欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (2): 383-393.doi: 10.3724/SP.J.1006.2024.34063

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

叶面喷施丹参碳点缓解甘薯低磷胁迫的转录组与代谢组学分析

朱晓亚(), 张强强, 赵鹏, 刘明, 王静, 靳容, 于永超, 唐忠厚*()   

  1. 江苏徐淮地区徐州农业科学研究所 / 中国徐州国家土壤质量观测试验站, 江苏徐州 221131
  • 收稿日期:2023-03-23 接受日期:2023-09-13 出版日期:2024-02-12 网络出版日期:2023-10-09
  • 通讯作者: *唐忠厚, E-mail: zhonghoutang@sina.com
  • 作者简介:E-mail: 1353040941@qq.com
  • 基金资助:
    财政部和农业农村部国家现代农业产业技术体系建设专项(甘薯, CARS-10);徐州市市级计划项目(KC22035)

Transcriptome and metabolomic analysis of foliar spraying of Salvia miltiorrhiza carbon dots to alleviate low phosphorus stress in sweetpotato

ZHU Xiao-Ya(), ZHANG Qiang-Qiang, ZHAO Peng, LIU Ming, WANG Jing, JIN Rong, YU Yong-Chao, TANG Zhong-Hou*()   

  1. Xuzhou Institute of Agricultural Sciences of Xuhuai District of Jiangsu Province / National Agricultural Experimental Station for Soil Quality, Xuzhou 221131, Jiangsu, China
  • Received:2023-03-23 Accepted:2023-09-13 Published:2024-02-12 Published online:2023-10-09
  • Contact: *E-mail: zhonghoutang@sina.com
  • Supported by:
    China Agriculture Research System of MOF and MARA(Sweetpotato, CARS-10);Xuzhou Municipal Plan Project(KC22035)

摘要:

为探究叶面喷施碳点(CDs)对低磷胁迫下甘薯幼苗生长发育的影响, 发掘CDs调控甘薯根系响应低磷胁迫的关键基因, 解析根系代谢产物与关键基因的协同变化, 探讨CDs缓解甘薯低磷胁迫的机制, 本研究以商薯19和徐薯32为研究对象, 设置低磷水平下(0.01 mmol L-1 KH2PO4)叶面喷施超纯水(CK1)、喷施丹参碳点(CDs)和正常磷水平下(1 mmol L-1 KH2PO4)喷施超纯水(CK2) 3个处理, 对不同处理甘薯根系进行转录组和代谢组学分析, 同时考查不同处理中甘薯叶、茎和根系生物量和磷含量的变化。结果表明, 叶面喷施丹参CDs显著增加了低磷胁迫下甘薯幼苗叶、茎和根系的生物量, 提高了根系磷含量, 增强了甘薯幼苗的耐低磷性。转录组分析结果显示, 磷酸盐吸收和转运基因(PHO1PHT1-4)、根系构型调控基因(ZAT6ZFP5PLT5)和肌醇磷酸盐生物合成基因(VIP2)在缓解甘薯低磷胁迫中发挥着关键作用。代谢组分析结果显示, CDs处理较CK1处理甘薯根系磷酸肌醇的表达量均显著降低。这表明, 低磷胁迫下, 叶面喷施CDs通过诱导甘薯根系高亲和磷吸收转运系统、优化根系构型等以提高甘薯对磷素的吸收能力, 同时通过调整植株体内的磷代谢过程来维持磷稳态。但CDs介导下不同甘薯品种的低磷胁迫反应也存在差异。与CK1处理相比, CDs处理中还观察到商薯19根系磷酸乙醇胺和4-磷酸肌醇等磷酸酯的表达量显著降低; 而徐薯32根系分泌的柠檬酸和草酸的表达量显著增加, 它们能够活化土壤中的难溶性磷, 促进植物磷吸收。这可能与不同甘薯品种本身的耐低磷性存在差异有关。研究结果可为建立甘薯磷养分高效的调控理论与调控新途径提供科学支撑和理论依据, 也为后续针对纳米CDs缓解甘薯低磷胁迫的相关研究提供了候选分子资源。

关键词: 甘薯, 低磷胁迫, 碳点, 转录组, 代谢组

Abstract:

