欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (4): 1028-1038.doi: 10.3724/SP.J.1006.2023.24104

• 耕作栽培·生理生化 • 上一篇    下一篇

冀中地区高密种植条件下棉花药前群体大小和成熟度与化学脱叶催熟效果的关系

孟璐1,2(), 杜明伟1, 黎芳1, 齐海坤1, 路正营3, 徐东永4, 李存东5, 张明才1, 田晓莉1,*(), 李召虎1   

  1. 1中国农业大学农学院作物化控研究中心/植物生长调节剂教育部工程研究中心, 北京 100193
    2山西农业大学高寒区作物研究所, 山西大同 037006
    3邯郸市农业科学院, 河北邯郸 056001
    4河北省棉花种子工程技术研究中心, 河北河间 062450
    5河北农业大学农学院, 河北保定 071000
  • 收稿日期:2022-04-27 接受日期:2022-09-05 出版日期:2023-04-12 网络出版日期:2022-09-20
  • 通讯作者: *田晓莉, E-mail: tianxl@cau.edu.cn
  • 作者简介:E-mail: ml513635063@163.com
  • 基金资助:
    政部和农业农村部国家现代农业产业技术体系建设专项(CARS-15-16);河北省重点研发计划项目(21326404D)

Relationship between cotton population, maturity, and the efficacy of harvest aids under high-density planting conditions in Central Hebei province, China

MENG Lu1,2(), DU Ming-Wei1, LI Fang1, QI Hai-Kun1, LU Zheng-Ying3, XU Dong-Yong4, LI Cun-Dong5, ZHANG Ming-Cai1, TIAN Xiao-Li1,*(), LI Zhao-Hu1   

  1. 1Engineering Research Center of Plant Growth Regulator, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
    2High Latitude Crops Institute, Shanxi Agricultural University, Datong 037006, Shanxi, China
    3Handan Academy of Agricultural Sciences, Handan 056001, Hebei, China
    4Hebei Cottonseed Engineering Technology Research Center, Hejian 062450, Hebei, China
    5College of Agronomy, Hebei Agricultural University, Baoding 071000, Hebei, China
  • Received:2022-04-27 Accepted:2022-09-05 Published:2023-04-12 Published online:2022-09-20
  • Contact: *E-mail: tianxl@cau.edu.cn
  • Supported by:
    China Agriculture Research System of MOF and MARA(CARS-15-16);Key Research and Development Program of Hebei Province(21326404D)

摘要:

化学脱叶催熟是棉花机械采收的前提, 棉田药前群体大小和成熟度等显著影响脱叶催熟效果。本文于2016—2017年在河北省河间市开展研究, 采用不同品种(中棉所60、欣抗4号)、种植密度(90,000、120,000株 hm-2)和播期(4月20日、5月10日)塑造不同的群体, 在此基础上应用50%噻苯·乙烯利悬浮剂(T·E)进行化学脱叶催熟, 考察各因素对化学脱叶催熟效果的影响, 并应用Spearman偏相关分析药前叶片数、吐絮率和叶铃比与药后脱叶率、残留叶片数及药后吐絮率的关系。结果表明, 品种间的药前叶片数、吐絮率和叶铃比无显著差异; 与90,000株 hm-2相比, 120,000株 hm-2的药前叶片数多、吐絮率低; 晚播棉的药前叶片数和叶铃比高于早播棉、吐絮率则低于早播棉。T·E的脱叶效果较好, 2年药后21 d的脱叶率均高于90%、脱叶率药效接近或超过90%, 残留叶片数为8.1~23.3片 m-2; 不同品种、密度和播期的脱叶率相当, 但2017年120,000株 hm-2和晚播的残留叶片数分别多于90,000株 hm-2和早播。T·E的催熟效果欠佳, 2年药后21 d的吐絮率低于70%、吐絮率药效不足25%; 不同品种和密度的吐絮率相当, 但晚播棉的吐絮率低于早播棉。相关分析结果表明, 药后7、14、21 d的脱叶率和药效及残留叶片数与药前叶片数、吐絮率和叶铃比无关, 但药后7、14、21 d的吐絮率与药前叶片数呈显著负相关(r = -0.393 ~ -0.432)、与药前吐絮率呈显著正相关(r = 0.558 ~ 0.862), 吐絮率药效也与药前吐絮率呈显著正相关。综上, 黄河流域棉区高密群体(90,000~120,000株 hm-2)的化学脱叶效果较好, 且与药前群体大小和成熟度等的关系较小; 而化学催熟不充分, 药后21 d的吐絮率达不到机采要求的95%, 且对药前群体大小和成熟度的依赖性较强。通过合理密植和适期播种控制群体、促进早熟是改善棉花化学催熟效果的关键。

