作物学报 ›› 2023, Vol. 49 ›› Issue (6): 1726-1732.doi: 10.3724/SP.J.1006.2023.21043
• 研究简报 • 上一篇
田敏(), 刘新春, 潘佳佳, 梁丽静, 董雷, 刘美池, 冯宗云*()
TIAN Min(), LIU Xin-Chun, PAN Jia-Jia, LIANG Li-Jing, DONG Lei, LIU Mei-Chi, FENG Zong-Yun*()
摘要:
纤维是衡量大麦饲用品质的重要指标之一, 其遗传机制解析对饲用大麦品种选育具有一定的指导意义。本研究以316份大麦品种为材料, 连续2年种植于成都、康定两地, 利用分布于大麦基因组上的75,289个SNPs对籽粒纤维素、半纤维素含量进行全基因组关联分析。利用TASSEL软件的混合线性模型, 纤维素、半纤维素性状分别重复检测到65个、34个显著SNPs位点(P≤0.05/N), 标记的平均解释表型变异率分别为13.18%、14.10%。纤维素、半纤维素含量在3个及以上环境中重复检测到的显著相关位点分别为4个、1个, 2个性状检测到了相同的SNP位点, 说明2个性状存在遗传相关性。纤维素性状挖掘到6个候选基因, 半纤维素性状挖掘到1个候选基因, 为大麦纤维的遗传与分子机理研究及遗传改良奠定了基础。
[1] | 许伟利, 董伟志, 王军, 徐晶, 马云, 沙元赛. 大麦籽粒营养成分及开发研究进展. 大麦与谷类科学, 2019, 36(3): 52-55. |
Xu W L, Dong W Z, Wang J, Xu J, Ma Y, Sha Y S. Research progresses on the nutrients of barley grain and their utilization. Barl Cereal Sci, 2019, 36(3): 52-55. (in Chinese with English abstract) | |
[2] | 赵斌, 陈晓东, 季昌好, 朱斌, 王瑞. 不同刈割时期与干燥方式对大麦饲草品质的影响. 草原与草坪, 2020, 40(5): 98-101. |
Zhao B, Chen X D, Ji C H, Zhu B, Wang R. Effects of different cutting times and drying methods on the quality of barley forage. Grassland Turf, 2020, 40(5): 98-101. (in Chinese with English abstract) | |
[3] |
赵加涛, 杨向红, 付正波, 字尚永, 刘猛道. 不同大麦品种饲草产量及品质研究. 中国农学通报, 2021, 37(27): 27-31.
doi: 10.11924/j.issn.1000-6850.casb2020-0746 |
Zhao J T, Yang X H, Fu Z B, Zi S Y, Liu M D. Yield and quality of forage grass of different barley varieties. Chin Agric Sci Bull, 2021, 37(27): 27-31. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.casb2020-0746 |
|
[4] |
黄水珍, 冯德庆, 黄秀声, 黄小云. 大麦‘花22’不同生育期的饲用品质及呕吐毒素含量. 农学学报, 2021, 11(4): 1-5.
doi: 10.11923/j.issn.2095-4050.cjas20191200299 |
Huang S Z, Feng D Q, Huang X S, Huang X Y. Forage quality and vomitoxin content of barley Hua 22 at different growth stages. J Agric, 2021, 11(4): 1-5. (in Chinese with English abstract) | |
[5] |
Han F, Ullrich S E, Romagosa I, Clancy J A, Froseth J A, Wesenberg D M. Quantitative genetic analysis of acid detergent fiber content in barley grain. J Cereal Sci, 2003, 38: 167-172.
doi: 10.1016/S0733-5210(03)00020-1 |
[6] |
Siahsar B A, Peighambari S A, Taleii A R, Naghavi M R, Nabipour A, Sarrafi A. QTL analysis of forage quality traits in barley (Hordeum vulgare L.). Cereal Res Commun, 2009, 37: 479-488.
doi: 10.1556/CRC.37.2009.4.1 |
[7] |
Grando S, Baum M, Ceccarelli S, Goodchild A, El-Haramein F Jaby, Jahoor A, Backes G. QTLs for straw quality characteristics identified in recombinant inbred lines of a Hordeum vulgare × H. spontaneum cross in a Mediterranean environment. Theor Appl Genet, 2005, 110: 688-695.
pmid: 15678328 |
[8] |
Surber L, Abdel-Haleem H, Martin J, Hensleigh P, Cash D, Bowman J, Blake T. Mapping quantitative trait loci controlling variation in forage quality traits in barley. Mol Breed, 2011, 28: 189-200.
doi: 10.1007/s11032-010-9473-6 |
[9] |
Abdel-Haleem H, Bowman J G P, Surber L, Blake T. Variation in feed quality traits for beef cattle in Steptoe×Morex barley population. Mol Breed, 2012, 29: 503-514.
doi: 10.1007/s11032-011-9567-9 |
[10] |
Burton R A, Shirley N J, King B J, Harvey A J, Fincher G B. The CesA gene family of barley. quantitative analysis of transcripts reveals two groups of co-expressed genes. Plant Physiol, 2004, 134: 224-236.
doi: 10.1104/pp.103.032904 pmid: 14701917 |
[11] |
Burton R A, Jobling S A, Harvey A J, Shirley N J, Mather D E, Bacic A, Fincher G B. The genetics and transcriptional profiles of the cellulose synthase-like HvCslF gene family in barley. Plant Physiol, 2008, 146: 1821-1833.
doi: 10.1104/pp.107.114694 |
[12] | Burton R A, Ma G, Baumann U, Harvey A J, Shirley N J, Taylor J, Pettolino F, Bacic A, Beatty M, Simmons C R, Dhugga K S, Rafalski J A, Tingey S V, Fincher G B. A customized gene expression microarray reveals that the brittle stem phenotype fs2 of barley is attributable to a retroelement in the HvCesA4 cellulose synthase gene. Plant Physiol, 2010, 14: 1716-1728. |
[13] | 王晓雨. 大麦β-葡聚糖、微量元素含量的全基因组关联分析及纤维素合成酶类基因家族的鉴定. 西北农林科技大学硕士学位论文, 陕西杨凌, 2020. |
Wang X Y. Genome-wide Association Study of the β-glucan and Trace Elements Content, and Identification of Cellulose Synthase Gene Family in Barley (Hordeum vulgare). MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2020 (in Chinese with English abstract). | |
[14] |
Nishantha M D L C, Jeewani D C, Xing G W, Nie X J, Song W N. Genome-wide identification and analysis of the CslF gene family barley (Hordeum vulgare L.). J Microbiol Biotechnol Food Sci, 2020, 10: 122-126.
doi: 10.15414/jmbfs.2020.10.1.122-126 |
[15] | Houston K, Burton R A, Sznajder B, Rafalski A J, Dhugga K S, Mather D E, Taylor J, Steffenson B J, Waugh R, Fincher G B. A genome-wide association study for culm cellulose content in barley reveals candidate genes co-expressed with members of the CELLULOSE SYNTHASE A gene family. PLoS One, 2015, 10: e0130890. |
[16] |
Buchanan M, Burton R A, Dhugga K S, Rafalski A J, Tingey S V, Shirley N J, Fincher G B. Endo-(1, 4)-β-Glucanase gene families in the grasses: temporal and spatial. Co-transcription of orthologous genes. BMC Plant Biol, 2012, 12: 235.
doi: 10.1186/1471-2229-12-235 |
[17] | Cantarel B L, Coutinho P M, Rancurel C, Bernard T, Lombard V, Henrissat B. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res, 2009, 37: D233-D238. |
[18] | Zhong R Q, Ye Z H. Complexity of the transcriptional network controlling secondary wall biosynthesis. Plant Sci Int J Exp Plant Biol, 2014, 229: 193-207. |
[19] |
Zhong R, Ye Z H. Secondary cell walls: biosynthesis, patterned deposition and transcriptional regulation. Plant Cell Physiol, 2015, 56: 195-214.
doi: 10.1093/pcp/pcu140 pmid: 25294860 |
[20] | 赵宇慧, 李秀秀, 陈倬, 鲁宏伟, 刘羽诚, 张志方, 梁承志. 生物信息学分析方法Ⅰ: 全基因组关联分析概述. 植物学报, 2020, 55: 715-732. |
Zhao Y H, Li X X, Chen Z, Lu H W, Liu Y C, Zhang Z F, Liang C Z. Bioinformatics analysis methods. I: Overview of genome-wide association analysis. Acta Bot Sin, 2020, 55: 715-732. (in Chinese with English abstract) | |
[21] |
Yang W, Zhao J L, Zhang S H, Chen L, Yang T F, Dong J F, Fu H, Ma Y M, Zhou L, Wang J, Liu W, Liu Q, Liu B. Genome-wide association mapping and gene expression analysis reveal the negative role of OsMYB21 in regulating bacterial blight resistance in rice. Rice (NY), 2021, 14: 58.
doi: 10.1186/s12284-021-00501-z pmid: 34185169 |
[22] |
Liu P, Jin Y R, Liu J D, Liu C Y, Yao H P, Luo F Y, Guo Z H, Xia X C, He Z H. Genome-wide association mapping of root system architecture traits in common wheat (Triticum aestivum L.). Euphytica, 2019, 215: 121.
doi: 10.1007/s10681-019-2452-z |
[23] |
Wang M, Yan J B, Zhao J R, Song W, Zhang X B, XiaoY N, Zheng Y L. Genome-wide association study (GWAS) of resistance to head smut in maize. Plant Sci, 2012, 196: 125-131.
doi: 10.1016/j.plantsci.2012.08.004 pmid: 23017907 |
[24] |
Wrucke D F, Mamidi S, Rahman M. Genome-wide association study for frost tolerance in canola (Brassica napus L.) under field conditions. J Plant Biochem Biotechnol, 2019, 28: 211-222.
doi: 10.1007/s13562-018-0472-8 |
[25] | 聂石辉, 王仙, 向莉, 张金汕, 李志强, 任毅, 方伏荣. 干旱胁迫对中亚大麦农艺性状的影响及其相关基因定位. 麦类作物学报, 2022, 42: 59-67. |
Nie S H, Wang X, Xiang L, Zhang J S, Li Z Q, Ren Y, Fang F R. Responses to drought stress and gene mapping of related agronomic traits of central Asian barley. J Triticeae Crops, 2022, 42: 59-67. (in Chinese with English abstract) | |
[26] |
He T H, Beate H C, Tolera A T, Zhang X Q, Chen K F, David M, Paul T, Sharon W, Li C D. Gene-set association and epistatic analyses reveal complex gene interaction networks affecting flowering time in a worldwide barley collection. J Exp Bot, 2019, 70: 5603-5616.
doi: 10.1093/jxb/erz332 pmid: 31504706 |
[27] |
Fan X Y, Sun Y D, Zhu J, Lyu C, Guo B J, Xu R G. A 191-bp insertion/deletion in GBSS1 region is responsible for the changes in grain amylose content in barley (Hordeum vulgare L.). Mol Breed, 2017, 37: 81.
doi: 10.1007/s11032-017-0677-x |
[28] |
耿腊, 黄业昌, 李梦迪, 谢尚耿, 叶玲珍, 张国平. 大麦籽粒β-葡聚糖含量的全基因组关联分析. 作物学报, 2021, 47: 1205-1214.
doi: 10.3724/SP.J.1006.2021.01074 |
Geng L, Huang Y C, Li M D, Xie S G, Ye L Z, Zhang G P. Genome-wide association study of β-glucan content in barley grains. Acta Agron Sin, 2021, 47: 1205-1214. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.01074 |
|
[29] |
Hazzouri K M, Hazzouri K M, Khraiwesh B, Amiri K M A, Amiri K M A, Pauli D, Blake T, Mullath M S S K, Mansour D N A L, Salehi-Ashtiani K, Purugganan M, Masmoudi K. Mapping of HKT1;5 gene in barley using GWAS approach and its implication in salt tolerance mechanism. Front Plant Sci, 2018, 9: 156.
doi: 10.3389/fpls.2018.00156 pmid: 29515598 |
[30] |
Aghnoum R, Bvindi C, Menet G, Hoop B D, Maciel L N, Niks R E. Host/nonhost status and genetics of resistance in barley against three pathotypes of Magnaporthe blast fungi. Euphytica, 2019, 215: 116.
doi: 10.1007/s10681-019-2436-z |
[31] | 安玉民, 王菊葵, 黄烨, 徐晓梅. 马铃薯秸秆中纤维素与半纤维素含量的测定. 现代农业科技, 2016, (17): 159-160. |
An Y M, Wang J K, Huang Y, Xu X M. Determination of cellulose and hemicellulose content in potato stalk. Mod Agric Sci Technol, 2016, (17): 159-160. (in Chinese with English abstract) | |
[32] | Zhu C S, Gore M, Buckler E S, Yu J M. Status and prospects of association mapping in plants. Plant Genomics, 2008, 1: 5-20. |
[33] |
Kaler A S, Purcell L C. Estimation of a significance threshold for genome-wide association studies. BMC Genomics, 2019, 20: 618.
doi: 10.1186/s12864-019-5992-7 pmid: 31357925 |
[34] | Alqudah A M, Sallam A, Baenziger P S, Brner A. GWAS: Fast-forwarding gene identification and characterization in temperate Cereals: lessons from barley: a review. J Advanc Res, 2020, 22: 119-135. |
[35] |
Lou Q J, Chen L, Mei H W, Wei H B, Feng F J, Wang P, Xia H, Li T M, Luo L J. Quantitative trait locus mapping of deep rooting by linkage and association analysis in rice. Exp Bot, 2015, 66: 4749-4757.
doi: 10.1093/jxb/erv246 |
[36] |
Zhang X, Ren Z Y, Luo B W, Zhong H X, Ma P, Zhang H K, Hu H M, Wang Y K, Zhang H Y, Liu D, Wu L, Nie Z, Zhu Y H, He W Z, Zhang S Z, Su S Z, Shen Y O, Gao S B. Genetic architecture of maize yield traits dissected by QTL mapping and GWAS in maize. Crop J, 2022, 10: 436-446.
doi: 10.1016/j.cj.2021.07.008 |
[37] |
Ma L L, Zhang M Y, Chen J, Qing C Y, He S J, Zou C Y, Yuan G S, Yang C, Peng H, Pan G T, Lübberstedt T, Shen Y O. GWAS and WGCNA uncover hub genes controlling salt tolerance in maize (Zea mays L.) seedlings. Theor Appl Genet, 2021, 134: 3305-3318.
doi: 10.1007/s00122-021-03897-w |
[38] | Li K Q, Wang J, Kuang L Q, Tian Z, Wang X F, Dun X L, Tu J X, Wang H Z. Genome-wide association study and transcriptome analysis reveal key genes affecting root growth dynamics in rapeseed. Biotechnol Biof, 2021, 14: 178. |
[39] |
马珍珍, 李加纳, Wittkop B, Frauen M, 阎星颖, 刘列钊, 肖阳. 甘蓝型油菜籽粒含油量、蛋白质、纤维素及半纤维素含量QTL分析. 作物学报, 2013, 39: 1214-1222.
doi: 10.3724/SP.J.1006.2013.01214 |
Ma Z Z, Li J N, Wittkop B, Frauen M, Yan X Y, Liu L Z, Xiao Y. QTL mapping for oil, protein, cellulose, and hemicellulose contents in seeds of Brassica napus L. Acta Agron Sin, 2013, 39: 1214-1222. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.01214 |
|
[40] |
Zhang B C, Liu X L, Qian Q, Liu L F, Dong G J, Xiong G Y, Zeng D L, Zhou Y H. Golgi nucleotide sugar transporter modulates cell wall biosynthesis and plant growth in rice. Proc Natl Acad Sci USA, 2011, 108: 5110-5115.
doi: 10.1073/pnas.1016144108 pmid: 21383162 |
[41] |
Ryae J J, Hyuk C J. Lactic acid fermentation of germinated barley fiber and proliferative function of colonic epithelial cells in loperamide-induced rats. J Med Food, 2010, 13: 950-960.
doi: 10.1089/jmf.2009.1307 pmid: 20673062 |
[42] |
Gong J S, Yang C B. Advances in the methods for studying gut microbiota and their relevance to the research of dietary fiber functions. Food Res Int, 2012, 48: 916-929.
doi: 10.1016/j.foodres.2011.12.027 |
[43] | Li H Y, Xu L, Liu W J, Fang M Q, Wang N. Assessment of the nutritive value of whole corn stover and its morphological fractions. Asian Austr J Anim Sci, 2014, 27: 194-200. |
[44] |
Zhang B C, Deng L W, Qian Q, Xiong G Y, Zeng D, Li R, Guo L B, Li J Y, Zhou Y H. A missense mutation in the transmembrane domain of CESA4 affects protein abundance in the plasma membrane and results in abnormal cell wall biosynthesis in rice. Plant Mol Biol, 2009, 71: 509-524.
doi: 10.1007/s11103-009-9536-4 pmid: 19697141 |
[45] |
Vega-Sánchez M E, Verhertbruggen Y, Christensen U, Chen X, Sharma V, Varanasi P, Jobling S A, Talbot M, White R G, Joo M. Loss of cellulose synthase-like f6 function affects mixed-linkage glucan deposition, cell wall mechanical properties, and defense responses in vegetative tissues of rice. Plant Physiol, 2012, 159: 56-69.
doi: 10.1104/pp.112.195495 pmid: 22388489 |
[1] | 王让剑, 杨军, 张力岚, 高香凤. 茶树新梢中香叶醇樱草糖苷含量的全基因组关联分析[J]. 作物学报, 2023, 49(7): 1843-1859. |
[2] | 唐玉凤, 姚敏, 何昕, 官梅, 刘忠松, 官春云, 钱论文. 甘蓝型油菜SGR基因家族的全基因组鉴定与功能分析[J]. 作物学报, 2023, 49(7): 1829-1842. |
[3] | 马娟, 朱卫红, 刘京宝, 宇婷, 黄璐, 郭国俊. 玉米穗长一般配合力多位点全基因组关联分析和预测[J]. 作物学报, 2023, 49(6): 1562-1572. |
[4] | 刘佳, 龚方仪, 刘亚西, 颜泽洪, 钟晓英, 陈厚霖, 黄林, 伍碧华. 野生二粒小麦主要农艺特性融入普通小麦的全基因组关联分析[J]. 作物学报, 2023, 49(5): 1184-1196. |
[5] | 周海平, 张帆, 陈凯, 申聪聪, 朱双兵, 邱先进, 徐建龙. 水稻种质资源稻瘟病抗性全基因组关联分析[J]. 作物学报, 2023, 49(5): 1170-1183. |
[6] | 戴文慧, 朱琪, 张小芳, 吕沈阳, 项显波, 马涛, 陈宇杰, 朱世华, 丁沃娜. 一个水稻脆秆突变体bc21的鉴定和基因定位[J]. 作物学报, 2023, 49(5): 1426-1431. |
[7] | 杨晔, 孙琦, 邢欣欣, 张海涛, 赵志超, 程治军. 包穗突变体sui1-5鉴定及OsPSS1互作蛋白筛选[J]. 作物学报, 2023, 49(3): 597-607. |
[8] | 马雅杰, 鲍建喜, 高悦欣, 李雅楠, 秦文萱, 王彦博, 龙艳, 李金萍, 董振营, 万向元. 玉米株高和穗位高性状全基因组关联分析[J]. 作物学报, 2023, 49(3): 647-661. |
[9] | 殷芳冰, 李雅楠, 鲍建喜, 马雅杰, 秦文萱, 王锐璞, 龙艳, 李金萍, 董振营, 万向元. 玉米雌穗产量相关性状全基因组关联分析与候选基因鉴定[J]. 作物学报, 2023, 49(2): 377-391. |
[10] | 徐凯, 郑兴飞, 张红燕, 胡中立, 宁子岚, 李兰芝. 基于NCII遗传交配设计的籼稻抽穗期全基因组关联分析[J]. 作物学报, 2023, 49(1): 86-96. |
[11] | 王锐璞, 董振营, 高悦欣, 鲍建喜, 殷芳冰, 李金萍, 龙艳, 万向元. 玉米籽粒淀粉含量全基因组关联分析和候选基因预测[J]. 作物学报, 2023, 49(1): 140-152. |
[12] | 张超, 杨博, 张立源, 肖忠春, 刘景森, 马晋齐, 卢坤, 李加纳. 基于QTL定位和全基因组关联分析挖掘甘蓝型油菜收获指数相关位点[J]. 作物学报, 2022, 48(9): 2180-2195. |
[13] | 夏秀忠, 张宗琼, 杨行海, 荘洁, 曾宇, 邓国富, 宋国显, 黄欲晓, 农保选, 李丹婷. 广西水稻地方品种核心种质芽期耐盐性全基因组关联分析[J]. 作物学报, 2022, 48(8): 2007-2015. |
[14] | 郭楠楠, 刘天策, 史硕, 胡心亭, 牛亚丹, 李亮. 长链非编码RNA (LncRNA)在印度梨形孢促进大麦根部生长发育中的调控作用[J]. 作物学报, 2022, 48(7): 1625-1634. |
[15] | 杨昕, 李玉, 刘传兵, 张力岚, 何青垚, 祁建民, 张立武. 黄麻内参基因筛选及次生细胞壁合成相关基因的表达分析[J]. 作物学报, 2022, 48(7): 1614-1624. |
|