The objective of this study is to explore the effects of foliar sprayed carbon dots (CDs) on the growth and development of sweetpotato seedlings under low phosphorus (P) stress, discovery the key genes that regulate the response of sweetpotato roots to low P stress, analyze the synergistic changes between root metabolites and key genes, and explore the mechanism of CDs alleviating low P stress in sweetpotato. In this study, Shangshu 19 and Xushu 32 were selected as the experimental materials. Three treatments, namely, foliar sprayed with ultra-purewater (CK1 treatment), Salvia miltiorrhiza CDs (CDs treatment) at low P levels (0.01 mmol L-1 KH2PO4), foliar sprayed with ultra-pure water at normal P levels (1 mmol L-1 KH2PO4) (CK2 treatment), were set up to conduct metabolomic and transcriptomic analysis of sweetpotato roots in different treatments, and analysis the changes in biomass and P content in leaves, stems and roots. Results showed that foliar sprayed Salvia miltiorrhiza CDs significantly increased the biomass of leaves, stems, and roots of sweetpotato seedlings under low P stress, increased the P content of roots, and enhanced the low P tolerance of sweetpotato seedlings. Transcriptome analysis revealed that phosphate uptake and transport genes (PHO1, PHT1-4), root configuration regulation genes (ZAT6, ZFP5, PLT5), and inositol phosphate biosynthesis genes (VIP2) play key roles in alleviating low P stress in sweetpotato seedlings. The metabolomic analysis indicated that the relative expression level of inositol phosphate in sweetpotato roots treated with CDs was significantly lower than that in CK1 treatment. These results suggested that foliar spraying CDs can improve the ability of sweetpotato to absorb P by inducing the high affinity P uptake and transport system of sweetpotato and optimizing root configuration, while maintaining P homeostasis by adjusting the P metabolism process in the plant. However, there were differences in the response of different sweetpotato varieties to low P stress mediated by CDs. Compared with CK1 treatment, it was also observed that the expression levels of phosphate esters such as phosphoethanolamine and D-Myo-inositol 4-phosphate in the roots of Shangshu 19 were significantly reduced in CDs treatment, and the expression of citric acid and oxalic acid secreted by the roots of Xushu 32 significantly increased, which can activate insoluble P in the soil and promote P absorption by plants. This may be related to differences in low P tolerance among different sweetpotato varieties. In conclusion, these results can provide scientific support and theoretical basis for establishing efficient regulation theories and new pathways for P nutrition in sweetpotato, and also provide candidate molecular resources for subsequent research on nano CDs to alleviate low P stress in sweetpotato.

Key words: sweetpotato, low P stress, carbon dots, transcriptome, metabolome

图1

低磷胁迫下叶面喷施丹参碳点对甘薯幼苗表型的影响 CK1: 低磷水平下叶面喷施超纯水处理; CDs: 低磷水平下叶面喷施丹参碳点溶液处理; CK2: 正常磷水平下喷施超纯水处理。"

图2

低磷胁迫下叶面喷施丹参碳点对甘薯幼苗各器官生物量的影响 处理同图1。图中不同小写字母表示CDs和CK2处理中甘薯各器官生物量分别相较于CK1处理有显著差异性(P < 0.05)。"

图3

低磷胁迫下叶面喷施丹参碳点对甘薯幼苗各器官磷含量的影响 处理同图1。图中不同小写字母表示CDs和CK2处理中甘薯各器官磷含量分别相较于CK1处理有显著差异性(P < 0.05)。"

图4

不同处理下甘薯根系基因表达的PCA分析 处理同图1。"

表1

差异表达基因数目统计结果"

品种
Variety
分组
Grouping
总基因数目
Total number of genes
上调基因数目
No. of up-regulated genes
下调基因数目
No. of down-regulated genes
商薯19
Shangshu 19
CK1 vs CDs 3554 1265 2289
CK1 vs CK2 8419 3093 5326
徐薯32
Xushu 32
CK1 vs CDs 2160 793 1367
CK1 vs CK2 7407 2854 4553

图5

不同分组甘薯根系差异表达基因的韦恩图 处理同图1。"

图6

差异表达基因中与磷酸盐吸收和运输及根系生长发育相关的基因表达量 处理同图1。"

表2

差异表达代谢物数目统计结果"

品种
Variety
分组
Grouping
总代谢物数目
Total number of metabolites
上调代谢物数目
No. of up-regulated metabolites
下调代谢物数目
No. of down-regulated metabolites
商薯19 Shangshu 19 CK1 vs CDs 62 19 43
CK1 vs CK2 72 30 42
徐薯32 Xushu 32 CK1 vs CDs 56 22 34
CK1 vs CK2 36 22 14

图7

低磷胁迫下叶面喷施碳点后甘薯根系差异表达代谢物的分类(A)和不同分组甘薯根系差异代谢物的韦恩图(B) 处理同图1。"

表3

商薯19和徐薯32根系代谢组中共有的差异表达代谢物"

差异代谢物
DEMs
log2 (Fold Change) 分类
Classify
商薯19
Shangshu 19
徐薯32
Xushu 32
尿囊素酸 Allantoic acid -2.55 -4.30 有机酸及其衍生物 Organic acids and derivatives
L-天门冬酰胺 L-asparagine -2.27 -5.16 有机酸及其衍生物 Organic acids and derivatives
瓜氨酸 Citrulline -2.00 -5.35 有机酸及其衍生物 Organic acids and derivatives
2-羟基十一酸 2-Hydroxyundecanoic acid -1.93 -3.53 脂质和类脂分子 Lipids and lipid-like molecules
氰基-L-丙氨酸 Cyano-L-alanine -1.12 -3.53 未分类 Unclassified
甲胺 Methylamine -1.26 -2.89 有机氮化合物 Organic nitrogen compounds
反-4-羟基-L-脯氨酸 Trans-4-hydroxy-L-proline -1.48 -2.30 有机酸及其衍生物 Organic acids and derivatives
2,5-二羟基吡嗪 2,5-dihydroxy-pyrazine -1.29 -1.94 未分类 Unclassified
N-乙酰-D-葡萄糖胺 N-acetyl-D-glucosamine 1.13 0.76 有机氧化合物 Organic oxygen compounds
N-甲基丙氨酸 N-methylalanine -0.92 -1.17 有机酸及其衍生物 Organic acids and derivatives
磷酸肌醇 Myo-inositol phosphate -0.69 -1.24 未分类 Unclassified

图8

CK1与CDs处理中商薯19根系磷酸乙醇胺和4-磷酸肌醇(A)以及徐薯32根系柠檬酸和草酸(B)的表达量 处理同图1。"

[1] 联合国粮食及农业组织(FAO)数据库. (2020-02-06). [2022-02-15] https://www.fao.org/faostat/zh/#faq.
Food and Agricultural Organization of the United Nations. (2020-2-6). [2022-02-15] https://www.fao.org/faostat/zh/#faq (in Chinese).
[2] Jin K M, White P J, Whalley W R, Shen J, Shi L. Shaping an optimal soil by root-soil interaction. Trends Plant Sci, 2017, 22: 823-829.
doi: S1360-1385(17)30158-9 pmid: 28803694
[3] Gao P, Liu Y, Wang Y, Liu X, Wang Z, Ma L Q. Spatial and temporal changes of P and Ca distribution and fractionation in soil and sediment in a karst farmland-wetland system. Chemosphere, 2019, 220: 644-650.
doi: S0045-6535(18)32524-4 pmid: 30599322
[4] 唐忠厚, 张允刚, 魏猛, 陈晓光, 史新敏, 张爱君, 李洪民, 丁艳锋. 耐低钾和钾高效型甘薯品种(系)的筛选及评价指标. 作物学报, 2014, 40: 521-528.
Tang Z H, Zhang Y G, Wei M, Chen X G, Shi X M, Zhang A J, Ding Y F. Screening and evaluation indicators for low potassium-tolerant and potassium efficient sweetpotato (Ipomoea batatas L.) varieties (lines). Acta Agron Sin, 2014, 40: 521-528 (in Chinese with English abstract).
[5] Villordon A, Gregorie J C. Variation in phosphorus availability, root architecture attributes, and onset of storage root formation among sweet potato cultivars. HortScience, 2020, 55: 1903-1911.
doi: 10.21273/HORTSCI15358-20
[6] Sattari S Z, Bouwman A F, Giller K E, van Ittersum M K. Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle. Proc Natl Acad Sci USA, 2012, 109: 6348-6353.
doi: 10.1073/pnas.1113675109 pmid: 22431593
[7] 裴福云, 董超文, 陈文哲, 杨勇, 房钦飞, 段继贤, 黄培钊, 王德汉. 纳米硅肥的制备及对苋菜生长的影响. 园艺与种苗, 2015, (6): 12-17.
Pei F Y, Dong C W, Chen W Z, Yang Y, Fang Q F, Duan J X, Huang P Z, Wang D H. Preparation and the effect of nano-silicon fertilizer on the growth of Amaranth. Hortic Seed, 2015, (6): 12-17 (in Chinese with English abstract).
[8] Wang Y J, Chen R Y, Liu H C, Song S W, Su W, Sun G W. Effects of nano-devices on growth and major elements absorption of hydroponic lettuce. Adv Energy Environ Mater Sci, 2016, 151-154.
[9] 尹勇, 刘灵. 三种纳米材料对水稻幼苗生长及根际土壤肥力的影响. 农业资源与环境学报, 2020, 37: 736-743.
Yin Y, Liu L. Effects of three nanomaterials on the growth and rhizospheric soil fertility of rice seedlings. J Agric Res Environ, 2020, 37: 736-743 (in Chinese with English abstract).
[10] Su L, Ma X, Zhao K, Shen C, Lou Q, Yin D, Shan C. Carbon nanodots for enhancing the stress resistance of peanut plants. ACS Omega, 2018, 3: 17770-17777.
doi: 10.1021/acsomega.8b02604
[11] Dimkpa C O, Singh U, Bindraban P S, Elmer W H, Gardea-Torresdey J L, White J C. Zinc oxide nanoparticles alleviate drought-induced alterations in sorghum performance, nutrient acquisition, and grain fortification. Sci Total Environ, 2019, 688: 926-934.
doi: 10.1016/j.scitotenv.2019.06.392
[12] Li Y, Li W, Yang X, Kang Y, Zhang H, Liu Y, Lei B. Salvia miltiorrhiza-derived carbon dots as scavengers of reactive oxygen species for reducing oxidative damage of plants. ACS Appl Nano Mater, 2021, 4: 113-120.
doi: 10.1021/acsanm.0c02419