关键词: 棉花, 群体特征, 脱叶率, 吐絮率, 相关分析

Abstract:

Chemical defoliation and ripening is the premise of mechanical harvesting of cotton. The population size and maturity of cotton before defoliants significantly affect the efficacy of harvest aids. This field experiment was carried out in Hejian, Hebei in 2016 and 2017. Different varieties (CRI 60, Xinkang 4), planting densities (90,000 plants hm-2 and 120,000 plants hm-2), and sowing dates (April 20 and May 10) were used to create different populations. Then, 50% thidiazuron·ethephon suspension agent (T·E) was applied for defoliation and boll opening in late-September. The results showed that there were no differences in leaf number, boll opening percent and ratio of leaf to boll just prior to the application of T·E between two varieties, and 120,000 plants hm-2 had more leaves and lower percent of open bolls before T·E application compared with 90,000 plants hm-2. In addition, the late planting produced more leaves and higher ratio of leaf to boll, but lower percent of open bolls than early planting before T·E application. T·E enhanced leaf dropping powerfully, the defoliation was more than 90% at 21 days after T·E application in both years, and the defoliation efficacy was near or beyond 90%, while the number of residual leaves were 8.1-23.3 per square meter. The defoliation did not differ between varieties, plant densities, and sowing dates. However, the 120,000 plants hm-2 and late planting had more remained leaves than 90,000 plants hm-2 and early planting in 2017, respectively. In contrast to the excellent defoliation efficacy after T·E application, the efficacy of boll opening of T·E was less than 25%. At 21 days after T·E application, the percentage of open bolls was still lower than 70% in both years. Different varieties and plant densities had similar percent of boll opening, but the late sowing showed lower percent than early sowing. The Spearman partial correlation analysis showed that defoliation, defoliation efficacy and the number of remaining leaves at 7, 14, and 21 days after the T·E treatment were not related to the number of leaves, boll opening rate, and ratio of leaves to bolls before T·E application. However, there was a significant negative correlation between the percent of open bolls at 7, 14, and 21 days after T·E with the number of leaves before T·E (r = -0.393 to -0.432), and a significant positive correlation with the boll opening percent before T·E (r = 0.558 to 0.862). The efficacy of boll opening was also positively correlated with the boll opening percent before T·E. In conclusion, the efficacy of chemical defoliation under high-density population (90,000-120,000 plants hm-2) in the Yellow River Basin was better, and had a minor relationship with cotton population and maturity before treatment. However, the efficacy of boll opening was low, and the percent of boll opening at 21 days after T·E treatment was less than 95% for mechanical harvesting. In addition, the percent and efficacy of boll opening had a strong dependence on cotton population size and maturity before T·E application. The key to improve the efficacy of harvest aids in cotton is to control the population size and promote earliness through reasonable decision of sowing time and density.

Key words: cotton, canopy characteristics, defoliation, percent of boll opening, correlation analysis

图1

2016-2017年棉花生育期日均温和降雨量"

图2

2016-2017年脱叶催熟剂喷施药后日均温、降水量和日照时数"

表1

品种和播期对棉花脱叶催熟药前叶片数、吐絮率和叶铃比的影响(2016)"

处理
Treatment
叶片数
Number of leaves (No. m-2)
吐絮率
Percentage of open bolls (%)
叶铃比
Ratio of leaves to bolls
品种
Variety
欣抗4号 Xinkang 4 310.7 a 22.5 a 2.1 a
中棉所60 CRI60 323.9 a 19.2 a 2.1 a
播期
Sowing date
4月20日 April 20 301.6 a 29.1 a 1.8 b
5月10日 May 10 333.0 a 12.7 b 2.4 a
变异来源
Source of variation
品种 Variety (V) 0.287 0.141 0.871
播期 Sowing date (S) 0.014 0 0
品种×播期 V×S 0.255 0.480 0.839

表2

密度和播期对棉花脱叶催熟药前叶片数、吐絮率和叶铃比的影响(2017)"

