作物学报 ›› 2024, Vol. 50 ›› Issue (4): 836-856.doi: 10.3724/SP.J.1006.2024.33034
YUE Hai-Wang(), WEI Jian-Wei, LIU Peng-Cheng, CHEN Shu-Ping, BU Jun-Zhou()
摘要:
针对不同环境、多性状条件下优良品种选择效率低下的问题, 探讨整合环境型鉴定技术(envirotyping techniques, ET)和多性状选择对黄淮海夏玉米区试参试品种进行综合评价, 以期为品种合理布局提供理论依据。本研究以2016—2017年黄淮海夏玉米组区域试验数据为材料, 基于当年19个环境协变量信息采用ET将40个试点划分为不同生态区(mega-environments, ME)。采用品种-产量×性状(genotype by yield × trait, GYT)双标图技术对不同生态区(mega-environments, ME)籽粒产量与生育期、株高、穗位高、倒伏率、空秆率、穗长、秃尖、穗行数、穗粒重、百粒重、茎腐病和黑粉病等农艺性状的组合表现进行综合评价, 研究GYT双标图技术在玉米区域试验多性状评价中的作用。AMMI方差分析表明, 2016年被测农艺性状基因型、环境和互作效应均达到了极显著水平(P<0.01), 2017年被测农艺性状除穗位高互作效应不显著外, 其余性状基因型、环境和互作效应均达到了极显著水平。根据当年气象因子信息将位于8个省份的40个试点划分为4个ME, 降水亏缺(dbp)、饱和水汽压差(vpd)、相对湿度(rh)和最高温度(Tmax)在5个物候期中呈现出较大的变化趋势。GYT双标图与ME结合, 可以筛选出不同ME的优势品种。2016年参试品种中, 衡玉321和冀丰118在划定的4个ME中均表现出丰产性突出、稳定性较好的特征, 属于丰产稳产型品种。而潞玉36和潞研1502则属于参试品种中丰产性、稳定性均较差的品种。2017年参试品种中, DK56在ME2和ME4试点中产量-性状组合表现较为协调, DK205和衡玉6105分别在ME1和ME3生态区中有较好的表现。对照品种郑单958两年区域试验表现出较好的稳定性但丰产性一般。基于环境型鉴定技术划分生态区与GYT双标图相结合对参试品种的丰产性、适应性和稳定性进行评价, 实现品种推广的精细定位, 为黄淮海夏玉米区品种多性状综合评价提供理论基础。
[1] |
Haarhoff S J, Swanepoel P A. Plant population and maize grain yield: a global systematic review of rainfed trials. Crop Sci, 2018, 58: 1819-1829.
doi: 10.2135/cropsci2018.01.0003 |
[2] | 王行川, 费继飞, 刘东胜, 高飞, 王爱芬, 原志强, 陈瑞杰, 孙招, 张长征, 王义波. 基于玉米新品种联创808选育的商业育种问题探讨. 玉米科学, 2020, 28(5): 14-19. |
Wang X C, Fei J F, Liu D S, Gao F, Wang A F, Yuan Z Q, Chen R J, Sun Z, Zhang C Z, Wang Y B. Breeding of a corn hybrid Lantron 808 and its implication for commercial breeding. J Maize Sci, 2020, 28(5): 14-19. (in Chinese with English abstract) | |
[3] |
Diouf I, Derivot L, Koussevitzky S, Carretero Y, Bitton F, Moreau L, Causse M. Genetic basis of phenotypic plasticity and genotype× environment interactions in a multi-parental tomato population. J Exp Bot, 2020, 71: 5365-5376.
doi: 10.1093/jxb/eraa265 |
[4] |
Ligarreto M G, Pimentel L C. Grain yield and genotype × environment interaction in bean cultivars with different growth habits. Plant Prod Sci, 2022, 25: 232-241.
doi: 10.1080/1343943X.2021.1981141 |
[5] |
Yue H W, Gauch H G, Wei J W, Xie J L, Chen S P, Peng H C, Bu J Z, Jiang X W. Genotype by environment interaction analysis for grain yield and yield components of summer maize hybrids across the Huanghuaihai region in China. Agriculture, 2022, 12: 602.
doi: 10.3390/agriculture12050602 |
[6] |
Shirazi S Z, Mei X, Liu B, Liu Y. Estimating potential yield and change in water budget for wheat and maize across Huang-Huai- Hai Plain in the future. Agric Water Manag, 2022, 260: 107282.
doi: 10.1016/j.agwat.2021.107282 |
[7] |
Ling M, Han H, Hu X, Xia Q, Guo X. Drought characteristics and causes during summer maize growth period on Huang-Huai- Hai Plain based on daily scale SPEI. Agric Water Manag, 2023, 280: 108198.
doi: 10.1016/j.agwat.2023.108198 |
[8] | Yue H, Wei J, Xie J, Chen S, Peng H, Cao H, Jiang X. A study on genotype-by-Environment interaction analysis for agronomic traits of maize genotypes across Huang-Huai-Hai region in China. Phyton-Int J Exp Bot, 2022, 91: 57-81. |
[9] |
徐云碧. 作物科学中的环境型鉴定(Envirotyping)及其应用. 中国农业科学, 2015, 48: 3354-3371.
doi: 10.3864/j.issn.0578-1752.2015.17.004 |
Xu Y B. Envirotyping and its applications in crop science. Sci Agric Sin, 2015, 48: 3354-3371. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2015.17.004 |
|
[10] |
Xu Y. Envirotyping for deciphering environmental impacts on crop plants. Theor Appl Genet, 2016, 129: 653-673.
doi: 10.1007/s00122-016-2691-5 pmid: 26932121 |
[11] |
Costa-Neto G, Fritsche-Neto R, Crossa J. Nonlinear kernels, dominance, and envirotyping data increase the accuracy of genome- based prediction in multi-environment trials. Heredity, 2021, 126: 92-106.
doi: 10.1038/s41437-020-00353-1 |
[12] |
Smith D T, Potgieter A B, Chapman S C. Scaling up high- throughput phenotyping for abiotic stress selection in the field. Theor Appl Genet, 2021, 134: 1845-1866.
doi: 10.1007/s00122-021-03864-5 |
[13] | 岳海旺, 魏建伟, 谢俊良, 姚文影, 曹红梅, 陈淑萍, 彭海成, 卜俊周. 基因型和环境互作对黄淮海夏玉米品种籽粒产量的影响. 中国农业大学学报, 2022, 27: 31-43. |
Yue H W, Wei J W, Xie J L, Yao W Y, Cao H M, Chen S P, Peng H C, Bu J Z. Effect of interaction between genotype and environment on the grain yield of summer maize hybrids in Huanghuaihai region. J Chin Agric Univ, 2022, 27: 31-43. (in Chinese with English abstract) | |
[14] |
Yan W, Nilsen K T, Beattie A. Mega-environment analysis and breeding for specific adaptation. Crop Sci, 2023, 63: 480-494.
doi: 10.1002/csc2.v63.2 |
[15] |
Yan W K, Frégeau-Reid J. Genotype by yield × trait (GYT) biplot: a novel approach for genotype selection based on multiple traits. Sci Rep, 2018, 8: 8242.
doi: 10.1038/s41598-018-26688-8 |
[16] |
Elfanah A M, Darwish m A, Selim A I, Shabana M M, Elmoselhy O M, Khedr R A, Abdelhamid M T. Spectral reflectance indices’ performance to identify seawater salinity tolerance in bread wheat genotypes using genotype by yield × trait biplot approach. Agronomy, 2023, 13: 353.
doi: 10.3390/agronomy13020353 |
[17] |
许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价. 作物学报, 2021, 47: 660-671.
doi: 10.3724/SP.J.1006.2021.04135 |
Xu N Y, Zhao S Q, Zhang F, Fu X Q, Yang X N, Qiao Y T, Sun S X. Retrospective evaluation of cotton varieties nationally registered for the Northwest Inland cotton growing regions based on GYT biplot analysis. Acta Agron Sin, 2021, 47: 660-671. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.04135 |
|
[18] | NY/T 1209-2020. 农作物品种试验与信息化技术规程:玉米. 北京: 中国农业出版社, 2020. |
NY/T 1209-2020. Regulations for the Variety Tests and Information of Field Crop:Maize (Zea mays L.). Beijing: China Agriculture Press, 2020. (in Chinese) | |
[19] | Costa-Neto G, Galli G, Carvalho H F, Crossa J, Fritsche-Neto R. EnvRtype: a software to interplay environs and quantitative genomics in agriculture. Genes Genom Genet, 2021, 11: jkab040. |
[20] |
Sparks A H. Nasapower: a NASA POWER global meteorology, surface solar energy and climatology data client for R. J Open Source Softw, 2018, 3: 1035.
doi: 10.21105/joss |
[21] |
Ghanem M E, Marrou H, Sinclair T R. Physiological phenotyping of plants for crop improvement. Trends Plant Sci, 2015, 20: 139-144.
doi: 10.1016/j.tplants.2014.11.006 pmid: 25524213 |
[22] |
Munda S, Sarma N, Lal M, Aromatic M, Group E P. G × E interaction of 72 accessions with three year evaluation of Cymbopogon winterianus Jowitt. using regression coefficient and Additive Main effects and Multiplicative Interaction model (AMMI). Ind Crop Prod, 2020, 146: 112169.
doi: 10.1016/j.indcrop.2020.112169 |
[23] |
Yan W, Holland J B. A heritability-adjusted GGE biplot for test environment evaluation. Euphytica, 2010, 171: 355-369.
doi: 10.1007/s10681-009-0030-5 |
[24] |
Ghazvini H, Bagherikia S, Pour-Aboughadareh A, Sharifalhossaini M, Razavi S A, Mohammadi S, Khakizade G. GGE biplot analysis of promising barley lines in the cold regions of Iran. J Crop Improv, 2022, 36: 461-472.
doi: 10.1080/15427528.2021.1977448 |
[25] |
Yan W, Hunt L A, Sheng Q, Szlavnics Z. Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Sci, 2000, 40: 597-605.
doi: 10.2135/cropsci2000.403597x |
[26] | Abu N E, Uguru M I, Obi I U. Genotype by trait relations of yield and yield components in aromatic peppers (Capsicum annuum) based on GT biplot. J Plant Breed Crop Sci, 2011, 3: 382-390. |
[27] |
Tang Q Y, Zhang C X. Data Processing System (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research. Insect Sci, 2013, 20: 254-260.
doi: 10.1111/ins.2013.20.issue-2 |
[28] |
Tao F, Xiao D, Zhang S, Zhang Z, Rötter R P. Wheat yield benefited from increases in minimum temperature in the Huang- Huai-Hai Plain of China in the past three decades. Agric For Meteorol, 2017, 239: 1-14.
doi: 10.1016/j.agrformet.2017.02.033 |
[29] |
Qin J, Xu R, Li H. Yang C Y, Liu D, Liu Z X, Zhang L F, Lu W G, Frett T, Chen P Y, Zhang M C. Evaluation of productivity and stability of elite summer soybean cultivars in multi-environment trials. Euphytica, 2015, 206: 759-773.
doi: 10.1007/s10681-015-1513-1 |
[30] |
Shekoofa A, Sinclair T R, Messina C D, Cooper M. Variation among maize hybrids in response to high vapor pressure deficit at high temperatures. Crop Sci, 2016, 56: 392-396.
doi: 10.2135/cropsci2015.02.0134 |
[31] |
Crafts-Brandner S J, Salvucci M E. Sensitivity of photosynthesis in a C4 plant, maize, to heat stress. Plant Physiol, 2002, 129: 1773-1780.
doi: 10.1104/pp.002170 pmid: 12177490 |
[32] |
Sowiński P, Fronk J, Jończyk M, Grzybowski M, Kowalec P, Sobkowiak A. Maize response to low temperatures at the gene expression level: a critical survey of transcriptomic studies. Front Plant Sci, 2020, 11: 576941.
doi: 10.3389/fpls.2020.576941 |
[33] |
Slam M S, Hasan M K, Islam m R, Chowdhury M K, Pramanik M H, Iqbal M A, Rajendran K, Iqbal R, Soufan W, Kamran M, Sabagh A. Water relations and yield characteristics of mungbean as influenced by foliar application of gibberellic acid (GA3). Front Ecol Evol, 2023, 11: 1048768.
doi: 10.3389/fevo.2023.1048768 |
[34] |
Yang Z, Sinclair T R, Zhu M, Messina C D, Cooper M, Hammer G L. Temperature effect on transpiration response of maize plants to vapor pressure deficit. Environ Exp Bot, 2012, 78: 157-162.
doi: 10.1016/j.envexpbot.2011.12.034 |
[35] |
Cramer M D, Hawkins H J, Verboom G A. The importance of nutritional regulation of plant water flux. Oecologia, 2009, 161: 15-24.
doi: 10.1007/s00442-009-1364-3 pmid: 19449035 |
[36] | Kamutando C N, Muungani D, Masvodza D R, Gasura E. Exploiting genotype × environment interaction in maize breeding in Zimbabwe. Afr J Agric Res, 2013, 8: 4058-4066. |
[37] |
Mebratu A, Wegary D, Mohammed W, Teklewold A, Tarekegne A. Genotype × environment interaction of quality protein maize hybrids under contrasting management conditions in Eastern and Southern Africa. Crop Sci, 2019, 59: 1576-1589.
doi: 10.2135/cropsci2018.12.0722 |
[38] | Arunkumar B, Gangapp E, Ramesh S L, Savithramma D, Nagaraju N, Lokesha R. Stability analysis of maize (Zea mays L.) hybrids for grain yield and its attributing traits using Eberhart and Russel model. Curr J Appl Sci Technol, 2020, 39: 52-63. |
[39] |
Adu G B, Badu-Apraku B, Akromah R, Haruna A, Amegbor I K, Amadu M K. Grain yield and stability of early-maturing single- cross hybrids of maize across contrasting environments. J Crop Improv, 2019, 33: 776-796.
doi: 10.1080/15427528.2019.1661055 |
[40] |
Ceglar A, Kajfež-Bogataj L. Simulation of maize yield in current and changed climatic conditions: addressing modelling uncertainties and the importance of bias correction in climate model simulations. Eur J Agron, 2012, 37: 83-95.
doi: 10.1016/j.eja.2011.11.005 |
[41] |
Das J, Poonia V, Jha S, Goyal M K. Understanding the climate change impact on crop yield over Eastern Himalayan Region: ascertaining GCM and scenario uncertainty. Theor Appl Climatol, 2020, 142: 467-482.
doi: 10.1007/s00704-020-03332-y |
[42] |
de Araujo M J, de Paula R C, Campoe O C, Carneiro R L. Adaptability and stability of eucalypt clones at different ages across environmental gradients in Brazil. For Ecol Manag, 2019, 454: 117631.
doi: 10.1016/j.foreco.2019.117631 |
[43] |
Guo Q, Huang G, Guo Y, Zhang M, Zhou Y, Duan L. Optimizing irrigation and planting density of spring maize under mulch drip irrigation system in the arid region of Northwest China. Field Crops Res, 2021, 266: 108141.
doi: 10.1016/j.fcr.2021.108141 |
[44] |
Yue H W, Wei J W, Xie J L, Chen S P, Peng H C, Bu J Z. A study on genotype × environment interactions for the multiple traits of maize hybrids in China. Agron J, 2021, 113: 4889-4899.
doi: 10.1002/agj2.v113.6 |
[45] | Singh C, Gupta A, Gupta V, Kumar P, Sendhil R, Tyagi B S. Genotype × environment interaction analysis of multi-environment wheat trials in India using AMMI and GGE biplot models. Crop Breed Appl Biot, 2019, 19: 309-318. |
[46] |
Mushayi M, Shimelis H, Derera J, Shayanowako A I T, Mathew I. Multi-environmental evaluation of maize hybrids developed from tropical and temperate lines. Euphytica, 2020, 216: 1-14.
doi: 10.1007/s10681-019-2539-6 |
[47] |
Enyew M, Feyissa T, Geleta M, Tesfaye K, Hammenhag C, Carlsson A S. Genotype by environment interaction, correlation, AMMI, GGE biplot and cluster analysis for grain yield and other agronomic traits in sorghum (Sorghum bicolor L. Moench). PLoS One, 2021, 16: e0258211.
doi: 10.1371/journal.pone.0258211 |
[48] |
Shojaei S H, Mostafavi K, Bihamta M R, Omrani A, Mousavi S M N, Illés Á. Stability on maize hybrids based on GGE biplot graphical technique. Agronomy, 2022, 12: 394.
doi: 10.3390/agronomy12020394 |
[49] | 岳海旺, 韩轩, 魏建伟, 郑书宏, 谢俊良, 陈淑萍, 彭海成, 卜俊周. 基于GYT双标图分析对黄淮海夏玉米区域试验品种综合评价. 作物学报, 2023, 49: 1230-1247. |
Yue H W, Han X, Wei J W, Zheng S H, Xie J L, Chen S P, Peng H C, Bu J Z. Comprehensive evaluation of maize hybrids tested in Huang-Huai-Hai summer maize regional trial based on GYT biplot analysis. Acta Agron Sin, 2023, 49: 1230-1247. (in Chinese with English abstract) | |
[50] | Shojaei S, Mostafavi K, Ansarifad I, Bihamta M, Zeinalzadeh-Tabrizi H, Omrani A, Mousavi S M N. Comparison of genotype × trait and genotype × yield-trait biplots in Sunflower cultivars. Int J Agric Environ Food Sci, 2023, 7: 136-147. |
[51] | Gholizadeh A, Ghaffari M, Siahbidi Z, Rezaeizad A. Multi-trait selection in sunflower hybrids using double and triple biplots. J Crop Breed, 2022, 14: 29-41. |
[1] | 岳海旺, 韩轩, 魏建伟, 郑书宏, 谢俊良, 陈淑萍, 彭海成, 卜俊周. 基于GYT双标图分析对黄淮海夏玉米区域试验品种综合评价[J]. 作物学报, 2023, 49(5): 1231-1248. |
[2] | 刘昕萌, 程乙, 刘玉文, 庞尚水, 叶秀芹, 卜艳霞, 张吉旺, 赵斌, 任佰朝, 任昊, 刘鹏. 黄淮海区域现代夏玉米品种产量与资源利用效率的差异分析[J]. 作物学报, 2023, 49(5): 1363-1371. |
[3] | 宁宁, 莫娇, 胡冰, 李大双, 娄洪祥, 王春云, 白晨阳, 蒯婕, 汪波, 王晶, 徐正华, 李晓华, 贾才华, 周广生. 长江流域不同生态区油菜籽关键品质比较研究[J]. 作物学报, 2023, 49(12): 3315-3327. |
[4] | 刘秋霞, 董二伟, 黄晓磊, 王劲松, 王媛, 焦晓燕. 不同生态区高粱籽粒产量和品质对氮肥施用的响应[J]. 作物学报, 2023, 49(10): 2766-2776. |
[5] | 严威凯. 品种选育与评价的原理和方法评述[J]. 作物学报, 2022, 48(9): 2137-2154. |
[6] | 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671. |
[7] | 田青兰,李培程,刘利,张强,任万军. 四川不同生态区高产栽培条件下的杂交籼稻的稻米品质[J]. 作物学报, 2015, 41(08): 1257-1268. |
[8] | 罗俊,许莉萍,邱军,张华,袁照年,邓祖湖,陈如凯,阙友雄. 基于HA-GGE双标图的甘蔗试验环境评价及品种生态区划分[J]. 作物学报, 2015, 41(02): 214-227. |
[9] | 许乃银,李健. 利用GGE双标图划分长江流域棉花纤维品质生态区[J]. 作物学报, 2014, 40(05): 891-898. |
[10] | 张俊,李刚华,宋云攀,张巫军,杨从党,王绍华,丁艳锋. 超级稻Y两优2号在两生态区的抗倒性分析[J]. 作物学报, 2013, 39(04): 682-692. |
[11] | 彭云,赵正雄,李忠环,董艳,陈荣平,王胱霖,王永,杨自控. 不同前茬对烤烟生长、产量和质量的影响[J]. 作物学报, 2010, 36(2): 335-340. |
[12] | 严威凯. 双标图分析在农作物品种多点试验中的应用[J]. 作物学报, 2010, 36(11): 1805-1819. |
[13] | 王春娥;赵团结;盖钧镒. 中国栽培和野生大豆豆腐与豆乳得率的遗传变异[J]. 作物学报, 2007, 33(12): 1928-1934. |
[14] | 姚凤梅;许吟隆;冯强;林而达;延晓冬. CERES-Rice模型在中国主要水稻生态区的模拟及其检验[J]. 作物学报, 2005, 31(05): 545-550. |
[15] | 李本贵;阎俊;何中虎;李仲来. 用AMMI模型分析作物区域试验中的地点鉴别力[J]. 作物学报, 2004, 30(06): 593-596. |
|