作物学报 ›› 2024, Vol. 50 ›› Issue (2): 383-393.doi: 10.3724/SP.J.1006.2024.34063
朱晓亚(), 张强强, 赵鹏, 刘明, 王静, 靳容, 于永超, 唐忠厚*()
ZHU Xiao-Ya(), ZHANG Qiang-Qiang, ZHAO Peng, LIU Ming, WANG Jing, JIN Rong, YU Yong-Chao, TANG Zhong-Hou*()
摘要:
为探究叶面喷施碳点(CDs)对低磷胁迫下甘薯幼苗生长发育的影响, 发掘CDs调控甘薯根系响应低磷胁迫的关键基因, 解析根系代谢产物与关键基因的协同变化, 探讨CDs缓解甘薯低磷胁迫的机制, 本研究以商薯19和徐薯32为研究对象, 设置低磷水平下(0.01 mmol L-1 KH2PO4)叶面喷施超纯水(CK1)、喷施丹参碳点(CDs)和正常磷水平下(1 mmol L-1 KH2PO4)喷施超纯水(CK2) 3个处理, 对不同处理甘薯根系进行转录组和代谢组学分析, 同时考查不同处理中甘薯叶、茎和根系生物量和磷含量的变化。结果表明, 叶面喷施丹参CDs显著增加了低磷胁迫下甘薯幼苗叶、茎和根系的生物量, 提高了根系磷含量, 增强了甘薯幼苗的耐低磷性。转录组分析结果显示, 磷酸盐吸收和转运基因(PHO1、PHT1-4)、根系构型调控基因(ZAT6、ZFP5、PLT5)和肌醇磷酸盐生物合成基因(VIP2)在缓解甘薯低磷胁迫中发挥着关键作用。代谢组分析结果显示, CDs处理较CK1处理甘薯根系磷酸肌醇的表达量均显著降低。这表明, 低磷胁迫下, 叶面喷施CDs通过诱导甘薯根系高亲和磷吸收转运系统、优化根系构型等以提高甘薯对磷素的吸收能力, 同时通过调整植株体内的磷代谢过程来维持磷稳态。但CDs介导下不同甘薯品种的低磷胁迫反应也存在差异。与CK1处理相比, CDs处理中还观察到商薯19根系磷酸乙醇胺和4-磷酸肌醇等磷酸酯的表达量显著降低; 而徐薯32根系分泌的柠檬酸和草酸的表达量显著增加, 它们能够活化土壤中的难溶性磷, 促进植物磷吸收。这可能与不同甘薯品种本身的耐低磷性存在差异有关。研究结果可为建立甘薯磷养分高效的调控理论与调控新途径提供科学支撑和理论依据, 也为后续针对纳米CDs缓解甘薯低磷胁迫的相关研究提供了候选分子资源。
[1] | 联合国粮食及农业组织(FAO)数据库. (2020-02-06). [2022-02-15] https://www.fao.org/faostat/zh/#faq. |
Food and Agricultural Organization of the United Nations. (2020-2-6). [2022-02-15] https://www.fao.org/faostat/zh/#faq (in Chinese). | |
[2] |
Jin K M, White P J, Whalley W R, Shen J, Shi L. Shaping an optimal soil by root-soil interaction. Trends Plant Sci, 2017, 22: 823-829.
doi: S1360-1385(17)30158-9 pmid: 28803694 |
[3] |
Gao P, Liu Y, Wang Y, Liu X, Wang Z, Ma L Q. Spatial and temporal changes of P and Ca distribution and fractionation in soil and sediment in a karst farmland-wetland system. Chemosphere, 2019, 220: 644-650.
doi: S0045-6535(18)32524-4 pmid: 30599322 |
[4] | 唐忠厚, 张允刚, 魏猛, 陈晓光, 史新敏, 张爱君, 李洪民, 丁艳锋. 耐低钾和钾高效型甘薯品种(系)的筛选及评价指标. 作物学报, 2014, 40: 521-528. |
Tang Z H, Zhang Y G, Wei M, Chen X G, Shi X M, Zhang A J, Ding Y F. Screening and evaluation indicators for low potassium-tolerant and potassium efficient sweetpotato (Ipomoea batatas L.) varieties (lines). Acta Agron Sin, 2014, 40: 521-528 (in Chinese with English abstract). | |
[5] |
Villordon A, Gregorie J C. Variation in phosphorus availability, root architecture attributes, and onset of storage root formation among sweet potato cultivars. HortScience, 2020, 55: 1903-1911.
doi: 10.21273/HORTSCI15358-20 |
[6] |
Sattari S Z, Bouwman A F, Giller K E, van Ittersum M K. Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle. Proc Natl Acad Sci USA, 2012, 109: 6348-6353.
doi: 10.1073/pnas.1113675109 pmid: 22431593 |
[7] | 裴福云, 董超文, 陈文哲, 杨勇, 房钦飞, 段继贤, 黄培钊, 王德汉. 纳米硅肥的制备及对苋菜生长的影响. 园艺与种苗, 2015, (6): 12-17. |
Pei F Y, Dong C W, Chen W Z, Yang Y, Fang Q F, Duan J X, Huang P Z, Wang D H. Preparation and the effect of nano-silicon fertilizer on the growth of Amaranth. Hortic Seed, 2015, (6): 12-17 (in Chinese with English abstract). | |
[8] | Wang Y J, Chen R Y, Liu H C, Song S W, Su W, Sun G W. Effects of nano-devices on growth and major elements absorption of hydroponic lettuce. Adv Energy Environ Mater Sci, 2016, 151-154. |
[9] | 尹勇, 刘灵. 三种纳米材料对水稻幼苗生长及根际土壤肥力的影响. 农业资源与环境学报, 2020, 37: 736-743. |
Yin Y, Liu L. Effects of three nanomaterials on the growth and rhizospheric soil fertility of rice seedlings. J Agric Res Environ, 2020, 37: 736-743 (in Chinese with English abstract). | |
[10] |
Su L, Ma X, Zhao K, Shen C, Lou Q, Yin D, Shan C. Carbon nanodots for enhancing the stress resistance of peanut plants. ACS Omega, 2018, 3: 17770-17777.
doi: 10.1021/acsomega.8b02604 |
[11] |
Dimkpa C O, Singh U, Bindraban P S, Elmer W H, Gardea-Torresdey J L, White J C. Zinc oxide nanoparticles alleviate drought-induced alterations in sorghum performance, nutrient acquisition, and grain fortification. Sci Total Environ, 2019, 688: 926-934.
doi: 10.1016/j.scitotenv.2019.06.392 |
[12] |
Li Y, Li W, Yang X, Kang Y, Zhang H, Liu Y, Lei B. Salvia miltiorrhiza-derived carbon dots as scavengers of reactive oxygen species for reducing oxidative damage of plants. ACS Appl Nano Mater, 2021, 4: 113-120.
doi: 10.1021/acsanm.0c02419 |
[13] |
Li Y J, Tang Z H, Pan Z Y, Wang R G, Wang X, Zhao P, Liu M, Zhu Y X, Li C, Wang W C, Liang Q, Gao J, Yu Y C, Li Z Y, Lei B F, Sun J. Calcium-mobilizing properties of Salvia miltiorrhiza-derived carbon dots confer enhanced environmental adaptability in plants. ACS Nano, 2022, 16: 4357-4370.
doi: 10.1021/acsnano.1c10556 |
[14] |
Yang H Y, Wang C X, Chen F, Yue L, Cao X S, Li J, Zhao X L, Wu F C, Wang Z Y, Xing B S. Foliar carbon dot amendment modulates carbohydrate metabolism, rhizospheric properties and drought tolerance in maize seedling. Sci Total Environ, 2022, 809: 151105.
doi: 10.1016/j.scitotenv.2021.151105 |
[15] | 朱晓亚, 张强强, 于永超, 赵鹏, 刘明, 王静, 靳容, 唐忠厚. 甘薯苗期耐低磷基因型筛选及磷效率综合评价. 江苏师范大学学报(自然科学版), 2023, 41(1): 27-31. |
Zhu X Y, Zhang Q Q, Yu Y C, Zhao P, Liu M, Wang J, Jin R, Tang Z H. Screening of low phosphorus tolerance genotypes and comprehensive evaluation of phosphorus efficiency in sweetpotato at seedling stage. J Jiangsu Norm Univ (Nat Sci Edn), 2023, 41(1): 27-31 (in Chinese with English abstract). | |
[16] | 鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2000. pp 268-270. |
Bao S D. Soil Agrochemical Analysis, 3nd edn. Beijing: China Agriculture Press, 2000. pp 268-270 (in Chinese). | |
[17] |
Anderson A J, McLean J E, Jacobson A R, Britt D W. CuO and ZnO nanoparticles modify interkingdom cell signaling processes relevant to crop production. J Agric Food Chem, 2018, 66: 6513-6524.
doi: 10.1021/acs.jafc.7b01302 |
[18] | 丁广大, 陈水森, 石磊, 蔡红梅, 叶祥盛. 植物耐低磷胁迫的遗传调控机理研究进展. 植物营养与肥料学报, 2013, 19: 733-744. |
Ding G D, Chen S S, Shi L, Cai H M, Ye X S. Advances in genetic regulation mechanism of plant tolerance to phosphorus deficiency. J Plant Nutr Fert, 2013, 19: 733-744 (in Chinese with English abstract). | |
[19] | 邓美菊, 王飞, 毛传澡. 植物磷酸盐转运体及其分子调控机制. 植物生理学报, 2017, 53: 377-387. |
Deng M J, Wang F, Mao C Z. Plant phosphate transporters and its molecular regulation mechanism. Plant Physiol J, 2017, 53: 377-387 (in Chinese with English abstract).
doi: 10.1104/pp.53.3.377 |
|
[20] |
Devaiah B N, Nagarajan V K, Raghothama K G. Phosphate homeostasis and root development in Arabidopsis are synchronized by the zinc finger transcription factor ZAT6. Plant Physiol, 2007, 145: 147-159.
doi: 10.1104/pp.107.101691 |
[21] |
Mallory A C, Bartel D R, Bartel B. Micro RNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell, 2005, 17: 1360-1375.
doi: 10.1105/tpc.105.031716 |
[22] | 周忠静. C2H2型锌指蛋白基因ZFP5, ZFP6和GIS3通过植物激素调控表皮细胞形成和发育分子机制研究. 浙江大学博士学位论文, 浙江杭州, 2011. |
Zhou Z J. Molecular Mechanism of C2H2 Zinc Finger Protein Genes ZFP5, ZFP6, and GIS3 Regulating Epidermal Cell Formation and Development Through Plant Hormones. PhD Dissertation of Zhejiang University, Hangzhou, Zhejiang, China, 2011 (in Chinese with English abstract). | |
[23] | 王永荣, 刘飞, 许元富. 六磷酸肌醇激酶(IP6Ks)的生物学功能及其在疾病中的作用. 中国细胞生物学学报, 2018, 40(1): 132-138. |
Wang Y R, Liu F, Xu Y F. The biological function of inositol hexaphosphate kinases (IP6Ks) and its role in the development of diseases. Chin J Cell Biol, 2018, 40(1): 132-138 (in Chinese with English abstract). | |
[24] | 于丽娟, 曾科文, 刘丽, 番兴明. 植物低磷胁迫信号转导与适应性反应研究进展. 中国农业科技导报, 2012, 14(3): 22-30. |
Yu L J, Zeng K W, Liu L, Fan X M. Research progress on signaling pathway and adaptive response under phosphorus deficiency stress in plants. J Agric Sci Technol, 2012, 14(3): 22-30 (in Chinese with English abstract). | |
[25] | 熊欢. 生长素在拟南芥低磷胁迫应答主根伸长调控中的作用研究. 华中师范大学硕士学位论文, 湖北武汉, 2016. |
Xiong H. Role of Auxin in Regulation of Taproot Elongation in Response to Low Phosphorus Stress in Arabidopsis thaliana. MS Thesis of Central China Normal University, Wuhan, Hubei, China, 2016 (in Chinese with English abstract). | |
[26] | 任永哲, 徐艳花, 李振声, 童依平. 拟南芥根系发育的分子机制研究进展. 西北植物学报, 2011, 31: 1497-1504. |
Ren Y Z, Xu Y H, Li Z S, Tong Y P. Advances in the molecular mechanisms of root development in Arabidopsis thaliana. Acta Bot Boreali-Occident Sin, 2011, 31: 1497-1504 (in Chinese with English abstract). | |
[27] |
Li M, Welti R, Wang X. Quantitative profiling of Arabidopsis polar glycerolipids in response to phosphorus starvation. Roles of phospholipases DZl and DZ2 in phosphatidylcholine hydrolysis and digalactosyldiacylglycerol accumulation in phosphorus-starved plants. Plant Physiol, 2006, 142: 750-761.
doi: 10.1104/pp.106.085647 |
[28] | 王保明, 陈永忠, 王湘南, 陈隆升, 彭邵锋, 王瑞, 马力, 杨小胡, 罗键. 植物低磷胁迫响应及其调控机制. 福建农林大学学报(自然科学版), 2015, 44: 567-575. |
Wang B M, Chen Y Z, Wang X N, Chen L S, Peng S F, Wang R, Ma L, Yang X H, Luo J. The response to low phosphorus stress and its regulation mechanism in plants. J Fujian Agric For Univ (Nat Sci Edn), 2015, 44: 567-575 (in Chinese with English abstract). |
[1] | 王瑞, 张福耀, 詹鹏杰, 楚建强, 晋敏姗, 赵威军, 程庆军. 基于RNA-Seq筛选高粱低氮胁迫相关候选基因[J]. 作物学报, 2024, 50(3): 669-685. |
[2] | 陈天, 李昱樱, 荣二花, 吴玉香. 棉属人工异源四倍体后代性状鉴定及花器转录组学分析[J]. 作物学报, 2024, 50(2): 325-339. |
[3] | 李艳, 方宇辉, 王永霞, 彭超军, 华夏, 齐学礼, 胡琳, 许为钢. 不同磷胁迫处理转OsPHR2小麦的转录组学分析[J]. 作物学报, 2024, 50(2): 340-353. |
[4] | 王丽平, 王晓钰, 傅竞也, 王强. 玉米转录因子ZmMYB12提高植物抗旱性和低磷耐受性的功能鉴定[J]. 作物学报, 2024, 50(1): 76-88. |
[5] | 王菲菲, 张胜忠, 胡晓辉, 崔凤高, 钟文, 赵立波, 张天雨, 郭进涛, 于豪谅, 苗华荣, 陈静. 比较转录组分析花生种子休眠调控网络[J]. 作物学报, 2023, 49(9): 2446-2461. |
[6] | 胡鑫, 罗正英, 李纯佳, 吴转娣, 李旭娟, 刘新龙. 基于二代和三代转录组测序揭示甘蔗重要亲本对黑穗病菌侵染的响应机制[J]. 作物学报, 2023, 49(9): 2412-2432. |
[7] | 杨毅, 何志强, 林佳慧, 李洋, 陈飞, 吕长文, 唐道彬, 周全卢, 王季春. 椰糠施用量对土壤理化性状和甘薯产量的影响[J]. 作物学报, 2023, 49(9): 2517-2527. |
[8] | 苏一钧, 赵路宽, 唐芬, 戴习彬, 孙亚伟, 周志林, 刘亚菊, 曹清河. 378份甘薯引进种遗传多样性及群体结构分析[J]. 作物学报, 2023, 49(9): 2582-2593. |
[9] | 陈力, 王靖, 邱晓, 孙海莲, 张文浩, 王天佐. 不同耐旱性紫花苜蓿干旱胁迫下生理响应和转录调控的差异研究[J]. 作物学报, 2023, 49(8): 2122-2132. |
[10] | 贾瑞雪, 陈伊航, 张荣, 唐朝臣, 王章英. 超高效液相色谱法同时测定甘薯中13种类胡萝卜素的含量[J]. 作物学报, 2023, 49(8): 2259-2274. |
[11] | 丁洪艳, 冯晓溪, 汪柏宇, 张积森. 甘蔗割手密种LRRII-RLK基因家族演化和表达分析[J]. 作物学报, 2023, 49(7): 1769-1784. |
[12] | 王会伟, 张向歌, 李春鑫, 许欣然, 胡海燕, 朱雅婧, 王艳, 张新友. 油莎豆耐盐性评估及盐胁迫下幼苗根系转录组学分析[J]. 作物学报, 2023, 49(7): 1882-1894. |
[13] | 李凌雨, 周琦锐, 李洋, 张安民, 王贝贝, 马尚宇, 樊永惠, 黄正来, 张文静. 外源6-BA调控孕穗期低温后小麦幼穗发育的转录组分析[J]. 作物学报, 2023, 49(7): 1808-1817. |
[14] | 王雁楠, 陈金金, 卞倩倩, 胡琳琳, 张莉, 尹雨萌, 乔守晨, 曹郭郑, 康志河, 赵国瑞, 杨国红, 杨育峰. 转录组与代谢组联合分析揭示遮阴胁迫下甘薯的代谢响应途径[J]. 作物学报, 2023, 49(7): 1785-1798. |
[15] | 梅玉琴, 刘意, 王崇, 雷剑, 朱国鹏, 杨新笋. 甘薯PHB基因家族的全基因组鉴定和表达分析[J]. 作物学报, 2023, 49(6): 1715-1725. |
|