处理
Treatment
叶片数
Number of leaves (No. m-2)
吐絮率
Percentage of open bolls (%)
叶铃比
Ratio of leaves to bolls
密度
Density (plant hm-2)
90,000 302.8 b 16.3 a 2.1 a
120,000 353.8 a 11.9 b 2.2 a
播期
Sowing date
4月20日 April 20 311.9 b 18.3 a 1.9 b
5月10日 May 10 344.7 a 10.0 b 2.4 a
变异来源
Source of variation
密度 Density (D) 0 0.008 0.653
播期 Sowing date (S) 0.014 0 0
密度×播期 D×S 0.720 0.357 0.319

表3

品种和播期对棉花化学脱叶药后脱叶率的影响及化学脱叶药效(2016)"

处理
Treatment
药后天数 Days after harvest aids application
7 d 14 d 21 d
脱叶率
Defoliation
药效
Defoliation
efficacy
脱叶率
Defoliation
药效
Defoliation efficacy
脱叶率
Defoliation
药效
Defoliation efficacy
品种
Variety
欣抗4号 Xinkang 4 58.9 a 62.0 a 76.7 a 84.0 a 81.8 a 88.1 a
中棉所60 CRI60 60.7 a 67.1 a 77.5 a 87.0 a 81.1 a 90.0 a
播期
Sowing date
4月20日 April 20 58.0 a 60.6 a 76.9 a 82.2 b 81.0 a 86.0 b
5月10日 May 10 61.5 a 68.4 a 77.4 a 88.7 a 81.9 a 92.1 a
脱叶催熟剂
Harvest aids
CK 22.7 b 35.7 c 43.5 b
T·E 1800 mL hm-2 74.3 a 69.0 a 90.6 ab 85.6 b 93.4 a 87.9 ab
T·E 2700 mL hm-2 69.9 a 60.7 a 87.2 b 79.0 b 92.5 a 86.5 b
T·E 1350+1350 mL hm-2 72.2 a 64.0 a 95.0 a 91.8 a 96.4 a 92.8 a
变异来源
Source of
variation
品种 Variety (V) 0.585 0.246 0.647 0.241 0.700 0.435
播期 Sowing date (S) 0.282 0.078 0.784 0.014 0.554 0.017
脱叶催熟剂 Harvest aids (H) 0 0.300 0 0.001 0 0.092
品种×播期 V×S 0.131 0.181 0.209 0.898 0.331 0.369
品种×脱叶催熟剂 V×H 0.580 0.478 0.864 0.797 0.798 0.692
播期×脱叶催熟剂 S×H 0.889 0.876 0.058 0.881 0.251 0.913
品种×播期×脱叶催熟剂 V×S×H 0.301 0.179 0.063 0.091 0.553 0.362

表4

密度和播期对棉花化学脱叶药后脱叶率及化学脱叶药效的影响(2017)"

处理
Treatment
药后天数 Days after harvest aids application
7 d 14 d 21 d
脱叶率
Defoliation
药效
Defoliation efficacy
脱叶率
Defoliation
药效
Defoliation efficacy
脱叶率
Defoliation
药效
Defoliation efficacy
密度
Density (plant hm-2)
90,000 72.2 a 80.5 a 81.8 a 89.7 a 88.6 a 92.0 a
120,000 66.8 b 76.0 a 79.7 a 89.1 a 86.3 a 91.2 a
播期
Sowing date
4月20日 April 20 70.9 a 78.6 a 81.8 a 90.0 a 88.6 a 92.7 a
5月10日 May 10 68.0 a 77.9 a 79.6 a 88.8 a 86.3 a 90.5 a
脱叶催熟剂
Harvest aids
CK 26.2 b 41.6 b 60.1 b
T·E 1800 mL hm-2 82.2 a 77.1 a 92.4 a 87.7 a 95.8 a 90.4 a
T·E 2700 mL hm-2 83.3 a 76.3 a 92.7 a 87.0 a 96.5 a 90.8 a
T·E 1350+1350 mL hm-2 86.2 a 81.3 a 96.2 a 93.5 a 97.4 a 93.6 a
变异来源
Source of variation
密度 Density (D) 0.042 0.182 0.334 0.811 0.242 0.774
播期 Sowing date (S) 0.259 0.834 0.300 0.666 0.222 0.390
脱叶催熟剂 Harvest aids (H) 0 0.534 0 0.084 0 0.495
密度×播期 D×S 0.672 0.752 0.327 0.862 0.583 0.487
密度×脱叶催熟剂 D×H 0.954 0.832 0.742 0.808 0.469 0.610
播期×脱叶催熟剂 S×H 0.577 0.919 0.617 0.660 0.633 0.687
密度×播期×脱叶催熟剂 D×S×H 0.921 0.762 0.445 0.818 0.874 0.993

表5

品种和播期对棉花化学脱叶药后残留叶片数的影响(2016)"

处理
Treatment
药后天数 Days after harvest aids application
7 d 14 d 21 d
品种
Variety
欣抗4号 Xinkang 4 125.1 a 70.8 a 56.1 a
中棉所60 CRI60 133.2 a 77.2 a 65.4 a
播期
Sowing date
4月20日 April 20 129.6 a 72.0 a 60.1 a
5月10日 May 10 128.7 a 75.9 a 61.4 a
脱叶催熟剂
Harvest aids
CK 253.4 a 212.2 a 187.0 a
T·E 1800 mL hm-2 79.9 b 29.1 b 20.7 b
T·E 2700 mL hm-2 90.4 b 38.2 b 23.3 b
T·E 1350+1350 mL hm-2 92.9 b 16.4 b 12.0 b
变异来源
Source of
variation
品种 Variety (V) 0.492 0.379 0.206
播期 Sowing date (S) 0.939 0.595 0.859
脱叶催熟剂 Harvest aids (H) 0 0 0
品种×播期 V×S 0.050 0.089 0.189
品种×脱叶催熟剂 V×H 0.313 0.157 0.185
播期×脱叶催熟剂 S×H 0.880 0.109 0.293
品种×播期×脱叶催熟剂 V×S×H 0.289 0.039 0.400

表6

密度和播期对棉花化学脱叶药后残留叶片数的影响(2017)"

处理
Treatment
药后天数 Days after harvest aids application
7 d 14 d 21 d
密度
Density
90,000 plant hm-2 82.8 b 54.0 b 33.9 b
120,000 plant hm-2 115.0 a 70.6 a 47.3 a
播期
Sowing date
4月20日 April 20 88.7 b 54.4 b 34.1 b
5月10日 May 10 109.1 a 70.2 a 47.1 a
脱叶催熟剂
Harvest aids
CK 237.4 a 187.2 a 128.2 a
T·E 1800 mL hm-2 60.3 b 26.5 b 14.7 b
T·E 2700 mL hm-2 53.9 b 23.5 b 11.4 b
T·E 1350+1350 mL hm-2 44.1 b 12.0 b 8.1 b
变异来源
Source of
variation
品种 Variety (V) 0 0.017 0.027
播期 Sowing date (S) 0.014 0.023 0.032
脱叶催熟剂 Harvest aids (H) 0 0 0
品种×播期 V×S 0.514 0.390 0.614
品种×脱叶催熟剂 V×H 0.318 0.078 0.054
播期×脱叶催熟剂 S×H 0.038 0.042 0.080
品种×播期×脱叶催熟剂 V×S×H 0.884 0.509 0.829

表7

品种和播期对棉花化学催熟药后吐絮率的影响及化学催熟药效(2016)"

处理
Treatment
药后天数 Days after harvest aids application
7 d 14 d 21 d
吐絮率
Boll opening rate
药效
Boll opening efficacy
吐絮率
Boll opening rate
药效
Boll opening efficacy
吐絮率
Boll opening rate
药效
Boll opening efficacy
品种
Variety
欣抗4号 Xinkang 4 34.4 a -10.9 a 53.4 a -0.6 a 57.8 a -1.4 b
中棉所60 CRI60 30.4 a -6.2 a 50.4 a 12.3 a 57.5 a 23.4 a
播期
Sowing date
4月20日 April 20 42.6 a -10.1 a 61.9 a 4.7 a 66.9 a 11.1 a
5月10日 May 10 22.2 b -7.0 a 42.0 b 7.0 a 48.4 b 11.0 a
脱叶催熟剂
Harvest aids
CK 36.2 a 49.2 53.4 bc
T·E 1800 mL hm-2 29.9 a -11.1 a 56.5 10.9 a 63.5 a 19.0 ab
T·E 2700 mL hm-2 33.9 a -2.4 a 55.0 13.8 a 62.6 ab 23.3 a
T·E 1350+1350 mL hm-2 29.7 a -12.1 a 47.0 -7.2 a 51.1 c -9.2 b
变异来源
Source of variation
品种 Variety (V) 0.123 0.323 0.337 0.170 0.922 0.033
播期 Sowing date (S) 0 0.504 0 0.807 0 0.995
脱叶催熟剂 Harvest aids (H) 0.209 0.185 0.160 0.154 0.035 0.050
品种×播期 V×S 0.908 0.867 0.733 0.867 0.687 0.683
品种×脱叶催熟剂 V×H 0.769 0.554 0.827 0.894 0.438 0.661
播期×脱叶催熟剂 S×H 0.902 0.521 0.991 0.807 0.990 0.601
品种×播期×脱叶催熟剂 V×S×H 0.992 0.787 0.997 0.954 0.989 0.946

表8

密度和播期对棉花化学催熟药后吐絮率的影响及化学催熟药效(2017)"

处理
Treatment
药后天数 Days after harvest aids application
7 d 14 d 21 d
吐絮率
Boll opening rate
药效
Boll opening efficacy
吐絮率
Boll opening rate
药效
Boll opening efficacy
吐絮率
Boll opening rate
药效
Boll opening efficacy
密度
Density
90,000 plant hm-2 25.1 a 6.1 a 35 a 14.8 a 38.4 a 17.7 a
120,000 plant hm-2 20.8 b -2.4 a 31 a 8.3 a 34.5 a 7.2 a
播期
Sowing date
4月20日 April 20 28.3 a 5.2 a 41.6 a 20.5 a 45.3 a 23.7 a
5月10日 May 10 17.6 b -1.5 a 24.4 b 2.6 b 27.5 b 1.2 b
脱叶催熟剂
Harvest aids
CK 21.1 a 25.8 b 28.8 b
T·E 1800 mL hm-2 24.9 a 4.6 a 35.4 a 12.0 a 38.8 a 13.0 a
T·E 2700 mL hm-2 21.3 a -0.5 a 33.9 a 10.7 a 37.4 a 11.6 a
T·E 1350+1350 mL hm-2 24.6 a 1.4 a 37.1 a 11.9 a 40.6 a 12.7 a
变异来源
Source of
variation
密度 Density (D) 0.046 0.076 0.123 0.232 0.136 0.053
播期 Sowing date (S) 0 0.158 0 0.002 0 0
脱叶催熟剂 Harvest aids (H) 0.426 0.667 0.018 0.977 0.013 0.976
密度×播期 D×S 0.100 0.104 0.062 0.256 0.161 0.300
密度×脱叶催熟剂 D×H 0.044 0.139 0.111 0.154 0.060 0.084
播期×脱叶催熟剂 S×H 0.756 0.978 0.245 0.912 0.090 0.840
密度×播期×脱叶催熟剂 D×S×H 0.574 0.921 0.767 0.769 0.710 0.763

表9

脱叶催熟药前叶片数、吐絮率和叶铃比与药后脱叶催熟效果及药效的Spearman偏相关分析(n = 84)"

药后 After harvest aids application 药前 Before harvest aids application
脱叶吐絮效果
Functions of harvest aids
天数
Days (d)
叶片数
Number of leaves
吐絮率
Percentage of open bolls
叶铃比
Ratio of leaves to bolls
r p r p r p
脱叶率
Defoliation
7 0.142 0.192 -0.099 0.362 -0.165 0.128
14 0.133 0.222 -0.159 0.143 -0.148 0.173
21 0.046 0.675 -0.342 0.001 -0.256 0.018
脱叶率药效
Defoliant efficacy of defoliation rate
7 0.143 0.193 -0.128 0.244 -0.182 0.098
14 0.104 0.347 -0.187 0.089 -0.146 0.184
21 0.004 0.972 -0.324 0.003 -0.233 0.033
残留叶片数
Number of remained leaves
7 0.099 0.365 0.092 0.398 0.188 0.083
14 0.059 0.591 0.195 0.072 0.196 0.070
21 0.144 0.187 0.347 0.001 0.282 0.009
吐絮率
Percent of open bolls
7 -0.416 0 0.862 0 0.224 0.038
14 -0.393 0 0.652 0 0.077 0.479
21 -0.432 0 0.558 0 0.076 0.491
吐絮率药效
Defoliant efficacy of boll opening rate
7 -0.026 0.819 0.289 0.008 0.139 0.211
14 -0.128 0.250 0.299 0.006 0.045 0.689
21 -0.213 0.054 0.240 0.030 0.069 0.536
[1] 张鲁云, 陈永成. 新疆生产建设兵团机采棉现状及建议. 农业机械, 2011, 3(5): 80-82.
Zhang L Y, Chen Y C. Current situation and suggestions of machine-picking cotton in Xinjiang production and construction. Farm Mach, 2011, 3(5): 80-82 (in Chinese with English abstract).
[2] Suttle J C. Disruption of the polar auxin transport system in cotton seedlings following treatment with the defoliant thidiazuron. Plant Physiol, 1988, 86: 241-245.
doi: 10.1104/pp.86.1.241 pmid: 16665874
[3] Brecke B J, Banks J C, Cothren J T. Harvest-aid treatments:products and application timing. In: Supak J R, Snipes C E, eds. Cotton Harvest Management: Use and Influence of Harvest Aids. Memphis: the Cotton Foundation, 2001. pp 119-142.
[4] 陈冠文, 李新裕, 王光强, 韩树德, 谢军, 乔江, 陶学江, 阎志顺. 南疆机采棉田化学脱叶技术试验. 新疆农垦科技, 2000, (6): 9-11.
Chen G W, Li X Y, Wang G Q, Han S D, Xie J, Qiao J, Tao X J, Yan Z S. Experiment of chemical defoliation technology in machine-picked cotton fields in southern Xinjiang. Xinjiang Farm Res Sci Technol, 2000, (6): 9-11. (in Chinese)
[5] 周先林, 覃琴, 王龙, 李璐, 胡成成, 洪秀春, 王伟, 朱海勇. 脱叶剂对两种机采模式下棉花脱叶效果及纤维品质的影响. 中国农业科技导报, 2020, 22(11): 144-152.
doi: 10.13304/j.nykjdb.2019.0628
Zhou X L, Qin Q, Wang L, Li L, Hu C C, Hong X C, Wang W, Zhu H Y. Influence of defoliant on defoliation effect and fiber quality of cotton under two kinds of mechanical harvesting modes. J Agric Sci Technol, 2020, 22(11): 144-152. (in Chinese with English abstract)
[6] 刘婵. 不同脱叶剂效果及对棉花产量品质的影响. 塔里木大学硕士学位论文, 新疆维吾尔自治区阿拉尔, 2021.
Liu C. Effects of Different Defoliants and Effects on Cotton Yield and Quality. MS Thesis of Tarim University, Alaer, Xinjiang Uygur Autonomous Region, China, 2021 (in Chinese with English abstract).
[7] Snipes C E, Baskin C C. Influence of early defoliation on cotton yield, seed quality, and fiber properties. Field Crops Res, 1994, 37: 137-143.
doi: 10.1016/0378-4290(94)90042-6
[8] Wright S D, Hutmacher R B. Impact of early defoliation on California Pima Cotton boll opening, lint yield, and quality. J Crop Imp, 2015, 29: 528-541.
[9] Wang H M, Gao K, Fang S, Zhou Z G. Cotton yield and defoliation efficiency in response to nitrogen and harvest aids. Agron J, 2019, 111: 250-256.
doi: 10.2134/agronj2018.01.0061
[10] Gwathmey C O, Bednarz C W, Fromme D D, Holman E M, Miller D K. Agronomy and soils: response to defoliation timing based on heat-unit accumulation in diverse field environments. J Cotton Sci, 2004, 8: 142-153.
[11] Reddy V R. Modeling ethephon-temperature interactions in cotton. Comput Electron Agric, 1995, 13: 27-35.
doi: 10.1016/0168-1699(95)00012-S
[12] Gwathmey C O, Clement J D. Alteration of cotton source-sink relations with plant population density and mepiquat chloride. Field Crops Res, 2010, 116: 101-107.
doi: 10.1016/j.fcr.2009.11.019
[13] Kerby T A, Buxton D R. Competition between adjacent fruiting forms. Agron J, 1981, 73: 867-871.
doi: 10.2134/agronj1981.00021962007300050028x
[14] Heitholt J J. Canopy characteristics associated with deficient and excessive cotton plant population densities. Crop Sci, 1994, 34: 1291-1297.
doi: 10.2135/cropsci1994.0011183X003400050028x
[15] Kaggwa-Asiimwe R, Andrade-Sanchez P, Wang G Y. Plant architecture influences growth and yield response of upland cotton to population density. Field Crop Res, 2013, 145: 52-59.
doi: 10.1016/j.fcr.2013.02.005
[16] 牛玉萍, 陈宗奎, 杨林川, 罗宏海, 张旺锋. 干旱区滴灌模式和种植密度对棉花生长和产量性能的影响. 作物学报, 2016, 42: 1506-1515.
doi: 10.3724/SP.J.1006.2016.01506
Niu Y P, Chen Z K, Yang L C, Luo H H, Zhang W F. Effect of drip irrigation pattern and planting density on growth and yield performance of cotton in arid area. Acta Agron Sin, 2016, 42: 1506-1515. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.01506
[17] 赵新华, 束红梅, 王友华, 陈兵林, 周治国. 播期对棉铃生物量和氮累积与分配的影响及其与棉铃品质的关系. 作物学报, 2010, 36: 1707-1714.
doi: 10.3724/SP.J.1006.2010.01707
Zhao X H, Shu H M, Wang Y H, Chen B L, Zhou Z G. Effects of sowing date on accumulation and distribution of biomass and nitrogen in cotton bolls. Acta Agron Sin, 2010, 36: 1707-1714. (in Chinese with English abstract)
[18] 易福华. 地膜内由温度梯度引起的土壤水分运动及其应用. 中国农业科学, 1988, 21(1): 27-32.
Yi F H. Soil water movement caused by temperature gradient in plastic film and its application. Sci Agric Sin, 1988, 21(1): 27-32. (in Chinese with English abstract)
[19] 董忠义, 冯永平, 苏彩虹. 旱地棉花高产稳产抗逆栽培技术研究. 干旱地区农业研究, 1996, 4(4): 40-46.
Dong Z Y, Feng Y P, Su C H. Research on high-yield, stable-yield and stress-resistant cultivation techniques of cotton in dryland. Agric Res Arid Areas, 1996, 4(4): 40-46. (in Chinese with English abstract)
[20] Nuti R C, Viator R P, Casteel S, Edmisten K L, Wells R. Effect of planting date, mepiquat chloride, and glyphosate application to glyphosate-resistant cotton. Agron J, 2006, 98: 1627-1633.
doi: 10.2134/agronj2005.0360
[21] Boquet D J, Clawson E L. Cotton planting date: yield, seedling survival, and plant growth. Agron J, 2009, 101: 1123-1130.
doi: 10.2134/agronj2009.0071
[22] Kerby T A, Hake K D. Monitoring cotton’s growth. In: Hake S J, Kerby T A, Hake K D, eds. Cotton Production Manual. Oakland: University of California Press, 1996. pp 335-355.
[23] 黎芳. 黄河流域棉区棉花 DPC+化学封顶技术及其配套措施研究. 中国农业大学博士学位论文, 北京, 2017.
Li F. Study on the Technology of Cotton Chemical Topping with DPC+ and Its Supporting Measures in the Yellow River Valley Region of China. PhD Dissertation of China Agricultural University, Beijing, China, 2017. (in Chinese with English abstract)
[24] 王香茹, 侯玉茹, 杜明伟, 黄冬梅, 李亚兵, 田晓莉, 李召虎. 地点、播期和品种对黄河流域棉区棉花脱叶催熟剂应用效果的影响. 中国棉花, 2017, 44(1): 6-12.
Wang X R, Hou Y R, Du M W, Huang D M, Li Y B, Tian X L, Li Z H. Effect of harvest aids on cotton in the yellow river valley region as affected by site, planting date and cultivars. China Cotton, 2017, 44(1): 6-12. (in Chinese with English abstract)
[25] 王香茹. 黄河流域棉区适于机械采收的棉花播期和密度研究. 中国农业大学博士学位论文, 北京, 2016.
Wang X R. The Managing of Planting Date and Plant Density for Mechanical Harvesting of Cotton in the Yellow River Valley of China. PhD Dissertation of China Agricultural University, Beijing, China, 2016. (in Chinese with English abstract)
[26] Hake S J, Hake K D, Kerby T A. Preharvest/harvest decisions. In: Hake S J, Kerby T A, Hake K D, eds. Cotton production manual. Oakland: Division of Agriculture and Natural Resources Press, 1996. pp 73-81.
[27] Cathey G W. Physiology of defoliation in cotton production. In: Mauney J R, Stewart J M, eds. Cotton Physiology. Memphis: The Cotton Foundation, 1986. pp 143-153.
[28] Gwathmey C O, Cothren J T, Legé K E, Logan J, Roberts B, Supak J R. Influence of environment on cotton defoliation and boll opening. In: Supak J R, Snipes C E, eds. Cotton Harvest Management: Use and Influence of Harvest Aids. Memphis: the Cotton Foundation, 2001. pp 51-72.
[29] 谈春松. 棉花株型栽培研究. 中国农业科学, 1993, 26(4): 36-43.
Tan C S. Research on plant type cultivation of cotton. Sci Agric Sin, 1993, 26(4): 36-43. (in Chinese with English abstract)
[30] Brodrick R, Bange M P, Milroy S P, Hammer G L. Yield and maturity of ultranarrow row cotton in high input production systems. Agron J, 2010, 102: 843-848.
doi: 10.2134/agronj2009.0473
[31] Roussopoulos D, Liakatas A, Whittington W J. Cotton responses to different light-temperature regimes. J Agric Sci, 1998, 131: 277-283.
doi: 10.1017/S0021859698005735
[32] 刘文燕, 孙惠珍, 周庆祺, 郑泽荣. 棉铃开裂生理: I. 棉铃的开裂与内生乙烯释放. 中国棉花, 1981, (1): 22-24.
Liu W Y, Sun H Z, Zhou Q Q, Zheng Z R. Physiology of cotton boll dehiscence: I. Dehiscence of cotton boll and release of endogenous ethylene. China Cotton, 1981, (1): 22-24. (in Chinese with English abstract)
[33] 宋兴虎. 长江流域麦/油后直播棉脱叶催熟技术研究. 中国农业大学博士学位论文, 北京, 2022.
Song X H. Study on Defoliation and Ripening Technology of Direct Seeding Cotton after Wheat/Rape in Yangtze River Valley of China. PhD Dissertation of China Agricultural University, >Beijing, China, 2022. (in Chinese with English abstract)
[1] 许乃银, 王扬, 王丹涛, 宁贺佳, 杨晓妮, 乔银桃. 棉花纤维质量指数的构建与WGT双标图分析[J]. 作物学报, 2023, 49(5): 1262-1271.
[2] 雷建峰, 李月, 代培红, 赵燚, 尤扬子, 贾建国, 赵帅, 曲延英, 刘晓东. 棉花中不同植物病毒介导的VIGE体系的研究[J]. 作物学报, 2023, 49(4): 978-987.
[3] 娄善伟, 高飞, 王崇, 田晓莉, 杜明伟, 段留生. 不同甲哌鎓滴施剂型筛选及其对棉花生长发育调控效果研究[J]. 作物学报, 2023, 49(2): 552-560.
[4] 柯会锋, 张震, 谷淇深, 赵艳, 李培育, 张冬梅, 崔彦茹, 王省芬, 吴立强, 张桂寅, 马峙英, 孙正文. 低磷胁迫下陆地棉苗期根生物量相关性状全基因组关联分析[J]. 作物学报, 2022, 48(9): 2168-2179.
[5] 李名江, 雷建峰, 祖丽皮耶•托合尼亚孜, 代培红, 刘超, 刘晓东. 棉花GhIQM1基因克隆及抗黄萎病功能分析[J]. 作物学报, 2022, 48(9): 2265-2273.
[6] 郭家鑫, 鲁晓宇, 陶一凡, 郭慧娟, 闵伟. 棉花在盐碱胁迫下代谢产物及通路的分析[J]. 作物学报, 2022, 48(8): 2100-2114.
[7] 祝令晓, 宋世佳, 李浩然, 孙红春, 张永江, 白志英, 张科, 李安昌, 刘连涛, 李存东. 基于耐低氮综合指数的棉花苗期耐低氮品种筛选[J]. 作物学报, 2022, 48(7): 1800-1812.
[8] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[9] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[10] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[11] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[12] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[13] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[14] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[15] 梁曦彤, 高先原, 周琳, 穆春, 杜明伟, 李芳军, 田晓莉, 李召虎. 利用病毒诱导的基因沉默cDNA文库高通量筛选鉴定棉花功能基因[J]. 作物学报, 2022, 48(12): 2967-2977.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!