[13] Li Y J, Tang Z H, Pan Z Y, Wang R G, Wang X, Zhao P, Liu M, Zhu Y X, Li C, Wang W C, Liang Q, Gao J, Yu Y C, Li Z Y, Lei B F, Sun J. Calcium-mobilizing properties of Salvia miltiorrhiza-derived carbon dots confer enhanced environmental adaptability in plants. ACS Nano, 2022, 16: 4357-4370.
doi: 10.1021/acsnano.1c10556
[14] Yang H Y, Wang C X, Chen F, Yue L, Cao X S, Li J, Zhao X L, Wu F C, Wang Z Y, Xing B S. Foliar carbon dot amendment modulates carbohydrate metabolism, rhizospheric properties and drought tolerance in maize seedling. Sci Total Environ, 2022, 809: 151105.
doi: 10.1016/j.scitotenv.2021.151105
[15] 朱晓亚, 张强强, 于永超, 赵鹏, 刘明, 王静, 靳容, 唐忠厚. 甘薯苗期耐低磷基因型筛选及磷效率综合评价. 江苏师范大学学报(自然科学版), 2023, 41(1): 27-31.
Zhu X Y, Zhang Q Q, Yu Y C, Zhao P, Liu M, Wang J, Jin R, Tang Z H. Screening of low phosphorus tolerance genotypes and comprehensive evaluation of phosphorus efficiency in sweetpotato at seedling stage. J Jiangsu Norm Univ (Nat Sci Edn), 2023, 41(1): 27-31 (in Chinese with English abstract).
[16] 鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2000. pp 268-270.
Bao S D. Soil Agrochemical Analysis, 3nd edn. Beijing: China Agriculture Press, 2000. pp 268-270 (in Chinese).
[17] Anderson A J, McLean J E, Jacobson A R, Britt D W. CuO and ZnO nanoparticles modify interkingdom cell signaling processes relevant to crop production. J Agric Food Chem, 2018, 66: 6513-6524.
doi: 10.1021/acs.jafc.7b01302
[18] 丁广大, 陈水森, 石磊, 蔡红梅, 叶祥盛. 植物耐低磷胁迫的遗传调控机理研究进展. 植物营养与肥料学报, 2013, 19: 733-744.
Ding G D, Chen S S, Shi L, Cai H M, Ye X S. Advances in genetic regulation mechanism of plant tolerance to phosphorus deficiency. J Plant Nutr Fert, 2013, 19: 733-744 (in Chinese with English abstract).
[19] 邓美菊, 王飞, 毛传澡. 植物磷酸盐转运体及其分子调控机制. 植物生理学报, 2017, 53: 377-387.
Deng M J, Wang F, Mao C Z. Plant phosphate transporters and its molecular regulation mechanism. Plant Physiol J, 2017, 53: 377-387 (in Chinese with English abstract).
doi: 10.1104/pp.53.3.377
[20] Devaiah B N, Nagarajan V K, Raghothama K G. Phosphate homeostasis and root development in Arabidopsis are synchronized by the zinc finger transcription factor ZAT6. Plant Physiol, 2007, 145: 147-159.
doi: 10.1104/pp.107.101691
[21] Mallory A C, Bartel D R, Bartel B. Micro RNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell, 2005, 17: 1360-1375.
doi: 10.1105/tpc.105.031716
[22] 周忠静. C2H2型锌指蛋白基因ZFP5, ZFP6和GIS3通过植物激素调控表皮细胞形成和发育分子机制研究. 浙江大学博士学位论文, 浙江杭州, 2011.
Zhou Z J. Molecular Mechanism of C2H2 Zinc Finger Protein Genes ZFP5, ZFP6, and GIS3 Regulating Epidermal Cell Formation and Development Through Plant Hormones. PhD Dissertation of Zhejiang University, Hangzhou, Zhejiang, China, 2011 (in Chinese with English abstract).
[23] 王永荣, 刘飞, 许元富. 六磷酸肌醇激酶(IP6Ks)的生物学功能及其在疾病中的作用. 中国细胞生物学学报, 2018, 40(1): 132-138.
Wang Y R, Liu F, Xu Y F. The biological function of inositol hexaphosphate kinases (IP6Ks) and its role in the development of diseases. Chin J Cell Biol, 2018, 40(1): 132-138 (in Chinese with English abstract).
[24] 于丽娟, 曾科文, 刘丽, 番兴明. 植物低磷胁迫信号转导与适应性反应研究进展. 中国农业科技导报, 2012, 14(3): 22-30.
