaction between irrigation regimes and nitrogen rates on rice yield and water and nitrogen use efficiencies. Chin J Rice Sci, 2017, 31: 513-523. (in Chinese with English abstract)
doi: 10.16819/j.1001-7216.2017.7048 513
[14] 朱庆森, 曹显祖, 骆亦其. 水稻籽粒灌浆的生长分析. 作物学报, 1988, 14: 182-193.
Zhu Q S, Cao X Z, Luo Y Q. Growth analysis on the process of grain filling in rice. Acta Agron Sin, 1988, 14: 182-193. (in Chinese with English abstract)
[15] Richards F J. A flexible growth function for empirical use. J Exp Bot, 1959, 10: 290-300.
doi: 10.1093/jxb/10.2.290
[16] Yang J C, Zhang J H, Wang Z Q, Zhu Q S, Liu L J. Activities of enzymes involved in sucrose-to-starch metabolism in rice grains subjected to water stress during filling. Field Crops Res, 2003, 81: 69-81.
doi: 10.1016/S0378-4290(02)00214-9
[17] Bollmark M, Kubat B, Eliasson L. Variations in endogenous cytokinin content during adventitious root formation in pea cuttings. J Plant Physiol, 1988, 132: 262-265.
[18] Zhang H, Xue Y G, Wang Z Q, Yang J C, Zhang J H. Morphological and physiological traits of roots and their relationships with shoot growth in “super” rice. Field Crops Res, 2009, 113: 31-40.
doi: 10.1016/j.fcr.2009.04.004
[19] 杨建昌, 杜永, 刘辉. 长江下游稻麦周年超高产栽培途径与技术. 中国农业科学, 2008, 41: 1611-1621.
Yang J C, Du Y, Liu H. Cultivation approaches and techniques for annual super-high-yielding of rice and wheat in the lower reaches of Yangtze River. Sci Agric Sin, 2008, 41: 1611-1621. (in Chinese with English abstract)
[20] Sandhu S S, Mahal S S, Vashist K K, Buttar G S, Brar A S, Singh Maninder. Crop and water productivity of bed transplanted rice as influenced by various levels of nitrogen and irrigation in northwest India. Agric Water Manage, 2012, 104: 32-39.
doi: 10.1016/j.agwat.2011.11.012
[21] 陈新红. 土壤水分与氮素对水稻产量和品质的影响及其生理机制. 扬州大学博士学位论文, 江苏扬州, 2004.
Chen X H. Effects of Soil Moisture and Nitrogen Nutrient on Grain Yield and Quality of Rice and Their Physiological Mechanism. PhD Dissertation of Yangzhou University, Yangzhou, Jiangsu, China, 2004. (in Chinese with English abstract)
[22] 程建平, 曹凑贵, 蔡明历, 原保忠, 翟晶. 不同土壤水势与氮素营养对杂交水稻生理特性和产量的影响. 植物营养与肥料学报, 2008, 14: 199-206.
Cheng J P, Cao C G, Cai M L, Yuan B Z, Zhai J. Effect of different nitrogen nutrition and soil water potential on physiological parameters and yield of hybrid rice. Plant Nutr Fert Sci, 2008, 14: 199-206. (in Chinese with English abstract)
[23] Begg J E, Turner N C. Crop and water deficits. Adv Agron, 1976, 28: 161-218.
[24] Li G H, Pan J F, Cui K H, Yuan M S, Hu Q Q, Wang W C, Mohapatra P K, Nie L X, Huang J L, Peng S B. Limitation of unloading in the developing grains is a possible cause responsible for low stem non-structural carbohydrate translocation and poor grain yield formation in rice through verification of recombinant inbred lines. Front Plant Sci, 2017, 8: e1369.
[25] Okamura M, Arai-Sanoh Y, Yoshida H, Mukouyama T, Adachi S, Yabe S, Nakagawa H, Tsutsumi K, Taniguchi Y, Kobayashi N, Kondo M. Characterization of high-yielding rice cultivars with different grain-filling properties to clarify limiting factors for improving grain yield. Field Crops Res, 2018, 219: 139-147.
doi: 10.1016/j.fcr.2018.01.035
[26] Asseng S, van Herwaarden A F. Analysis of the benefits to wheat yield from assimilates stored prior to grain filling in a range of environments. Plant Soil, 2003, 256: 217-229.
doi: 10.1023/A:1026231904221
[27] Yang J C, Zhang J H, Wang Z Q, Zhu Q S, Liu L J. Water deficit-induced senescence and its relationship to the remobilization of pre-stored carbon in wheat during grain filling. Agron J, 2001, 93: 196-206.
doi: 10.2134/agronj2001.931196x
[28] Yang J C, Zhang J H, Wang Z Q, Zhu Q S, Wang W. Remobilization of carbon reserves in response to water-deficit during grain filling of rice. Field Crops Res, 2001, 71: 47-55.
doi: 10.1016/S0378-4290(01)00147-2
[29] 杨建昌. 亚种间杂交稻籽粒充实特征及其生理基础研究. 中国农业大学博士学位论文, 北京, 1996.
Yang J C. Characteristics and Physiological Bases of Grain Filling in Intersubspecific Hybrid Rice. PhD Dissertation of Chinese Agricultural University, Beijing, China, 1996. (in Chinese with English abstract)
[30] Yang J C, Zhang J H, Ye Y X, Wang Z Q, Zhu Q S, Liu L J. Involvement of abscisic acid and ethylene in the responses of rice grains to water stress during filling. Plant Cell Environ, 2004, 27: 1055-1064.
doi: 10.1111/j.1365-3040.2004.01210.x
[31] 杨建昌, 张建华. 促进稻麦同化物转运和籽粒灌浆的途径与机制. 科学通报, 2018, 63: 2932-2943.
Yang J C, Zhang J H. Approach and mechanism in enhancing the remobilization of assimilates and grain-filling in rice and wheat. Chin Sci Bull, 2018, 63: 2932-2943. (in Chinese with English abstract)
doi: 10.1360/N972018-00577
[32] Beck E, Ziegler P. Biosynthesis and degradation of starch in higher plants. Annu Rev Plant Physiol Plant Mol Biol, 1989, 40: 95-117.
doi: 10.1146/annurev.pp.40.060189.000523
[33] Tian B, Talukder S K, Fu J M, Fritz A K, Trick H N. Expression of a rice soluble starch synthase gene in transgenic wheat improves the grain yield under heat stress conditions. Vitro Cell Develop Biol Plant, 2018, 54: 216-227.
doi: 10.1007/s11627-018-9893-2
[34] Zi Y, Ding J F, Song J M, Humphreys G, Peng Y X, Li C Y, Zhu X K, Guo W S. Grain yield, starch content and activities of key enzymes of waxy and non-waxy wheat (Triticum aestivum L.). Sci Rep, 2018, 8: e4548.
[35] Ahmadi A, Baker D A. The effect of water stress on the activities of key regulatory enzymes of the sucrose to starch pathway in wheat. Plant Growth Regul, 2001, 35: 81-91.
doi: 10.1023/A:1013827600528
[36] Boyer J S, Westgate M E. Grain yields with limited water. J Exp Bot, 2004, 55: 2385-2394.
pmid: 15286147
[37] Yang J C, Zhang J H, Wang Z Q, Xu G W, Zhu Q S. Activities of key enzymes in sucrose-to-starch conversion in wheat grains subjected to water deficit during grain filling. Plant Physiol, 2004, 135: 1621-1629.
pmid: 15235118
[38] 占爱. 提高养分、水分吸收的根系形态和生理调控. 西北农林科技大学博士学位论文, 陕西杨凌, 2015.
Zhan A. Root Morphology and Physiological Regulation to Improve Nutrient and Water Absorption. PhD Dissertation of Northwest A&F University, Yangling, Shaanxi, China, 2015. (in Chinese with English abstract)
[39] Wang H, Siopongco J, Wade L J, Yamauchi A. Fractal analysis on root systems of rice plants in response to drought stress. Environ Exp Bot, 2009, 65: 338-344.
doi: 10.1016/j.envexpbot.2008.10.002
[40] 徐国伟, 王贺正, 翟志华, 孙梦, 李友军. 不同水氮耦合对水稻根系形态生理、产量与氮素利用的影响. 农业工程学报, 2015, 31(10): 132-141.
Xu G W, Wang H Z, Zhai Z H, Sun M, Li Y J. Effect of water and nitrogen coupling on root morphology and physiology, yield and nutrition utilization for rice. Trans CSAE, 2015, 31(10): 132-141. (in Chinese with English abstract)
[41] 张凤翔, 周明耀, 周春林, 钱晓晴. 水肥耦合对水稻根系形态与活力的影响. 农业工程学报, 2006, 22(5): 197-200.
Zhang F X, Zhou M Y, Zhou C L, Qian X Q. Effects of water and fertilizer coupling on root morphological characteristics and activities of rice. Trans CSAE, 2006, 22(5): 197-200. (in Chinese with English abstract)
[1] 张晨晖, 章岩, 李国辉, 杨子君, 查莹莹, 周驰燕, 许轲, 霍中洋, 戴其根, 郭保卫. 侧深施肥下水稻高产形成的根系形态及其生理变化特征[J]. 作物学报, 2023, 49(4): 1039-1051.
[2] 唐文强, 张文龙, 朱晓乔, 董必正, 李勇成, 杨楠, 张耀, 王云月, 韩光煜. 多样性混合间栽对水稻根际细菌群落结构与功能的影响[J]. 作物学报, 2023, 49(4): 1111-1121.
[3] 李秋平, 张春龙, 杨宏, 王拓, 李娟, 金寿林, 黄大军, 李丹丹, 文建成. 水稻半育突变体sfp10的生理特征分析及基因定位[J]. 作物学报, 2023, 49(3): 634-646.
[4] 刘立军, 周沈琪, 刘昆, 张伟杨, 杨建昌. 水稻大穗形成及其调控的研究进展[J]. 作物学报, 2023, 49(3): 585-596.
[5] 朱晓彤, 叶亚峰, 郭均瑶, 杨惠杰, 王紫瑶, 詹玥, 吴跃进, 陶亮之, 马伯军, 陈析丰, 刘斌美. 水稻早衰基因ESL8的遗传与定位[J]. 作物学报, 2023, 49(3): 662-671.
[6] 高春华, 冯波, 李国芳, 李宗新, 李升东, 曹芳, 慈文亮, 赵海军. 施氮量对花后高温胁迫下冬小麦籽粒淀粉合成的影响[J]. 作物学报, 2023, 49(3): 821-832.
[7] 方娅婷, 任涛, 张顺涛, 周橡棋, 赵剑, 廖世鹏, 丛日环, 鲁剑巍. 氮磷钾肥对旱地和水田油菜产量及养分利用的影响差异[J]. 作物学报, 2023, 49(3): 772-783.
[8] 向思茜, 李儒香, 徐光益, 邓岢莉, 余金琎, 李苗苗, 杨正林, 凌英华, 桑贤春, 何光华, 赵芳明. 基于水稻长大粒染色体片段代换系Z66的粒型QTL的鉴定及其聚合分析[J]. 作物学报, 2023, 49(3): 731-743.
[9] 才晓溪, 胡冰霜, 沈阳, 王研, 陈悦, 孙明哲, 贾博为, 孙晓丽. GsERF6基因过表达对水稻耐盐碱性的影响[J]. 作物学报, 2023, 49(2): 561-569.
[10] 刘梦, 张垚, 葛均筑, 周宝元, 吴锡冬, 杨永安, 侯海鹏. 不同降雨年型施氮量与收获期对夏玉米产量及氮肥利用效率的影响[J]. 作物学报, 2023, 49(2): 497-510.
[11] 陈赛华, 彭盛, 尤仪雯, 张路遥, 王凯, 薛明, 杨远柱, 万建民. 水稻不育系湘陵628S不同组合感光性差异的遗传解析[J]. 作物学报, 2023, 49(2): 332-342.
[12] 杨晓祎, 王慧慧, 张艳雯, 侯典云, 张红晓, 康国章, 胥华伟. 利用CRISPR/Cas9探究水稻OsPIN5c基因功能[J]. 作物学报, 2023, 49(2): 354-364.
[13] 李兆伟, 莫祖意, 孙聪颖, 师宇, 尚平, 林伟伟, 范凯, 林文雄. OsNAC2d基因编辑水稻突变体的创建及其对干旱胁迫的响应[J]. 作物学报, 2023, 49(2): 365-376.
[14] 赵凌, 梁文化, 赵春芳, 魏晓东, 周丽慧, 姚姝, 王才林, 张亚东. 利用高密度Bin遗传图谱定位水稻抽穗期QTL[J]. 作物学报, 2023, 49(1): 119-128.
[15] 徐凯, 郑兴飞, 张红燕, 胡中立, 宁子岚, 李兰芝. 基于NCII遗传交配设计的籼稻抽穗期全基因组关联分析[J]. 作物学报, 2023, 49(1): 86-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .