作物学报 ›› 2023, Vol. 49 ›› Issue (6): 1573-1583.doi: 10.3724/SP.J.1006.2023.21028
朱旭东1(), 杨兰锋1, 陈媛媛1, 侯泽豪1,2, 罗旖柔1, 熊泽浩1, 方正武1,*()
ZHU Xu-Dong1(), YANG Lan-Feng1, CHEN Yuan-Yuan1, HOU Ze-Hao1,2, LUO Yi-Rou1, XIONG Ze-Hao1, FANG Zheng-Wu1,*()
摘要:
SGT1 (suppressor of the G2 allele of skp1)作为skp1-4的抑制因子, 在植物的非生物胁迫响应中具有重要作用。根据甜荞干旱胁迫下的转录组学和蛋白质组学分析, 我们克隆出一个与甜荞耐旱性状相关的候选基因FeSGT1。生物信息学分析表明FeSGT1包含一个1086 bp开放阅读框(ORF), 编码361个氨基酸, 具有3个(TPR、CS和SGS)保守结构域。进化分析表明, FeSGT1与藜麦CqSGT1 (XP_021726759.1)、甜菜BvSGT1 (XP_010671588.1)和菠菜SoSGT1 (XP_021839743.1)亲缘关系较近。亚细胞定位初步显示FeSGT1蛋白定位于细胞膜上。qRT-PCR分析发现FeSGT1在干旱胁迫24 h内表达呈现上调趋势。在盐、低温(4℃)胁迫和ABA处理下, FeSGT1基因表达在12 h达到高峰, 24 h后开始下降。在拟南芥中过表达FeSGT1基因发现, 在干旱和盐胁迫下, 转基因植株的发芽率、根长、鲜重和存活率显著提高, 丙二醛(MDA)和过氧化氢(H2O2)含量明显降低, 而过氧化氢酶(CAT)活性显著升高。过表达FeSGT1显著增强了转基因拟南芥植株的耐旱和耐盐能力, 为深入研究FeSGT1基因调控甜荞抗旱分子机制奠定了基础。
[1] | 万燕, 韦爽, 贾晓凤, 刘曼, 谭茂玲, 宋超, 向达兵, 赵钢. 荞麦抗旱性研究进展. 作物杂志, 2015, (4): 23-26. |
Wan Y, Wei S, Jia X F, Liu M, Tan M L, Song C, Xiang D B, Zhao G. Advances in drought resistance of buckwheat. Crops, 2015, (4): 23-26. (in Chinese with English abstract) | |
[2] | 冯佰利, 姚爱华, 高金峰, 高小丽, 柴岩. 中国荞麦优势区域布局与发展研究. 中国农学通报, 2005, 21(3): 375-377. |
Feng B L, Yao A H, Gao J F, Gao X L, Cai Y. Study on regional distribution and development of buckwheat in China. Chin Agric Sci Bull, 2005, 21(3): 375-377. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.0503375 |
|
[3] |
Fang Z W, Xu X Y, Gao J F, Wang P K, Liu Z X, Feng B L. Characterization of FeDREB1 promoter involved in cold- and drought-inducible expression from common buckwheat (Fagopyrum esculentum). Genet Mol Res, 2015, 14: 7990-8000.
doi: 10.4238/2015.July.17.7 pmid: 26214481 |
[4] |
Chen L H, Zhang B, Xu Z Q. Salt tolerance conferred by overexpression of Arabidopsis vacuolar Na(+)/H(+) antiporter gene AtNHX1 in common buckwheat (Fagopyrum esculentum). Transgenic Res, 2008, 17: 121-132.
doi: 10.1007/s11248-007-9085-z |
[5] |
Płażek A, Hura K, Hura T, Słomka A, Hornyák M, Sychta K. Synthesis of heat-shock proteins HSP-70 and HSP-90 in flowers of common buckwheat (Fagopyrum esculentum) under thermal stress. Crop Past Sci, 2020, 71: 760-767.
doi: 10.1071/CP20011 |
[6] | Ohta M, Schumaker K S, Zhu J K. Mechanisms Underlying Plant Tolerance to Abiotic Stresses. Boston, MA: Springer US, 2006. pp 360-385. |
[7] |
Xiang X Y, Chen J, Xu W X, Qiu J R, Song L, Wang J T, Tang R, Chen D, Jiang C Z, Huang Z. Dehydration-induced WRKY transcriptional factor MfWRKY70 of Myrothamnus flabellifolia enhanced drought and salinity tolerance in Arabidopsis. Biomolecules, 2021, 11: 327.
doi: 10.3390/biom11020327 |
[8] |
Gong Z, Xiong L, Shi H, Yang S, Herrera-Estrella L R, Xu G, Chao D Y, Li J, Wang P Y, Qin F, Li J, Ding Y, Shi Y, Wang Y, Yang Y, Guo Y, Zhu J K. Plant abiotic stress response and nutrient use efficiency. Sci China: Life Sci, 2020, 63: 635-674.
doi: 10.1007/s11427-020-1683-x |
[9] |
Schachtman D, Liu W. Molecular pieces to the puzzle of the interaction between potassium and sodium uptake in plants. Trends Plant Sci, 1999, 4: 281-287.
pmid: 10407444 |
[10] |
Zhu J K. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol, 2002, 53: 247-273.
doi: 10.1146/arplant.2002.53.issue-1 |
[11] |
Forner M Á, Rodríguez J, Primo E, Iglesias D J. Hydraulic and chemical responses of citrus seedlings to drought and osmotic stress. J Plant Growth Regul, 2011, 30: 353-366.
doi: 10.1007/s00344-011-9197-9 |
[12] | Patade V Y, Suprasanna P, Bapat V A. Effects of salt stress in relation to osmotic adjustment on sugarcane (Saccharum officinarum L.) callus cultures. J Plant Growth Regul, 2008, 55: 169-173. |
[13] |
Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol, 2000, 3: 217-223.
pmid: 10837265 |
[14] |
Azevedo C, Sadanandom A, Kitagawa K, Freialdenhoven A, Shirasu K, Schulze-Lefert P. The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance. Science, 2002, 295: 2073-2076.
doi: 10.1126/science.1067554 |
[15] |
Austin M J, Muskett P, Kahn K, Feys B J, Jones J D, Parker J E. Regulatory role of SGT1 in early R gene-mediated plant defenses. Science, 2002, 295: 2077-2080.
pmid: 11847308 |
[16] |
Huang G T, Ma S L, Bai L P, Zhang L, Ma H, Jia P, Liu J, Zhong M, Guo Z F. Signal transduction during cold, salt, and drought stresses in plants. Mol Biol Rep, 2011, 39: 969-987.
doi: 10.1007/s11033-011-0823-1 |
[17] |
Meldau S, Baldwin I T, Wu J. For security and stability: SGT1 in plant defense and development. Plant Signal Behav, 2011, 6: 1479-1482.
doi: 10.4161/psb.6.10.17708 |
[18] |
Zhang X C, Millet Y A, Cheng Z, Bush J, Ausubel F M. Jasmonate signaling in Arabidopsis involves SGT1b-HSP70-HSP90 chaperone complexes. Nat Plant, 2015, 1: 15049.
doi: 10.1038/nplants.2015.49 |
[19] |
Shirasu K. The HSP90-SGT1 chaperone complex for NLR immune sensors. Annu Rev Plant Biol, 2009, 60: 139-164.
doi: 10.1146/annurev.arplant.59.032607.092906 pmid: 19014346 |
[20] |
Muskett P, Parker J. Role of SGT1 in the regulation of plant R gene signaling. Microbes Infect, 2003, 5: 969-976.
pmid: 12941389 |
[21] |
Shanmugam A, Thamilarasan S K, Park J I, Jung M Y, Nou I S. Characterization and abiotic stress-responsive expression analysis of SGT1 genes in Brassica oleracea. Genome, 2016, 59: 243-251.
doi: 10.1139/gen-2015-0128 pmid: 26966988 |
[22] |
Li R, Yang R, Zheng W, Wu L, Zhang C, Zhang H. Melatonin promotes SGT1-involved signals to ameliorate drought stress adaption in rice. Int J Mol Sci, 2022, 23: 599.
doi: 10.3390/ijms23020599 |
[23] |
Fu D Q, Ghabrial S, Kachroo A. GmRAR1 and GmSGT1 are required for basal, R gene-mediated and systemic acquired resistance in soybean. Mol Plant-Microbe Interact, 2009, 22: 86-95.
doi: 10.1094/MPMI-22-1-0086 |
[24] |
Noël L D, Cagna G, Stuttmann J, Wirthmüller L, Betsuyaku S, Witte C P, Bhat R, Pochon N, Colby T, Parker J E. Interaction between SGT1 and cytosolic/nuclear HSC70 chaperones regulates Arabidopsis immune responses. Plant Cell, 2007, 19: 4061-4076.
doi: 10.1105/tpc.107.051896 |
[25] | Bhattarai K K, Li Q, Liu Y, Dinesh-Kumar S P, Kaloshian I. The Mi-1-mediated pest resistance requires HSP90 and SGT1. Plant Physiol, 2007, 144: 312-323. |
[26] |
Gray W M, Muskett P R, Chuang H W, Parker J E. Arabidopsis SGT1b is required for SCF(TIR1)-mediated auxin response. Plant Cell, 2003, 15: 1310-1319.
doi: 10.1105/tpc.010884 |
[27] |
Elsasser S, Gali R R, Schwickart M, Larsen C N, Leggett D S, Müller B, Feng M T, Tübing F, Dittmar G A, Finley D. Proteasome subunit Rpn1 binds ubiquitin-like protein domains. Nat Cell Biol, 2002, 4: 725-730.
pmid: 12198498 |
[28] |
Lee S S, Cho H S, Yoon G M, Ahn J W, Kim H H, Pai H S. Interaction of NtCDPK1 calcium-dependent protein kinase with NtRpn3 regulatory subunit of the 26S proteasome in Nicotiana tabacum: NtCDPK1 interacts with Rpn3 homolog. Plant J, 2003, 33: 825-840.
doi: 10.1046/j.1365-313X.2003.01672.x |
[29] |
Hou Z H, Yin J L, Lu Y F, Song J H, Wang S P, Wei S D, Liu Z X, Zhang Y X, Fang Z W. Transcriptomic analysis reveals the temporal and spatial changes in physiological process and gene expression in common buckwheat (Fagopyrum esculentum Moench) grown under drought stress. Agronomy (Basel), 2019, 9: 569.
doi: 10.3390/agronomy9100569 |
[30] | 侯泽豪, 卢奕霏, 孙坤坤, 王书平, 张迎新, 刘志雄, 方正武. 甜荞资源萌发期耐旱性鉴定体系建立与种质筛选. 干旱地区农业研究, 2021, 39(1): 95-102. |
Hou Z H, Lu Y F, Sun K K, Wang S P, Zhang Y X, Liu Z X, Fang Z W. Establishment of buckwheat drought tolerance identification system at germination stage and screening of drought-tolerance germplasms. Agric Res Arid Areas, 2021, 39(1): 95-102. (in Chinese with English abstract) | |
[31] | 蔡坤妍. 小麦抗病相关蛋白TaSGT1靶标鉴定及其功能分析. 西北农林科技大学硕士学位论文, 陕西咸阳, 2021. |
Cai K Y. Identification and function analysis of target of wheat disease-resistance protein TaSGT1. MS Thesis of Northwest A&F University, Xianyang, Shaanxi, China, 2021. (in Chinese with English abstract) | |
[32] |
Cazalé A C, Clément M, Chiarenza S, Roncato M A, Pochon N, Creff A, Marin E, Leonhardt N, Noël L D. Altered expression of cytosolic/nuclear HSC70-1 molecular chaperone affects development and abiotic stress tolerance in Arabidopsis thaliana. J Exp Bot, 2009, 60: 2653-2664.
doi: 10.1093/jxb/erp109 |
[33] |
Mayor A, Martinon F, De Smedt T, Pétrilli V, Tschopp J. A crucial function of SGT1 and HSP90 in inflammasome activity links mammalian and plant innate immune responses. Nat Immunol, 2007, 8: 497-503.
doi: 10.1038/ni1459 |
[34] |
Yu Y, Yang S, Bian L, Yu K, Meng X, Zhang G, Xu W, Yao W, Guo D. Identification of C3H2C3-type ring E3 ubiquitin ligase in grapevine and characterization of drought resistance function of VyRCHC114. BMC Plant Biol, 2021, 21: 422.
doi: 10.1186/s12870-021-03162-8 |
[35] |
Kawamura Y, Takenaka S, Hase S, Kubota M, Ichinose Y, Kanayama Y, Nakaho K, Klessig D F, Takahashi H. Enhanced defense responses in Arabidopsis induced by the cell wall protein fractions from Pythium oligandrum require SGT1, RAR1, NPR1 and JAR1. Plant Cell Physiol, 2009, 50: 924-934.
doi: 10.1093/pcp/pcp044 pmid: 19304739 |
[36] |
Meldau S, Baldwin I T, Wu J. SGT1 regulates wounding- and herbivory-induced jasmonic acid accumulation and Nicotiana attenuata’s resistance to the specialist lepidopteran herbivore Manduca sexta. New Phytol, 2011, 189: 1143-1156.
doi: 10.1111/nph.2011.189.issue-4 |
[37] |
Wang Y, Mostafa S, Zeng W, Jin B. Function and mechanism of jasmonic acid in plant responses to abiotic and biotic stresses. Int J Mol Sci, 2021, 22: 8568.
doi: 10.3390/ijms22168568 |
[38] |
Tan X, Calderon-Villalobos L I, Sharon M, Zheng C, Robinson C V, Estelle M, Zheng N. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature, 2007, 446: 640-645.
doi: 10.1038/nature05731 |
[39] |
Luna C M, Pastori G M, Driscoll S, Groten K, Bernard S, Foyer C H. Drought controls on H2O2 accumulation, catalase (CAT) activity and CAT gene expression in wheat. J Exp Bot, 2005, 56: 417-423.
doi: 10.1093/jxb/eri039 |
[1] | 雷新慧, 冷佳俊, 陶金才, 万晨茜, 吴怡欣, 王家乐, 王鹏科, 冯佰利, 王孟, 高金锋. 叶面喷施亚硒酸钠对甜荞光合特性、产量及硒积累效应的影响[J]. 作物学报, 2023, 49(6): 1678-1689. |
[2] | 孟雨, 田文仲, 温鹏飞, 丁志强, 张学品, 贺利, 段剑钊, 刘万代, 郭天财, 冯伟. 基于不同发育阶段协同的小麦品种抗旱性综合评判[J]. 作物学报, 2023, 49(2): 570-582. |
[3] | 王云奇, 高福莉, 李傲, 郭同济, 戚留冉, 曾寰宇, 赵建云, 王笑鸽, 高国英, 杨佳鹏, 白金泽, 马亚欢, 梁月馨, 张睿. 小麦花后穗部温度变化规律及其与产量的关系[J]. 作物学报, 2022, 48(9): 2400-2408. |
[4] | 李佩婷, 赵振丽, 黄潮华, 黄国强, 徐良年, 邓祖湖, 张玉, 赵新旺. 基于转录组及WGCNA的甘蔗干旱响应调控网络分析[J]. 作物学报, 2022, 48(7): 1583-1600. |
[5] | 王兴荣, 李玥, 张彦军, 李永生, 汪军成, 徐银萍, 祁旭升. 青稞种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2022, 48(5): 1279-1287. |
[6] | 张海燕, 解备涛, 姜常松, 冯向阳, 张巧, 董顺旭, 汪宝卿, 张立明, 秦桢, 段文学. 不同抗旱性甘薯品种叶片生理性状差异及抗旱指标筛选[J]. 作物学报, 2022, 48(2): 518-528. |
[7] | 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450. |
[8] | 徐银萍, 潘永东, 刘强德, 姚元虎, 贾延春, 任诚, 火克仓, 陈文庆, 赵锋, 包奇军, 张华瑜. 大麦种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2020, 46(3): 448-461. |
[9] | 张海燕,解备涛,汪宝卿,董顺旭,段文学,张立明. 不同甘薯品种抗旱性评价及耐旱指标筛选[J]. 作物学报, 2019, 45(3): 419-430. |
[10] | 张笑笑,潘映红,任富莉,蒲伟军,王道平,李玉斌,陆平,李桂英,朱莉. 基于多重表型分析的准确评价高粱抗旱性方法的建立[J]. 作物学报, 2019, 45(11): 1735-1745. |
[11] | 李英双,胡丹,聂蛟,黄科慧,张玉珂,张园莉,佘恒志,方小梅,阮仁武,易泽林. 甜荞株高和茎粗的遗传分析[J]. 作物学报, 2018, 44(8): 1185-1195. |
[12] | 李龙,毛新国,王景一,昌小平,柳玉平,景蕊莲. 小麦种质资源抗旱性鉴定评价[J]. 作物学报, 2018, 44(7): 988-999. |
[13] | 王建伟,贺晓岚,李文旭,陈新宏. 小麦近缘属植物1-FFT基因的克隆及功能分析[J]. 作物学报, 2018, 44(6): 814-823. |
[14] | 吕品, 于海峰, 侯建华. 利用抗旱选择导入系定位向日葵产量性状QTL[J]. 作物学报, 2018, 44(03): 385-396. |
[15] | 汪灿,周棱波,张国兵,张立异,徐燕,高旭,姜讷,邵明波. 薏苡种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2017, 43(09): 1381-1394. |
|