Yu L J, Zeng K W, Liu L, Fan X M. Research progress on signaling pathway and adaptive response under phosphorus deficiency stress in plants. J Agric Sci Technol, 2012, 14(3): 22-30 (in Chinese with English abstract).
[25] 熊欢. 生长素在拟南芥低磷胁迫应答主根伸长调控中的作用研究. 华中师范大学硕士学位论文, 湖北武汉, 2016.
Xiong H. Role of Auxin in Regulation of Taproot Elongation in Response to Low Phosphorus Stress in Arabidopsis thaliana. MS Thesis of Central China Normal University, Wuhan, Hubei, China, 2016 (in Chinese with English abstract).
[26] 任永哲, 徐艳花, 李振声, 童依平. 拟南芥根系发育的分子机制研究进展. 西北植物学报, 2011, 31: 1497-1504.
Ren Y Z, Xu Y H, Li Z S, Tong Y P. Advances in the molecular mechanisms of root development in Arabidopsis thaliana. Acta Bot Boreali-Occident Sin, 2011, 31: 1497-1504 (in Chinese with English abstract).
[27] Li M, Welti R, Wang X. Quantitative profiling of Arabidopsis polar glycerolipids in response to phosphorus starvation. Roles of phospholipases DZl and DZ2 in phosphatidylcholine hydrolysis and digalactosyldiacylglycerol accumulation in phosphorus-starved plants. Plant Physiol, 2006, 142: 750-761.
doi: 10.1104/pp.106.085647
[28] 王保明, 陈永忠, 王湘南, 陈隆升, 彭邵锋, 王瑞, 马力, 杨小胡, 罗键. 植物低磷胁迫响应及其调控机制. 福建农林大学学报(自然科学版), 2015, 44: 567-575.
Wang B M, Chen Y Z, Wang X N, Chen L S, Peng S F, Wang R, Ma L, Yang X H, Luo J. The response to low phosphorus stress and its regulation mechanism in plants. J Fujian Agric For Univ (Nat Sci Edn), 2015, 44: 567-575 (in Chinese with English abstract).
[1] 王瑞, 张福耀, 詹鹏杰, 楚建强, 晋敏姗, 赵威军, 程庆军. 基于RNA-Seq筛选高粱低氮胁迫相关候选基因[J]. 作物学报, 2024, 50(3): 669-685.
[2] 陈天, 李昱樱, 荣二花, 吴玉香. 棉属人工异源四倍体后代性状鉴定及花器转录组学分析[J]. 作物学报, 2024, 50(2): 325-339.
[3] 李艳, 方宇辉, 王永霞, 彭超军, 华夏, 齐学礼, 胡琳, 许为钢. 不同磷胁迫处理转OsPHR2小麦的转录组学分析[J]. 作物学报, 2024, 50(2): 340-353.
[4] 王丽平, 王晓钰, 傅竞也, 王强. 玉米转录因子ZmMYB12提高植物抗旱性和低磷耐受性的功能鉴定[J]. 作物学报, 2024, 50(1): 76-88.
[5] 王菲菲, 张胜忠, 胡晓辉, 崔凤高, 钟文, 赵立波, 张天雨, 郭进涛, 于豪谅, 苗华荣, 陈静. 比较转录组分析花生种子休眠调控网络[J]. 作物学报, 2023, 49(9): 2446-2461.
[6] 胡鑫, 罗正英, 李纯佳, 吴转娣, 李旭娟, 刘新龙. 基于二代和三代转录组测序揭示甘蔗重要亲本对黑穗病菌侵染的响应机制[J]. 作物学报, 2023, 49(9): 2412-2432.
[7] 杨毅, 何志强, 林佳慧, 李洋, 陈飞, 吕长文, 唐道彬, 周全卢, 王季春. 椰糠施用量对土壤理化性状和甘薯产量的影响[J]. 作物学报, 2023, 49(9): 2517-2527.
[8] 苏一钧, 赵路宽, 唐芬, 戴习彬, 孙亚伟, 周志林, 刘亚菊, 曹清河. 378份甘薯引进种遗传多样性及群体结构分析[J]. 作物学报, 2023, 49(9): 2582-2593.
[9] 陈力, 王靖, 邱晓, 孙海莲, 张文浩, 王天佐. 不同耐旱性紫花苜蓿干旱胁迫下生理响应和转录调控的差异研究[J]. 作物学报, 2023, 49(8): 2122-2132.
[10] 贾瑞雪, 陈伊航, 张荣, 唐朝臣, 王章英. 超高效液相色谱法同时测定甘薯中13种类胡萝卜素的含量[J]. 作物学报, 2023, 49(8): 2259-2274.
[11] 丁洪艳, 冯晓溪, 汪柏宇, 张积森. 甘蔗割手密种LRRII-RLK基因家族演化和表达分析[J]. 作物学报, 2023, 49(7): 1769-1784.
[12] 王会伟, 张向歌, 李春鑫, 许欣然, 胡海燕, 朱雅婧, 王艳, 张新友. 油莎豆耐盐性评估及盐胁迫下幼苗根系转录组学分析[J]. 作物学报, 2023, 49(7): 1882-1894.
[13] 李凌雨, 周琦锐, 李洋, 张安民, 王贝贝, 马尚宇, 樊永惠, 黄正来, 张文静. 外源6-BA调控孕穗期低温后小麦幼穗发育的转录组分析[J]. 作物学报, 2023, 49(7): 1808-1817.
[14] 王雁楠, 陈金金, 卞倩倩, 胡琳琳, 张莉, 尹雨萌, 乔守晨, 曹郭郑, 康志河, 赵国瑞, 杨国红, 杨育峰. 转录组与代谢组联合分析揭示遮阴胁迫下甘薯的代谢响应途径[J]. 作物学报, 2023, 49(7): 1785-1798.
[15] 梅玉琴, 刘意, 王崇, 雷剑, 朱国鹏, 杨新笋. 甘薯PHB基因家族的全基因组鉴定和表达分析[J]. 作物学报, 2023, 49(6): 1715-1725.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .