作物学报 ›› 2024, Vol. 50 ›› Issue (1): 67-75.doi: 10.3724/SP.J.1006.2024.32012
李明月1,3(), 张文婷1,2, 李阳1,2, 张保龙1,2, 杨立明3, 王金彦1,2,*()
LI Ming-Yue1,3(), ZHANG Wen-Ting1,2, LI Yang1,2, ZHANG Bao-Long1,2, YANG Li-Ming3, WANG Jin-Yan1,2,*()
摘要:
镉(Cd)胁迫是植物面临的主要重金属胁迫之一, 对植物的生长和发育产生严重的影响。尽管已有研究表明植物小肽具有缓解胁迫的作用, 但水稻中镉毒害的研究很少。在前期研究中, 通过翻译组、转录组和蛋白质组鉴定了一系列水稻小肽, 其中发现Ospep5可以显著地提高水稻的耐盐性。本研究以日本晴野生型、日本晴过表达Ospep5-OX和日本晴CRISPR/Cas9突变体ospep5-3作为水稻试验材料, 研究Ospep5对镉胁迫下水稻幼苗生长的影响。试验结果表明: 500 μmol L-1 CdCl2处理显著抑制了水稻幼苗的形态生长和叶绿素含量, 同时超氧化物歧化酶(SOD)、脯氨酸(Pro)含量、丙二醛(MDA)含量和镉离子含量显著提高。与单独的镉胁迫相比, 外源施加Ospep5后, 可以有效缓解镉胁迫对水稻幼苗的形态生长的抑制, 显著提高超氧化物歧化酶(SOD)活力, 同时显著降低丙二醛(MDA)含量、脯氨酸(Pro)含量和镉离子含量, 并且能够促进耐镉基因(OsHMA2、OsHMA3、OsCAL1)的表达。总之, Ospep5通过调节水稻幼苗各种生理生化反应以及调控耐镉基因表达的方式, 最终提高水稻幼苗对镉胁迫的耐受性。
[1] |
Ai H, Wu D X, Li C L, Hou M M. Advances in molecular mechanisms underlying cadmium uptake and translocation in rice. Front Plant Sci, 2022, 13: 1003953.
doi: 10.3389/fpls.2022.1003953 |
[2] |
Ma L, Abuduwaili J, Smanov Z, Ge Y, Samarkhanov K, Saparov G, Issanova G. Spatial and vertical variations and heavy metal enrichments in irrigated soils of the Syr Darya River watershed, Aral Sea Basin, Kazakhstan. Int J Environ Res Public Health, 2019, 16: 4398.
doi: 10.3390/ijerph16224398 |
[3] | 姜艺, 黄琳丽. 镉胁迫对植物的影响探究. 南方农业, 2020, 14: 138-139. |
Jiang Y, Huang L L. Effects of cadmium stress on plants. South Agric, 2020, 14: 138-139. (in Chinese with English abstract) | |
[4] |
White P J, Brown P H. Plant nutrition for sustainable development and global health. Ann Bot, 2010, 105: 1073-1080.
doi: 10.1093/aob/mcq085 |
[5] |
Carrier P, Baryla A, Havaux M. Cadmium distribution and microlocalization in oilseed rape (Brassica napus) after long-term growth on cadmium-contaminated soil. Planta, 2003, 216: 939-950.
doi: 10.1007/s00425-002-0947-6 pmid: 12687361 |
[6] |
Clemens S. Molecular mechanisms of plant metal tolerance and homeostasis. Planta, 2001, 212: 475-486.
doi: 10.1007/s004250000458 pmid: 11525504 |
[7] |
迟春宁, 丁国华. 植物耐重金属的分子生物学研究进展. 生物技术通报, 2017, 33(3): 6-11.
doi: 10.13560/j.cnki.biotech.bull.1985.2017.03.002 |
Chi C N, Ding G H. Advances in molecular biology of heavy metal tolerance in plants. Biotechnol Bull, 2017, 33(3): 6-11. (in Chinese with English abstract) | |
[8] |
Viehweger K. How plants cope with heavy metals. Bot Stud, 2014, 55: 35.
doi: 10.1186/1999-3110-55-35 pmid: 28510963 |
[9] |
Matsubayashi Y. Post translationally modified small-peptide signals in plants. Annu Rev Plant Biol, 2014, 65: 385-413.
doi: 10.1146/annurev-arplant-050312-120122 pmid: 24779997 |
[10] | Sonali R, Peter L, Michael U, Wolf-Rüdiger S. Small and mighty: peptide hormones in plant biology. Plant Cell, 2019, 30: tpc. 118.tt0718. |
[11] | Ryan C A, Pearce G, Scheer J, Moura D S. Polypeptide hormones. Plant Cell, 2002, 14: S251-S264. |
[12] |
Lyapina I, Ivanov V, Fesenko I. Peptidome: chaos or inevitability. Int J Mol Sci, 2021, 22: 13128.
doi: 10.3390/ijms222313128 |
[13] |
Matsubayashi Y. Exploring peptide hormones in plants: identification of four peptide hormone-receptor pairs and two post- translational modification enzymes. Proc Jpn Acad (Ser B), 2018, 94: 59-74.
doi: 10.2183/pjab.94.006 |
[14] |
Li Y L, Dai X R, Yue X, Gao X Q, Zhang X S. Identification of small secreted peptides (SSPs) in maize and expression analysis of partial SSP genes in reproductive tissues. Planta, 2014, 240: 713-728.
doi: 10.1007/s00425-014-2123-1 pmid: 25048445 |
[15] |
Gasic K, Korban S S. Transgenic Indian mustard (Brassica juncea) plants expressing an Arabidopsis phytochelatin synthase (AtPCS1) exhibit enhanced As and Cd tolerance. Plant Mol Biol, 2007, 64: 361-369.
doi: 10.1007/s11103-007-9158-7 |
[16] |
Meng X X, Li W F, Shen R F, Lan P. Ectopic expression of IMA small peptide genes confers tolerance to cadmium stress in Arabidopsis through activating the iron deficiency response. J Hazard Mater, 2022, 422: 126913.
doi: 10.1016/j.jhazmat.2021.126913 |
[17] |
Gu T Y, Qi Z Y, Gong J M. Dual-function DEFENSIN 8 mediates phloem cadmium unloading and accumulation in rice grains. Plant Physiol, 2023, 191: 515-527.
doi: 10.1093/plphys/kiac423 |
[18] |
Hua K, Tao X, Han P, Wang R, Zhu J. Genome engineering in rice using Cas9 variants that recognize NG PAM sequences. Mol Plant, 2019, 12: 1003-1014.
doi: S1674-2052(19)30122-4 pmid: 30928636 |
[19] |
Ma X L, Zhang Q U, Zhu Q L, Liu W, Chen Y, Qiu R, Wang B, Yang Z F, Li H Y, Lin Y R, Xie Y Y, Shen R X, Chen S F, Wang Z, Chen Y L, Guo J X, Chen L T, Zhao X C, Dong Z C, Liu Y G. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant, 2015, 8: 1274-1284.
doi: 10.1016/j.molp.2015.04.007 pmid: 25917172 |
[20] |
Dos Santos-Silva C A, Zupin L, Oliveira-Lima M, Vilela L M B, Bezerra-Neto J P, Ferreira-Neto J R, Ferreira J D C, de Oliveira- Silva R L, Pires C J, Aburjaile F F, de Oliveira M F, Kido E A, Crovella S, Benko-Iseppon A M. Plant antimicrobial peptides: state of the art, in silico prediction and perspectives in the omics era. Bioinform Biol Insights, 2020, 14: 117793222095273-1177932220952739.
doi: 10.1177/1177932220952739 |
[21] |
Nakaminami K, Okamoto M, Higuchi-Takeuchi M, Yoshizumi T, Yamaguchi Y, Fukao Y, Shimizu M, Ohashi C, Tanaka M, Matsui M, Shinozaki K, Seki M, Hanada K. AtPep3 is a hormone-like peptide that plays a role in the salinity stress tolerance of plants. Proc Natl Acad Sci USA, 2018, 115: 5810-5815.
doi: 10.1073/pnas.1719491115 pmid: 29760074 |
[22] |
Takahashi F, Suzuki T, Osakabe Y, Betsuyaku S, Kondo Y, Dohmae N, Fukuda H, Yamaguchi-Shinozaki K, Shinozaki K. A small peptide modulates stomatal control via abscisic acid in long- distance signalling. Nature, 2018, 556: 235-238.
doi: 10.1038/s41586-018-0009-2 |
[23] |
Gu T Y, Qi Z A, Chen S Y, Yan J, Fang Z J, Wang J M, Gong J M. Dual-function DEFENSIN 8 mediates phloem cadmium unloading and accumulation in rice grains. Plant Physiol, 2023, 191: 515-527.
doi: 10.1093/plphys/kiac423 |
[24] |
Luo J S, Huang J, Zeng D L, Peng J S, Zhang G B, Ma H L, Guan Y, Yi H Y, Fu Y L, Han B, Lin H X, Qian Q, Gong J M. A defensin-like protein drives cadmium efflux and allocation in rice. Nat Commun, 2018, 9: 645.
doi: 10.1038/s41467-018-03088-0 |
[25] | 张辉, 李录山, 杨晓峰, 李华兵, 黄艳, 杜宣延, 藤志. 凹凸棒对镉胁迫下菠菜生长生理及镉富集的影响. 中国蔬菜, 2022, 404: 52-57. |
Zhang H, Li L S, Yang X F, Li H B, Huang Y, Du X Y, Teng Z. Effects of attapulgite on growth physiology and cadmium accumulation of spinach under cadmium stress. China Veget, 2022, 404: 52-57. (in Chinese with English abstract) | |
[26] | 赵红, 徐芬芬, 余淑铃, 郑怡婷, 符诗婷. 2,4-表油菜素内酯对镉胁迫下黄瓜幼苗的缓解效应. 北方园艺, 2022, (20): 35-41. |
Zhao H, Xu F F, Yu S L, Zheng Y T, Fu S T. Alleviating effect of 2,4-epibrassinolide on cucumber seedlings under cadmium stress. Nor Hortic, 2022, (20): 35-41 (in Chinese with English abstract) | |
[27] |
Li Y, Zhang S N, Bao Q, Chu Y S, Sun H Y, Huang Y Z. Jasmonic acid alleviates cadmium toxicity through regulating the antioxidant response and enhancing the chelation of cadmium in rice (Oryza sativa L.). Environ Pollut, 2022, 304: 119178.
doi: 10.1016/j.envpol.2022.119178 |
[28] |
Zhang H M, Zhu J H, Gong Z, Zhu J K. Abiotic stress responses in plants. Nat Rev Genet, 2022, 23: 104-119.
doi: 10.1038/s41576-021-00413-0 |
[29] | 李晓科, 武玉珍, 张义贤. 2,4-表油菜素内酯对镉胁迫下大麦幼苗生长的影响. 福建农业学报, 2018, 33: 1251-1256. |
Li X K, Wu Y Z, Zhang Y X. Effects of 2,4-epibrassinolide on the growth of barley seedlings under cadmium stress. Fujian Agric, 2018, 33: 1251-1256. (in Chinese with English abstract) | |
[30] | 张家欣. 外源水杨酸对干旱和镉胁迫下旱柳生理特性及抗逆基因表达的影响. 辽宁大学硕士学位论文, 辽宁沈阳, 2022. |
Zhang J X. Effects of Exogenous Salicylic Acid on Physiological Characteristics and Stress Resistance Gene Expression of Salix matsudana under Drought and Cadmium Stress. MS Thesis of Liaoning University, Shenyang, Liaoning, China, 2022 (in Chinese with English abstract) | |
[31] | 程雪, 宋晓萱, 刘毓鑫, 陈李文彬, 叶嘉, 张浩. 镉胁迫对芹菜幼苗叶绿素含量和生理指标的影响. 农业科技通讯, 2020, (4): 168-171. |
Cheng X, Song X X, Liu Y X, Chen L W B, Ye J, Zhang H. Effects of cadmium stress on chlorophyll content and physiological indexes of celery seedlings. Bull Agric Sci Tech, 2020, (4): 168-171. (in Chinese with English abstract) |
[1] | 吴昊, 张瑛, 王琛, 顾汉柱, 周天阳, 张伟杨, 顾骏飞, 刘立军, 杨建昌, 张耗. 栽培优化对长江下游水稻灌浆期根系特征和稻米淀粉特性的影响[J]. 作物学报, 2024, 50(2): 478-492. |
[2] | 吴宇, 刘磊, 崔克辉, 齐晓丽, 黄见良, 彭少兵. 低氮条件下超级杂交稻苗期根系特征的变化及与其高氮素积累的关系[J]. 作物学报, 2024, 50(2): 414-424. |
[3] | 徐高峰, 申时才, 张付斗, 杨韶松, 金桂梅, 郑凤萍, 温丽娜, 张云, 吴冉迪. 土壤微生物对长雄野生稻及其化感潜力后代抑草作用的影响[J]. 作物学报, 2023, 49(9): 2562-2571. |
[4] | 胡艳娟, 薛丹, 耿嫡, 朱末, 王天穹, 王晓雪. 水稻OsCDF1基因突变效应及其基因组变异分析[J]. 作物学报, 2023, 49(9): 2362-2372. |
[5] | 刘凯, 陈积金, 刘帅, 陈旭, 赵新茹, 孙尚, 薛超, 龚志云. 低温胁迫下组蛋白H3K18cr在水稻全基因组上的动态变化特征解析[J]. 作物学报, 2023, 49(9): 2398-2411. |
[6] | 贾璐绮, 孙悠, 田然, 张学菲, 代永东, 崔志波, 李杨羊, 冯新宇, 桑贤春, 王晓雯. 水稻种子快速萌发突变体rgs1的鉴定及调控基因克隆[J]. 作物学报, 2023, 49(8): 2288-2295. |
[7] | 唐杰, 龙湍, 吴春瑜, 李新鹏, 曾翔, 吴永忠, 黄培劲. 水稻OsGMS2基因的鉴定及其核不育系种子繁殖体系构建[J]. 作物学报, 2023, 49(8): 2025-2038. |
[8] | 宋兆建, 冯紫旖, 屈天歌, 吕品苍, 杨晓璐, 湛明月, 张献华, 何玉池, 刘育华, 蔡得田. 四倍体水稻回复二倍体品系的籼粳属性鉴定和杂种优势利用初探[J]. 作物学报, 2023, 49(8): 2039-2050. |
[9] | 韦新宇, 曾跃辉, 杨旺兴, 肖长春, 候新坡, 黄建鸿, 邹文广, 许旭明. 利用CRISPR-Cas9技术编辑Badh2基因创制优质香型籼稻三系不育系[J]. 作物学报, 2023, 49(8): 2144-2159. |
[10] | 邓艾兴, 李歌星, 吕玉平, 刘猷红, 孟英, 张俊, 张卫建. 齐穗后遮阴时长对西北稻区粳稻产量和品质的影响[J]. 作物学报, 2023, 49(7): 1930-1941. |
[11] | 许娜, 徐铨, 徐正进, 陈温福. 水稻株型生理生态与遗传基础研究进展[J]. 作物学报, 2023, 49(7): 1735-1746. |
[12] | 林孝欣, 黄明江, 韦祎, 朱洪慧, 王子怡, 李忠成, 庄慧, 李彦羲, 李云峰, 陈锐. 水稻籽粒伸长突变体lgdp的鉴定与基因定位[J]. 作物学报, 2023, 49(6): 1699-1707. |
[13] | 丁杰荣, 马雅美, 潘发枝, 江立群, 黄文洁, 孙炳蕊, 张静, 吕树伟, 毛兴学, 于航, 李晨, 刘清. 泛素受体蛋白OsDSK2b负向调控水稻叶瘟和渗透胁迫抗性[J]. 作物学报, 2023, 49(6): 1466-1479. |
[14] | 何永明, 张芳. 生长素调控水稻颖花开放的效应研究[J]. 作物学报, 2023, 49(6): 1690-1698. |
[15] | 陶玥玥, 盛雪雯, 徐坚, 沈园, 王海候, 陆长婴, 沈明星. 长三角水稻-油菜周年两熟温光资源分配与利用特征[J]. 作物学报, 2023, 49(5): 1327-1338. |
|