作物学报 ›› 2024, Vol. 50 ›› Issue (2): 506-513.doi: 10.3724/SP.J.1006.2024.31040
谭丹(), 陈家婷, 郜钰, 张晓军, 李欣, 闫贵云, 李锐, 陈芳, 常利芳, 张树伟, 郭慧娟, 畅志坚, 乔麟轶*()
TAN Dan(), CHEN Jia-Ting, GAO Yu, ZHANG Xiao-Jun, LI Xin, YAN Gui-Yun, LI Rui, CHEN Fang, CHANG Li-Fang, ZHANG Shu-Wei, GUO Hui-Juan, CHANG Zhi-Jian, QIAO Lin-Yi*()
摘要:
生长素是调控作物穗部形态的主要内源激素之一。为了发掘小麦中与穗型相关的生长素通路基因, 本研究选择了纺锤穗型品系SY95-71和密穗品系CH7034, 对其幼穗内源生长素含量进行了检测, 结果显示SY95-71幼穗中的色胺含量显著高于CH7034。转录组测序结果表明, 在高置信区间(P<0.01)范围内, SY95-71幼穗中富集到4个特有的生长素相关条目, 并且色氨酸脱羧酶基因(负责将色氨酸转化为色胺)和生长素响应因子基因(Auxin Response Factors, ARFs)的转录水平均显著高于CH7034。对在SY95-71中高表达的2个ARF基因(TraesCS7A02G475700和TraesCS7A02G475600)作了进一步分析, 结果显示二者是位于7A染色体长臂上的一对串联重复基因, 根据小麦ARF家族成员编号, 将其分别命名为TaARF23-A1和TaARF23-A2。qRT-PCR结果证实SY95-71幼穗中TaARF23-A1和TaARF23-A2的表达量极显著高于CH7034。测序结果显示TaARF23-A的外显子序列在SY95-71和CH7034间具有2个SNP和1个InDel。根据InDel位点开发分子标记, 并将其与SY95-71和CH7034的RILs群体在6个大田环境下的穗部表型进行关联分析, 结果显示TaARF23-A与小穗数显著相关(P<0.0001), 其CH7034型等位变异比SY95-71型等位变异增加了1.67个小穗。本研究结果将为小穗发育机制解析提供参考, 也为小麦理想穗型改良提供了分子标记。
[1] |
Luo X M, Yang Y M, Lin X L, Xiao J. Deciphering spike architecture formation towards yield improvement in wheat. J Genet Genomics, 2023, 50: 835-845.
doi: 10.1016/j.jgg.2023.02.015 |
[2] |
Zhang D, Yuan Z. Molecular control of grass inflorescence development. Annu Rev Plant Biol, 2014, 65: 553-578.
doi: 10.1146/annurev-arplant-050213-040104 pmid: 24471834 |
[3] |
Qi P F, Jiang Y F, Guo Z R, Chen Q, Ouellet T, Zong L J, Wei Z Z, Wang Y, Zhang Y Z, Xu B J, Kong L, Deng M, Wang J R, Chen G Y, Jiang Q T, Lan X J, Li W, Wei Y M, Zheng Y L. Transcriptional reference map of hormone responses in wheat spikes. BMC Genomics, 2019, 20: 390.
doi: 10.1186/s12864-019-5726-x |
[4] |
Di D W, Zhang C G, Luo P, An C W, Guo G Q. The biosynthesis of auxin: how many paths truly lead to IAA? Plant Growth Regul, 2016, 78: 275-285.
doi: 10.1007/s10725-015-0103-5 |
[5] |
Youssef H M, Eggert K, Koppolu R, Alqudah A M, Poursarebani N, Fazeli A, Sakuma S, Tagiri A, Rutten T, Govind G, Lundqvist U, Graner A, Komatsuda T, Sreenivasulu N, Schnurbusch T. VRS2 regulates hormone-mediated inflorescence patterning in barley. Nat Genet, 2017, 49: 157-161.
doi: 10.1038/ng.3717 pmid: 27841879 |
[6] |
Youssef H M, Hansson M. Crosstalk among hormones in barley spike contributes to the yield. Plant Cell Rep, 2019, 38: 1013-1016.
doi: 10.1007/s00299-019-02430-0 pmid: 31139893 |
[7] |
Zwirek M, Waugh R, McKim S M. Interaction between row-type genes in barley controls meristem determinacy and reveals novel routes to improved grain. New Phytol, 2019, 221: 1950-1965.
doi: 10.1111/nph.15548 pmid: 30339269 |
[8] |
Li Y P, Fu X, Zhao M, Zhang W, Li B, An D, Li J, Zhang A, Liu R, Liu X G. A genome-wide view of transcriptome dynamics during early spike development in bread wheat. Sci Rep, 2018, 8: 15338.
doi: 10.1038/s41598-018-33718-y pmid: 30337587 |
[9] |
Zhu Y, Wagner D. Plant inflorescence architecture: the formation, activity, and fate of axillary meristems. Cold Spring Harb Perspect Biol, 2020, 12: a034652.
doi: 10.1101/cshperspect.a034652 |
[10] |
Shi X, Cui F, Han X, He Y, Zhao L, Zhang N, Zhang H, Zhu H, Liu Z, Ma B, Zheng S, Zhang W, Liu J, Fan X, Si Y, Tian S, Niu J, Wu H, Liu X, Chen Z, Meng D, Wang X, Song L, Sun L, Han J, Zhao H, Ji J, Wang Z, He X, Li R, Chi X, Liang C, Niu B, Xiao J, Li J, Ling H Q. Comparative genomic and transcriptomic analyses uncover the molecular basis of high nitrogen-use efficiency in the wheat cultivar Kenong 9204. Mol Plant, 2022, 15: 1440-1456.
doi: 10.1016/j.molp.2022.07.008 |
[11] |
Zadoks J C, Chang T T, Konzak C F. A decimal code for the growth stages of cereals. Weed Res, 1974, 14: 415-421.
doi: 10.1111/wre.1974.14.issue-6 |
[12] | 杨足君, 舒焕麟, 李光蓉. 利用种子储藏蛋白电泳分析小麦材料SY95-71及其亲本的遗传变异. 四川农业大学学报, 2000, 18(1): 7-10. |
Yang Z J, Shu H L, Li G R. Genetic variations of seed storage protein in wheat line SY95-71 and its parents. J Sichuan Agric Univ, 2000, 18(1): 7-10 (in Chinese with English abstract). | |
[13] |
张潇文, 李世姣, 张晓军, 李欣, 杨足君, 张树伟, 陈芳, 常利芳, 郭慧娟, 畅志坚, 乔麟轶. 小麦品系CH7034中耐盐QTL定位. 作物学报, 2022, 48: 2654-2662.
doi: 10.3724/SP.J.1006.2022.11074 |
Zhang X W, Li S J, Zhang X J, Li X, Yang Z J, Zhang S W, Chen F, Chang L F, Guo H J, Chang Z J, Qiao L Y. QTL mapping for salt tolerance in wheat line CH7034. Acta Agron Sin, 2022, 48: 2654-2662 (in Chinese with English abstract). | |
[14] |
Qiao L Y, Zhang W P, Li X Y, Zhang L, Zhang X J, Li X, Guo H J, Ren Y K, Zheng J, Chang Z J. Characterization and expression patterns of auxin response factors in wheat. Front Plant Sci, 2018, 9: 1395.
doi: 10.3389/fpls.2018.01395 pmid: 30283490 |
[15] |
Israeli A, Reed J W, Ori N. Genetic dissection of the auxin response network. Nat Plants, 2020, 6: 1082-1090.
doi: 10.1038/s41477-020-0739-7 pmid: 32807951 |
[16] |
Bargmann B O, Vanneste S, Krouk G, Nawy T, Efroni I, Shani E, Choe G, Friml J, Bergmann D C, Estelle M, Birnbaum K D. A map of cell type-specific auxin responses. Mol Syst Biol, 2013, 9: 688.
doi: 10.1038/msb.2013.40 pmid: 24022006 |
[17] |
Du M, Bou Daher F, Liu Y, Steward A, Tillmann M, Zhang X, Wong J H, Ren H, Cohen J D, Li C, Gray W M. Biphasic control of cell expansion by auxin coordinates etiolated seedling development. Sci Adv, 2022, 8: eabj1570.
doi: 10.1126/sciadv.abj1570 |
[18] |
Hayashi K I, Arai K, Aoi Y, Tanaka Y, Hira H, Guo R, Hu Y, Ge C, Zhao Y, Kasahara H, Fukui K. The main oxidative inactivation pathway of the plant hormone auxin. Nat Commun, 2021, 12: 6752.
doi: 10.1038/s41467-021-27020-1 |
[19] |
Xiong L, Huang Y, Liu Z, Li C, Yu H, Shahid M Q, Lin Y, Qiao X, Xiao J, Gray J E, Jin J. Small EPIDERMAL PATTERNING FACTOR-LIKE2 peptides regulate awn development in rice. Plant Physiol, 2022, 190: 516-531.
doi: 10.1093/plphys/kiac278 pmid: 35689635 |
[20] |
Ochagavia H, Prieto P, Savin R, Griffiths S, Slafer G. Dynamics of leaf and spikelet primordia initiation in wheat as affected by Ppd-1a alleles under field conditions. J Exp Bot, 2018, 69: 2621-2631.
doi: 10.1093/jxb/ery104 |
[21] |
Chen Z, Cheng X, Chai L, Wang Z, Du D, Wang Z, Bian R, Zhao A, Xin M, Guo W, Hu Z, Peng H, Yao Y, Sun Q, Ni Z. Pleiotropic QTL influencing spikelet number and heading date in common wheat (Triticum aestivum L.). Theor Appl Genet, 2020, 133: 1825-1838.
doi: 10.1007/s00122-020-03556-6 |
[22] |
Dobrovolskaya O, Pont C, Sibout R, Martinek P, Badaeva E, Murat F, Chosson A, Watanabe N, Prat E, Gautier N, Gautier V, Poncet C, Orlov Y L, Krasnikov A A, Bergès H, Salina E, Laikova L, Salse J. FRIZZY PANICLE drives supernumerary spikelets in bread wheat. Plant Physiol, 2015, 167: 189-199
doi: 10.1104/pp.114.250043 pmid: 25398545 |
[23] |
丁浦洋, 周界光, 赵聪豪, 唐华苹, 牟杨, 唐力为, 邓梅, 魏育明, 兰秀锦, 马建. 小麦小穗数调控基因WAPO1的单倍型、遗传效应、地理分布及育种利用分析. 作物学报, 2022, 48: 2196-2209.
doi: 10.3724/SP.J.1006.2022.11078 |
Ding P Y, Zhou J G, Zhao C H, Tang H P, Mu Y, Tang L W, Deng M, Wei Y M, Lan X J, Ma J. Dissection of haplotypes, geographical distribution and breeding utilization of WAPO1 associated with spike development in wheat. Acta Agron Sin, 2022, 48: 2196-2209 (in Chinese with English abstract). | |
[24] |
Chen Z, Ke W, He F, Chai L, Cheng X, Xu H, Wang X, Du D, Zhao Y, Chen X, Xing J, Xin M, Guo W, Hu Z, Su Z, Liu J, Peng H, Yao Y, Sun Q, Ni Z. A single nucleotide deletion in the third exon of FT-D1 increases the spikelet number and delays heading date in wheat (Triticum aestivum L.). Plant Biotechnol J, 2022, 20: 920-933.
doi: 10.1111/pbi.v20.5 |
[25] |
Zhang X Y, Jia H Y, Li T, Wu J Z, Nagarajan R, Lei L, Powers C, Kan C C, Hua W, Liu Z Y, Chen C, Carver B F, Yan L L. TaCol-B5 modifies spike architecture and enhances grain yield in wheat. Science, 2022, 376: 180-183.
doi: 10.1126/science.abm0717 |
[26] |
张宏娟, 李玉莹, 苗丽丽, 王景一, 李超男, 杨德龙, 毛新国, 景蕊莲. 小麦转录因子基因TaNAC67参与调控穗长和每穗小穗数. 作物学报, 2019, 45: 1615-1627.
doi: 10.3724/SP.J.1006.2019.91009 |
Zhang H J, Li Y Y, Miao L L, Wang J Y, Li C N, Yang D L, Mao X G, Jing R L. Transcription factor gene TaNAC67 involved in regulation spike length and spikelet number per spike in common wheat. Acta Agron Sin, 2019, 45: 1615-1627 (in Chinese with English abstract). | |
[27] |
Li Y, Xiao J, Wu J, Duan J, Liu Y, Ye X, Zhang X, Guo X, Gu Y, Zhang L, Jia J, Kong X. A tandem segmental duplication (TSD) in green revolution gene Rht-D1b region underlies plant height variation. New Phytol, 2012, 196: 282-291.
doi: 10.1111/nph.2012.196.issue-1 |
[28] |
Wang M, Yuan J, Qin L, Shi W, Xia G, Liu S. TaCYP81D5, one member in a wheat cytochrome P450 gene cluster, confers salinity tolerance via reactive oxygen species scavenging. Plant Biotechnol J, 2020, 18: 791-804.
doi: 10.1111/pbi.v18.3 |
[29] |
Jia M, Li Y, Wang Z, Tao S, Sun G, Kong X, Wang K, Ye X, Liu S, Geng S, Mao L, Li A. TaIAA21 represses TaARF25-mediated expression of TaERFs required for grain size and weight development in wheat. Plant J, 2021, 108: 1754-1767.
doi: 10.1111/tpj.v108.6 |
[30] |
Yin H, Li M, Lyu M, Hepworth S R, Li D, Ma C, Li J, Wang S M. SAUR15 promotes lateral and adventitious root development via activating H+-ATPases and auxin biosynthesis. Plant Physiol, 2020, 184: 837-851.
doi: 10.1104/pp.19.01250 pmid: 33890042 |
[31] |
Guilfoyle T J, Hagen G. Auxin response factors. Curr Opin Plant Biol, 2007, 10: 453-460.
doi: 10.1016/j.pbi.2007.08.014 pmid: 17900969 |
[32] |
Hu J, Li X, Sun T P. Four class A AUXIN RESPONSE FACTORs promote tomato fruit growth despite suppressing fruit set. Nat Plants, 2023, 9: 706-719.
doi: 10.1038/s41477-023-01396-y pmid: 37037878 |
[1] | 郝倩琳, 杨廷志, 吕新茹, 秦慧敏, 王亚林, 贾晨飞, 夏先春, 马武军, 徐登安. 小麦胚芽鞘长度QTL定位和GWAS分析[J]. 作物学报, 2024, 50(3): 590-602. |
[2] | 琚吉浩, 马超, 王添宁, 吴毅, 董钟, 方美娥, 陈钰姝, 张均, 付国占. 小麦TaPOD家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(3): 779-792. |
[3] | 赵荣荣, 丛楠, 赵闯. 基于Landsat 8影像提取豫中地区冬小麦和夏玉米分布信息的最佳时相选择[J]. 作物学报, 2024, 50(3): 721-733. |
[4] | 张宝华, 刘佳静, 田晓, 田旭钊, 董阔, 武郁洁, 肖凯, 李小娟. 小麦TaSPX1基因的克隆、表达及耐低氮逆境的功能研究[J]. 作物学报, 2024, 50(3): 576-589. |
[5] | 范子培, 李龙, 史雨刚, 孙黛珍, 李超男, 景蕊莲. 小麦TabHLH112-2B基因克隆及每穗小穗数相关功能标记开发[J]. 作物学报, 2024, 50(2): 403-413. |
[6] | 柯会锋, 苏红梅, 孙正文, 谷淇深, 杨君, 王国宁, 徐东永, 王洪这, 吴立强, 张艳, 张桂寅, 马峙英, 王省芬. 棉花现代品种资源产量与纤维品质性状鉴定及分子标记评价[J]. 作物学报, 2024, 50(2): 280-293. |
[7] | 陈天, 李昱樱, 荣二花, 吴玉香. 棉属人工异源四倍体后代性状鉴定及花器转录组学分析[J]. 作物学报, 2024, 50(2): 325-339. |
[8] | 张康, 聂志刚, 王钧, 李广. 温度升高下APSIM模型春小麦籽粒生长参数敏感性分析及优化[J]. 作物学报, 2024, 50(2): 464-477. |
[9] | 李艳, 方宇辉, 王永霞, 彭超军, 华夏, 齐学礼, 胡琳, 许为钢. 不同磷胁迫处理转OsPHR2小麦的转录组学分析[J]. 作物学报, 2024, 50(2): 340-353. |
[10] | 谢炜, 贺鹏, 马宏亮, 雷芳, 黄秀兰, 樊高琼, 杨洪坤. 秋闲期秸秆覆盖与施磷对冬小麦氮素吸收利用的影响[J]. 作物学报, 2024, 50(2): 440-450. |
[11] | 李俣佳, 许豪, 于士男, 唐建卫, 李巧云, 高艳, 郑继周, 董纯豪, 袁雨豪, 郑天存, 殷贵鸿. 小麦骨干亲本周8425B抗条锈病优异基因在其衍生品种中的遗传解析[J]. 作物学报, 2024, 50(1): 16-31. |
[12] | 张丽华, 张经廷, 董志强, 侯万彬, 翟立超, 姚艳荣, 吕丽华, 赵一安, 贾秀领. 不同降水年型水分运筹对冬小麦产量及其构成的影响[J]. 作物学报, 2023, 49(9): 2539-2551. |
[13] | 张刁亮, 杨昭, 胡发龙, 殷文, 柴强, 樊志龙. 复种绿肥在不同灌水水平下对小麦籽粒品质和产量的影响[J]. 作物学报, 2023, 49(9): 2572-2581. |
[14] | 苏在兴, 黄忠勤, 高闰飞, 朱雪成, 王波, 常勇, 李小珊, 丁震乾, 易媛. 小麦矮秆突变体Xu1801的鉴定及其矮化效应分析[J]. 作物学报, 2023, 49(8): 2133-2143. |
[15] | 杨晓慧, 王碧胜, 孙筱璐, 侯靳锦, 徐梦杰, 王志军, 房全孝. 冬小麦对水分胁迫响应的模型模拟与节水滴灌制度优化[J]. 作物学报, 2023, 49(8): 2196-2209. |
|