欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (5): 1272-1281.doi: 10.3724/SP.J.1006.2023.24070

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

CBL互作蛋白激酶GmCIPK10增强大豆耐盐性

李慧1,2(), 路依萍1, 汪小凯1, 王璐瑶1, 邱婷婷1, 张雪婷1, 黄海燕1, 崔晓玉1,*()   

  1. 1临沂大学农林科学学院, 中国山东临沂 276000
    2菲律宾克里斯汀大学国际学院, 菲律宾 1004
  • 收稿日期:2022-03-29 接受日期:2022-07-21 出版日期:2023-05-12 网络出版日期:2022-08-18
  • 通讯作者: *崔晓玉, E-mail: cuixiaoyu@lyu.edu.cn
  • 作者简介:E-mail: lihuiqau@163.com
  • 基金资助:
    国家自然科学基金项目(32001459);山东省自然科学基金项目(ZR2020QC123)

GmCIPK10, a CBL-interacting protein kinase promotes salt tolerance in soybean

LI Hui1,2(), LU Yi-Ping1, WANG Xiao-Kai1, WANG Lu-Yao1, QIU Ting-Ting1, ZHANG Xue-Ting1, HUANG Hai-Yan1, CUI Xiao-Yu1,*()   

  1. 1College of Agriculture and Forestry Sciences, Linyi University, Linyi 276000, Shandong, China
    2Center for International Education, Philippine Christian University, 1004, the Philippines
  • Received:2022-03-29 Accepted:2022-07-21 Published:2023-05-12 Published online:2022-08-18
  • Contact: *E-mail: cuixiaoyu@lyu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(32001459);Natural Science Foundation of Shandong Province(ZR2020QC123)

摘要:

盐胁迫严重威胁大豆产量和品质。类钙调磷酸酶B亚基互作蛋白激酶(CIPKs)在植物应对环境胁迫过程中发挥重要作用。但是, 目前对大豆CIPKs的生物学功能知之甚少。本研究从大豆基因组克隆到GmCIPK10。生物信息学分析结果表明, GmCIPK10属于不含内含子型CIPKs, 包含一个丝氨酸(Ser)/苏氨酸(Thr)蛋白激酶结构域和NAF/FISL基序。表达模式分析结果表明, 在盐(NaCl)、甲基紫精(MV)和过氧化氢(H2O2)处理下, GmCIPK10的转录水平升高。在拟南芥和大豆毛状根中过表达GmCIPK10能够提高转基因植株的抗盐性。进一步的生理指标测定发现, 在盐胁迫下, 过表达GmCIPK10能够降低转基因植株中丙二醛(MDA)和H2O2积累, 增强抗氧化酶活性以及降低钠离子(Na+)/钾离子(K+)比值。此外, qRT-PCR分析发现GmCIPK10促进抗氧化和耐盐相关基因表达响应盐胁迫。酵母双杂交、Pull-down和双分子荧光互补试验结果证明GmCIPK10与钙离子(Ca2+)感应器GmCBL4相互作用。这些结果为解析CBL-CIPK信号通路在大豆盐胁迫应答的作用提供了参考。

关键词: GmCIPK10, 耐盐性, ROS清除, Na+/K+稳态, 大豆

Abstract:

Salt stress seriously restricts the yield and quality of soybean. Calcineurin B subunit-interacting protein kinases (CIPKs) play a vital role in response to environmental stresses in plant. However, few study is known about the biological function of soybean CIPKs. In this study, GmCIPK10 was cloned from soybean genome. Bioinformatics analysis exhibited that GmCIPK10 encoded an intron-poor type CIPKs with a serine (Ser)/threonine (Thr) protein kinase domain and a NAF/FISL motif. The relative expression pattern levels showed that the transcript level of GmCIPK10 was increased under NaCl, MV, and H2O2 treatments. Overexpression of GmCIPK10 in Arabidopsis and soybean hairy roots improved salt tolerance of transgenic plants. Further physiological indicator assays demonstrated that GmCIPK10 overexpression could decrease the accumulation of MDA and H2O2, enhance the activity of antioxidant enzymes, and reduce sodium (Na+)/potassium (K+) in transgenic plants under salt stress. In addition, qRT-PCR illustrated that GmCIPK10 promoted the relative expression level of antioxidant- and salt tolerance-related gene in salt stress. The yeast two-hybrid, pull-down, and bimolecular fluorescence complementation experiments confirmed that GmCIPK10 interacts with the Ca2+ sensor GmCBL4. These results provide a reference for investigating the role of the CBL-CIPK signaling pathway in response to salt stress in soybean.

Key words: GmCIPK10, salt tolerance, ROS scavenging, Na+/K+ homeostasis, soybean

表1

本研究所使用的引物"

引物
Primer ID
正向序列
Forward sequence (5'-3')
反向序列
Reverse sequence (5'-3')
AtActin GAAATCACAGCACTTGCACC TGGAATGTGCTGAGGGAAGC
GmTubulin GAGGCAAGATGAGCACCAAG ACGGAACATTTCCTGAATGGAG
GmCIPK10 CAAGCCTGTTTTTGCATCTGAAT GATAGTGTGTTTGGATCCCAGC
GmCAT1 AGCTAGCGCAAAGGGTTTCT AAGGTTTCAGGGCTACCACG
GmPOD21 CCGTTTCGTGGGTCAGAAATCT- CCGACGCCTGCTCCGACACTA
GmZAT10 AAGCCTTCTCCTCTTACCAAGCA TCGACGCCGA ACTCGTTGT
GmMYB118 ATCATACTGTTCGGAGTCAC CAGACACTGTAGAGACCTTGTT
GmLEA5 CCGATGTATCGGTAAGAGT AGGCTTTTGA ACCATCTC
GmNHX1 GTCGGGGCACACTTCACTAA GGATGCTGCTTGGACGATGA
GmSALT3 AAGCAGGTGCTTAACGACGA CAAATCTGTTAGCCGCGACG
GmSOS1 ATCGGCTGGGAAAGATTGGG CACCAGGGCCAGCTAGTAAG

图1

GmCIPK10的蛋白结构和进化关系分析"

图2

GmCIPK10响应盐胁迫和氧化胁迫的表达模式 以GmTubulin为内参基因, 每组3棵, 3次生物学重复。MV: 甲基紫精。*: P < 0.05。"

图3

过表达GmCIPK10提高转基因拟南芥的耐盐性 A和B: GmCIPK10-OE和WT拟南芥植株经盐胁迫(75 mmol L-1 NaCl)处理10 d后的表型和主根长; C: GmCIPK10基因表达量; D: MDA含量; E: H2O2含量; 每组4棵, 3次生物学重复; WT: 野生型; OE: 过表达。*: P < 0.05。"

图4

过表达GmCIPK10提高转基因大豆发状根的耐盐性 A和B: GmCIPK10-OE和VC大豆植株的表型经盐胁迫(200 mmol L-1 NaCl)处理10 d后的表型和成活率; C: GmCIPK10基因表达量; GmCIPK10-OE和VC大豆植株经盐胁迫处理7 d后的; D: MDA含量; E: H2O2 含量; F: CAT活性; G: POD活性; H: K+离子含量; I: Na+离子含量; J: Na+/K+比值; 每组10 棵, 3次生物学重复; VC: 载体对照; OE: 过表达; FW: 鲜重; DW: 干重。*: P < 0.05。"

图5

GmCIPK10调节盐胁迫和氧化胁迫相关基因表达响应盐胁迫 每组3棵, 3次生物学重复。VC: 载体对照; OE: 过表达。*: P < 0.05。"

图6

GmCBL4与GmCIPK10互作 A: 酵母双杂交检测GmCBL4和GmCIPK10互作; B: Pull-down检测GmCBL4和GmCIPK10互作; C: BiFC检测GmCBL4和GmCIPK10互作。BiFC: 双分子荧光互补; YFP: 黄色荧光蛋白。标尺为12 μm。"

[1] Tang R J, Wang C, Li K, Luan S. The CBL-CIPK calcium signaling network: unified paradigm from 20 years of discoveries. Trends Plant Sci, 2020, 25: 604-617.
doi: 10.1016/j.tplants.2020.01.009
[2] Yu Q, An L, Li W. The CBL-CIPK network mediates different signaling pathways in plants. Plant Cell Rep, 2014, 33: 203-214.
doi: 10.1007/s00299-013-1507-1 pmid: 24097244
[3] Ma X, Li Q H, Yu Y N, Qiao Y M, Haq S U, Gong Z H. The CBL-CIPK pathway in plant response to stress signals. Int J Mol Sci, 2020, 21: 5668.
doi: 10.3390/ijms21165668
[4] Luan S. The CBL-CIPK network in plant calcium signaling. Trends Plant Sci, 2009, 14: 37-42.
doi: 10.1016/j.tplants.2008.10.005 pmid: 19054707
[5] Albrecht V, Ritz O, Linder S, Harter K, Kudla J. The NAF domain defines a novel protein-protein interaction module conserved in Ca2+-regulated kinases. EMBO J, 2001, 20: 1051-1063.
doi: 10.1093/emboj/20.5.1051 pmid: 11230129
[6] Kudla J, Xu Q, Harter K, Gruissem W, Luan S. Genes for calcineurin B-like proteins in Arabidopsis are differentially regulated by stress signals. Proc Natl Acad Sci USA, 1999, 96: 4718-4723.
doi: 10.1073/pnas.96.8.4718 pmid: 10200328
[7] Kudla J, Batistic O, Hashimoto K. Calcium signals: the lead currency of plant information processing. Plant Cell, 2010, 22: 541-563.
doi: 10.1105/tpc.109.072686
[8] Quan R, Lin H, Mendoza I, Zhang Y, Cao W, Yang Y, Shang M, Chen S, Pardo J M, Guo Y. SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress. Plant Cell, 2007, 19: 1415-1431.
doi: 10.1105/tpc.106.042291
[9] Pandey G K, Kanwar P, Singh A, Steinhorst L, Pandey A, Yadav A K, Tokas I, Sanyal S K, Kim B G, Lee S C, Cheong Y H, Kudla J, Luan S. Calcineurin B-like protein-interacting protein kinase CIPK21 regulates osmotic and salt stress responses in Arabidopsis. Plant Physiol, 2015, 169: 780-792.
doi: 10.1104/pp.15.00623
[10] Cheong Y H, Pandey G K, Grant J J, Batistic O, Li L, Kim B G, Lee S C, Kudla J, Luan S. Two calcineurin B-like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in Arabidopsis. Plant J, 2007, 52: 223-239.
doi: 10.1111/j.1365-313X.2007.03236.x pmid: 17922773
[11] D’Angelo C, Weinl S, Batistic O, Pandey G K, Cheong Y H, Schültke S, Albrecht V, Ehlert B, Schulz B, Harter K, Luan S, Bock R, Kudla J. Alternative complex formation of the Ca2+- regulated protein kinase CIPK1 controls abscisic acid dependent and independent stress responses in Arabidopsis. Plant J, 2006, 48: 857-872.
doi: 10.1111/tpj.2006.48.issue-6
[12] Yin X, Xia Y, Xie Q, Cao Y, Wang Z, Hao G, Song J, Zhou Y, Jiang X. The protein kinase complex CBL10-CIPK8-SOS1 functions in Arabidopsis to regulate salt tolerance. J Exp Bot, 2020, 71: 1801-1814.
doi: 10.1093/jxb/erz549
[13] Yasuda S, Aoyama S, Hasegawa Y, Sato T, Yamaguchi J. Arabidopsis CBL-interacting protein kinases regulate carbon/nitrogen- nutrient response by phosphorylating ubiquitin ligase ATL31 . Mol Plant, 2017, 10: 605-618.
doi: 10.1016/j.molp.2017.01.005
[14] Xiang Y, Huang Y, Xiong L. Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant Physiol, 2007, 144: 1416-1428.
doi: 10.1104/pp.107.101295 pmid: 17535819
[15] M , X , Gai W X, Li Y, Yu Y N, Ali M, Gong Z H. The CBL-interacting protein kinase CaCIPK13 positively regulates defense mechanisms against cold stress in pepper. J Exp Bot, 2022, 73: 1655-1667.
doi: 10.1093/jxb/erab505
[16] Lu L, Chen X, Zhu L, Li M, Zhang J, Yang X, Wang P, Lu Y, Cheng T, Shi J, Yi Y, Chen J. NtCIPK9: a calcineurin B-like protein-interacting protein kinase from the halophyte Nitraria tangutorum, enhances Arabidopsis salt tolerance. Front Plant Sci, 2020, 11: 1112.
doi: 10.3389/fpls.2020.01112 pmid: 32973820
[17] Chen L, Ren F, Zhou L, Wang Q Q, Zhong H, Li X B. The Brassica napus calcineurin B-like 1/CBL-interacting protein kinase 6 (CBL1/CIPK6) component is involved in the plant response to abiotic stress and ABA signaling. J Exp Bot, 2012, 63: 6211-6222.
doi: 10.1093/jxb/ers273
[18] Cui X Y, Du Y T, Fu J D, Yu T F, Wang C T, Chen M, Chen J, Ma Y Z, Xu Z S. Wheat CBL-interacting protein kinase 23 positively regulates drought stress and ABA responses. BMC Plant Biol, 2018, 18: 93.
doi: 10.1186/s12870-018-1306-5
[19] Ma X, Li Y, Gai W X, Li C, Gong Z H. The CaCIPK3 gene positively regulates drought tolerance in pepper. Hortic Res, 2021, 8: 216.
doi: 10.1038/s41438-021-00651-7
[20] Lu L, Chen X, Wang P, Lu Y, Zhang J, Yang X, Cheng T, Shi J, Chen J. CIPK11: a calcineurin B-like protein-interacting protein kinase from Nitraria tangutorum, confers tolerance to salt and drought in Arabidopsis. BMC Plant Biol, 2021, 21: 123.
doi: 10.1186/s12870-021-02878-x pmid: 33648456
[21] Li R, Zhang J, Wu G, Wang H, Chen Y, Wei J. HbCIPK2, a novel CBL-interacting protein kinase from halophyte Hordeum brevisubulatum, confers salt and osmotic stress tolerance. Plant Cell Environ, 2012, 35: 1582-1600.
doi: 10.1111/pce.2012.35.issue-9
[22] Wang Y, Li T, John S J, Chen M, Chang J, Yang G, He G. A CBL-interacting protein kinase TaCIPK27 confers drought tolerance and exogenous ABA sensitivity in transgenic Arabidopsis. Plant Physiol Biochem, 2018, 123: 103-113.
doi: 10.1016/j.plaphy.2017.11.019
[23] Xu M, Li H, Liu Z N, Wang X H, Xu P, Dai S J, Cao X, Cui X Y. The soybean CBL-interacting protein kinase, GmCIPK2, positively regulates drought tolerance and ABA signaling. Plant Physiol Biochem, 2021, 167: 980-989.
doi: 10.1016/j.plaphy.2021.09.026
[24] Wang F, Chen H W, Li Q T, Wei W, Li W, Zhang W K, Ma B, Bi Y D, Lai Y C, Liu X L, Man W Q, Zhang J S, Chen S Y. GmWRKY27 interacts with GmMYB174 to reduce expression of GmNAC29 for stress tolerance in soybean plants. Plant J, 2015, 83: 224-236.
doi: 10.1111/tpj.12879
[25] Yu T F, Liu Y, Fu J D, Ma J, Fang Z W, Chen J, Zheng L, Lu Z W, Zhou Y B, Chen M, Xu Z S, Ma Y Z. The NF-Y-PYR module integrates the abscisic acid signal pathway to regulate plant stress tolerance. Plant Biotechnol J, 2021, 19: 2589-2605.
doi: 10.1111/pbi.v19.12
[26] Deng X, Hu W, Wei S, Zhou S, Zhang F, Han J, Chen L, Li Y, Feng J, Fang B, Luo Q, Li S, Liu Y, Yang G, He G. TaCIPK29, a CBL-interacting protein kinase gene from wheat, confers salt stress tolerance in transgenic tobacco. PLoS One, 2013, 8: e69881.
doi: 10.1371/journal.pone.0069881
[27] Sun T, Wang Y, Wang M, Li T, Zhou Y, Wang X, Wei S, He G, Yang G. Identification and comprehensive analyses of the CBL and CIPK gene families in wheat (Triticum aestivum L). BMC Plant Biol, 2015, 15: 269.
doi: 10.1186/s12870-015-0657-4
[28] Zhu K, Chen F, Liu J, Chen X, He T, Cheng Z M. Evolution of an intron-poor cluster of the CIPK gene family and expression in response to drought stress in soybean. Sci Rep, 2016, 6: 28225.
doi: 10.1038/srep28225 pmid: 27311690
[29] Luo Q, Wei Q, Wang R, Zhang Y, Zhang F, He Y, Zhou S, Feng J, Yang G, He G. BdCIPK31, a calcineurin B-like protein- interacting protein kinase, regulates plant response to drought and salt stress. Front Plant Sci, 2017, 8: 1184.
doi: 10.3389/fpls.2017.01184
[30] Chen X, Huang Q, Zhang F, Wang B, Wang J, Zheng J. ZmCIPK21, a maize CBL-interacting kinase, enhances salt stress tolerance in Arabidopsis thaliana. Int J Mol Sci, 2014, 15: 14819-14834.
doi: 10.3390/ijms150814819
[31] Su Y, Guo A, Huang Y, Wang Y, Hua J. GhCIPK6a increases salt tolerance in transgenic upland cotton by involving in ROS scavenging and MAPK signaling pathways. BMC Plant Biol, 2020, 20: 421.
doi: 10.1186/s12870-020-02548-4 pmid: 32928106
[32] Li M, Chen R, Jiang Q, Sun X, Zhang H, Hu Z. GmNAC06, a NAC domain transcription factor enhances salt stress tolerance in soybean. Plant Mol Biol, 2021, 105: 333-345.
doi: 10.1007/s11103-020-01091-y pmid: 33155154
[33] Chen Y, Han Y, Kong X, Kang H, Ren Y, Wang W. Ectopic expression of wheat expansin gene TaEXPA2 improved the salt tolerance of transgenic tobacco by regulating Na+/K+ and antioxidant competence. Physiol Plant, 2017, 159: 161-177.
doi: 10.1111/ppl.2017.159.issue-2
[34] Yang L, Han Y, Wu D, Yong W, Liu M, Wang S, Liu W, Lu M, Wei Y, Sun J. Salt and cadmium stress tolerance caused by overexpression of the Glycine max Na+/H+ antiporter (GmNHX1) gene in duckweed (Lemna turionifera 5511). Aquat Toxicol, 2017, 192, 127-135.
[35] Qu Y, Guan R, Bose J, Henderson S W, Wege S, Qiu L, Gilliham M. Soybean CHX-type ion transport protein GmSALT3 confers leaf Na+ exclusion via a root derived mechanism, and Cl- exclusion via a shoot derived process. Plant Cell Environ, 2021, 44: 856-869.
doi: 10.1111/pce.v44.3
[36] Deng J, Yang X, Sun W, Miao Y, He L, Zhang X. The calcium sensor CBL2 and its interacting kinase CIPK6 are involved in plant sugar homeostasis via interacting with tonoplast sugar transporter TST2. Plant Physiol, 2020, 183: 236-249.
doi: 10.1104/pp.19.01368
[1] 刘亭萱, 谷勇哲, 张之昊, 王俊, 孙君明, 邱丽娟. 基于高密度遗传图谱定位大豆蛋白质含量相关的QTL[J]. 作物学报, 2023, 49(6): 1532-1541.
[2] 舒泽兵, 罗万宇, 蒲甜, 陈国鹏, 梁冰, 杨文钰, 王小春. 基于高产与高效条件下鲜食玉米鲜食大豆带状间作田间配置技术优化[J]. 作物学报, 2023, 49(4): 1140-1150.
[3] 吴宗声, 徐彩龙, 李瑞东, 徐一帆, 孙石, 韩天富, 宋雯雯, 吴存祥. 麦秸覆盖还田对大豆耕层物理性状及产量形成的影响[J]. 作物学报, 2023, 49(4): 1052-1064.
[4] 刘姗姗, 庞婷, 袁晓婷, 罗凯, 陈平, 付智丹, 王小春, 杨峰, 雍太文, 杨文钰. 种间距对不同结瘤特性套作大豆根瘤生长及固氮潜力的影响[J]. 作物学报, 2023, 49(3): 833-844.
[5] 杨硕, 武阳春, 刘鑫磊, 唐晓飞, 薛永国, 曹旦, 王婉, 刘亭萱, 祁航, 栾晓燕, 邱丽娟. 大豆蛋白含量主效位点qPRO-20-1的精细定位[J]. 作物学报, 2023, 49(2): 310-320.
[6] 才晓溪, 胡冰霜, 沈阳, 王研, 陈悦, 孙明哲, 贾博为, 孙晓丽. GsERF6基因过表达对水稻耐盐碱性的影响[J]. 作物学报, 2023, 49(2): 561-569.
[7] 王慧, 吴志医, 张玉娥, 喻德跃. 应用RNA重测序分析低硫条件下大豆基因表达谱[J]. 作物学报, 2023, 49(1): 105-118.
[8] 梁政, 柯美玉, 陈志威, 陈栩, 高震. 大豆GmPIN2家族基因调控根系发育功能初探[J]. 作物学报, 2023, 49(1): 24-35.
[9] 白智媛, 陈向阳, 郑阿香, 张力, 邹军, 张大同, 陈阜, 尹小刚. 1991—2019年美国大豆区试品种(系)农艺和品质性状时空变化特征[J]. 作物学报, 2023, 49(1): 177-187.
[10] 齐阳阳, 窦汝娜, 赵彩桐, 张帜, 李文滨, 姜振峰. 大豆生长节间响应温度和外源GA诱导的赤霉素途径关键基因分析[J]. 作物学报, 2023, 49(1): 62-72.
[11] 刘成, 张雅轩, 陈先连, 韩伟, 邢光南, 贺建波, 张焦平, 张逢凯, 孙磊, 李宁, 王吴彬, 盖钧镒. 野生大豆染色体片段代换系群体中与百粒重关联的野生片段及其候选基因[J]. 作物学报, 2022, 48(8): 1884-1893.
[12] 怀园园, 张晟瑞, 武婷婷, 李静, 孙石, 韩天富, 李斌, 孙君明. 大豆主要营养品质性状相关分子标记的育种应用潜力评价[J]. 作物学报, 2022, 48(8): 1957-1976.
[13] 柯丹霞, 霍娅娅, 刘怡, 李锦颖, 刘晓雪. 大豆TGA转录因子基因GmTGA26在盐胁迫中的功能分析[J]. 作物学报, 2022, 48(7): 1697-1708.
[14] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[15] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .