欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (4): 857-870.doi: 10.3724/SP.J.1006.2024.32010

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻类病变突变体lms1的表型鉴定与抗病分子机制分析

余瑶1(), 王紫瑶1, 周思睿1, 刘鹏程1, 叶亚峰2, 马伯军1, 刘斌美2,*(), 陈析丰1,*()   

  1. 1浙江师范大学生命科学学院, 浙江金华 321004
    2中国科学院合肥物质科学研究院, 安徽合肥 230031
  • 收稿日期:2023-03-27 接受日期:2023-10-23 出版日期:2024-04-12 网络出版日期:2023-11-23
  • 通讯作者: * 刘斌美, E-mail: liubm@ipp.ac.cnl; 陈析丰, E-mail: xfchen@zjnu.cn
  • 作者简介:E-mail: 2315318441@qq.com
  • 基金资助:
    国家自然科学基金项目(32071987);国家自然科学基金项目(32101697);浙江省自然科学基金项目(LQ22C130005);浙江省自然科学基金项目(LZ23C130004)

Phenotypic identification and disease resistance mechanism analysis of rice lesion mutant lms1

YU Yao1(), WANG Zi-Yao1, ZHOU Si-Rui1, LIU Peng-Cheng1, YE Ya-Feng2, MA Bo-Jun1, LIU Bin-Mei2,*(), CHEN Xi-Feng1,*()   

  1. 1College of Life Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
    2Hefei Institutes of Physical Science, Chinese Academy of Science, Hefei 230031, Anhui, China
  • Received:2023-03-27 Accepted:2023-10-23 Published:2024-04-12 Published online:2023-11-23
  • Contact: * E-mail: liubm@ipp.ac.cnl; E-mail: xfchen@zjnu.cn
  • Supported by:
    National Natural Science Foundation of China(32071987);National Natural Science Foundation of China(32101697);Natural Science Foundation of Zhejiang Province(LQ22C130005);Natural Science Foundation of Zhejiang Province(LZ23C130004)

摘要:

类病变突变体是研究植物细胞死亡和抗病分子机制的重要遗传材料。通过辐射诱变粳稻品种武运粳7号, 获得一个少见的抗病性下降的类病变突变体lms1 (lesion mimic and disease susceptible mutant 1)。与野生型相比, 该突变体叶片自发出现红褐色斑点, 其株高、穗长、每穗粒数以及单株产量降低, 但千粒重增加; 对水稻白叶枯病的抗性显著下降, 组织染色表明突变体的叶片中存在明显的细胞死亡以及活性氧的过量积累。遗传分析表明, lms1突变体的表型受单隐性核基因控制, 利用图位克隆技术将lms1基因精细定位于水稻9号染色体Indel7和Indel8两个分子标记间, 物理距离为62 kb。定位区间内候选基因的PCR扩增测序结果表明, 其中一个编码泛素羧基末端水解酶的OsLMP1 (Lesion Mimic Phenotype 1)基因第1个外显子中插入了一段长度为654 bp的序列, 导致其蛋白翻译提前终止。利用蛋白组学技术分析了lms1突变体与野生型对照的蛋白积累水平, 共鉴定到19个差异蛋白(7个上调、12个下调), 主要参与氧化还原、叶绿素合成、光合作用等代谢途径。上述结果为进一步研究OsLMP1基因的功能及其调控细胞程序性死亡与抗病性的分子机制提供借鉴。

关键词: 水稻, 类病变, lms1, 基因定位, 蛋白组学分析

Abstract:

Lesion mimic mutants are important genetic materials for studying molecular mechanisms of plant cell death and disease resistance. Through radiation mutagenesis of a japonica rice cultivar ‘Wuyunjing 7’, a rare lesion mimic and disease-susceptible mutant lms1 was obtained. Compared to the wild type, the leaves of this mutant spontaneously appeared reddish-brown spots, and its plant height, panicle length, number of grains per panicle, and yield per plant decreased, but the weight of 1000-grain increased. In addition, the resistance of lms1 to rice bacterial blight decreased significantly, and tissue staining showed significant cell death and excessive accumulation of reactive oxygen species in the mutant leaves. Genetic analysis showed that the phenotype of the lms1 mutant was controlled by a single recessive nuclear gene, and the lms1 gene was finely located between two molecular markers, Indel7 and Indel8, on chromosome 9 of rice with a physical distance of 62 kb. PCR amplification and sequencing of candidate genes in the localization interval showed that a 654 bp sequence was inserted into the first exon of the OsLMP1 (Lesion Mimic Phenotype 1) gene, which encodes a ubiquitin carboxyl-terminal hydrolase, resulting in premature termination of protein translation. The protein compositions of lms1 mutants and WT controls were analyzed by a proteomics technology, which identified a total of 19 differentially accumulated proteins (7 upregulated and 12 down-regulated), mainly involved in redox, chlorophyll synthesis, photosynthesis, and other metabolic pathways. The above results provide a reference for further research on the function of the OsLMP1 gene and its molecular mechanism of regulating programmed cell death and disease resistance.

Key words: rice, lesion mimic, lms1, gene mapping, proteomic analysis

表1

用于基因精细定位的分子标记及引物序列"

名称
Name
正向引物序列
Former primer (5′-3′)
反向引物序列
Reverse primer (5′-3′)
Indel1 ATGCAAATGACCTCGCTTCC GCCTGCCACTGACTCTGTTC
Indel2 TACAGGGAGATAAGAGGAAG CAAGTCGGAGGAACGAACAA
Indel3 CTTACCTCCGTCTCCAAA GTCATATTAACAGTCCCATT
Indel4 GCTTCACCCGCTTCTTCAC CAGGTTCTCGGCCCAATC
Indel5 AGAGGGTTGAGGGAGGCTGA TTCCATGCGGTCCATAAGTG
Indel6 ATGGCTGGAGGAGTGAATGA CTCGTGAGCGGATTATAGTTG
Indel7 GTATTTCCCGATGACTTCC ACATTTATTGATTGCTCCC
Indel8 AGGCTTAGTGATGGAGTAGAA CATGATGCCATTTGATTTGA

表2

用于目标基因扩增和鉴定的PCR引物"

名称
Name
正向引物序列
Former primer (5′-3′)
反向引物序列
Reverse primer (5′-3′)
OsLMP1-1 GGGGATTTCTGTTGGTGTAGG GTTGCATCATCAATAGGGTTTT
OsLMP1-2 GTCATGTGCTTCTGTGCCTAA CATGGACAGTGGGACCTCTTA
OsLMP1-3 AGTATGCCTTCCCATCTGTA AGGCCAACTGGACTCAATCAAA
lms1-Chr.9 AGCAGCAGCAGAAGAAGAAA AGCCCTCTGATTACACTACCAT
lms1-Chr.3 CAGTGATGAACACCTGAGAAC GCCGCAGTAGTTAGATGTTGT

图1

水稻 lms1突变体的类病变表型与抗病性鉴定 A: 苗期植株; B: 成熟期植株; C: 旗叶; D: 叶绿素含量测定; E: 染色前的叶子; F~H: 分别被TB、NBT和DAB染色后的叶子; I: 被Xoo菌株感染的叶片照片; J: Xoo菌株感染叶片病斑长度的统计(用刻度尺测量病斑长度, 每个类型水稻至少测量15片剑叶, 最终取平均值作为其病斑长度)。使用t检验测量显著性差异(*: P < 0.05; ** P < 0.01, 下同), 标尺为2 cm (A, C~G, I~J), 标尺为10 cm (B)。"

图2

水稻lms1突变体与WT的主要农艺性状比较 A~L: 分别为株高、旗叶长、旗叶宽、有效分蘖数、穗长、每穗粒数、结实率、粒长、粒宽、粒厚、千粒重和单株产量; M~O: WT和lms1突变体的10粒种子的长度、宽度和厚度的照片, 标尺为1 cm。"

图3

突变体lms1目标基因的精细定位与候选基因鉴定 A, B: lms1的初步定位和精细定位, “n”代表使用的F2群体中突变型单株的数量, 每个标记物下方的数字表示该标记检测到的重组体数量; C: 62 kb区域内的注释基因以及lms1候选基因的突变位点, 在第一个外显子上的第625 bp位点插入了一个654 bp的片段; D: lms1中目标基因在突变位点的测序结果及与WT的对比, 黑框里为整个插入序列的片段; E: lms1突变体染色体易位模式图, DSB, DNA双链断裂; NHEJ, 非同源末端连接; F: 利用突变位点两侧引物对WT和lms1扩增后的PCR产物电泳结果。M代表DL2000分子标记。"

图4

OsLMP1蛋白的保守结构域与系统发育树分析 A: OsLMP1及其同源蛋白的序列比对, 下画线和框里为保守结构域; B: OsLMP1蛋白的系统发育树, 由MEGA v7.0软件用最大似然法构建, bootstrap=1000。"

表3

差异表达蛋白的基本信息"

蛋白序号a
Protein IDa
基因序号b
Gene IDb
描述
Description
表达量差异倍数
FC
分数
Score
趋势(下调/下调)
Trend (down/up)
Q8W250 LOC_Os01g01710 1-deoxy-D-xylulose 5-phosphate reductoisomerase 0 16.768 Down
Q9LGQ6 LOC_Os01g09010 Acyl transferase 9 0 11.008 Down
Q6Z2T6 LOC_Os02g51080 Geranylgeranyl diphosphate reductase 0 57.381 Down
Q75L11 LOC_Os05g02300 Histone H2A.6 0 139.17 Down
A2Y8E0 LOC_Os06g01850 Leaf-type ferredoxin-NADP+ oxidoreductase 0 5.7841 Down
Q69TY4 LOC_Os06g42000 Peroxiredoxin-2E-1 0 4.344 Down
Q53JF7 LOC_Os11g06720 Abscisic stress-ripening protein 5 0 323.31 Down
B6RGY0 LOC_Os01g37510 Peptide deformylase 0.2145 7.3262 Down
Q7XBW5 LOC_Os10g42500 Probable plastid-lipid-associated protein 3 0.2309 27.554 Down
Q71U98 LOC_Os03g27310 Histone H3.3 0.2328 203.14 Down
Q6ENC8 LOC_Os10g21358 50S ribosomal protein L23 0.2462 55.05 Down
Q53RM0 LOC_Os03g36540 Magnesium-chelatase subunit ChlI 0.3060 71.42 Down
P30298 LOC_Os06g09450 Sucrose synthase 2.0059 121.52 Up
Q9LSU0 LOC_Os01g59600 Proteasome subunit alpha type-3 2.5953 11.201 Up
Q7F1U0 LOC_Os07g48020 Peroxidase 3.3684 109.27 Up
Q84YK8 LOC_Os08g39850 Lipoxygenase 4.7947 20.507 Up
Q75IM9 LOC_Os05g03480 Isovaleryl-CoA dehydrogenase 8.1778 12.587 Up
Q6ZCR3 LOC_Os08g13440 Cupin domain containing protein 27468000 6.2905 Up
Q0JG75 LOC_Os01g71190 Photosystem II reaction center PSB28 protein 189290000 323.31 Up

图5

水稻lms1突变体与WT的蛋白组学比较分析 A: lms1突变体和WT之间的差异蛋白(DEP)的GO分析; B: DFP的KEGG富集, X轴表示富集率, Y轴表示KEGG途径, 气泡的大小表示蛋白质的数量, 颜色表示Q值的大小; C: H2O2的含量; D: POD的活性。"

[1] Dietrich R A, Richberg M H, Schmidt R, Dean C, Dangl J L. A novel zinc finger protein is encoded by the Arabidopsis LSD1 gene and functions as a negative regulator of plant cell death. Cell, 1997; 88: 685-694.
pmid: 9054508
[2] Gray J, Close P S, Briggs S P, Johal G S. A novel suppressor of cell death in plants encoded by the Lls1 gene of maize. Cell, 1997, 89: 25-31.
doi: 10.1016/s0092-8674(00)80179-8 pmid: 9094711
[3] Büschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Friiters A, van Daelen R, van der Lee T, Dierggaarda P, Groenendijk J, Töpsch S, Vos P, Salamini F, Schulze-Lefert P. The barley Mlo gene: a novel control element of plant pathogen resistance. Cell, 1997, 88: 695-705.
doi: 10.1016/s0092-8674(00)81912-1 pmid: 9054509
[4] Yamanouchi U, Yano M, Lin H, Askikari M, Yamada K. A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein. Pro Natl Acad Sci USA, 2002, 99: 7530-7535.
doi: 10.1073/pnas.112209199
[5] Ma H G, Li J, Ma L, Wang P, Xue Y, Yin P, Xiao J H, Wang S P. Pathogen-inducible OsMPKK10.2-OsMPK6 cascade phosphorylates the Raf-like kinase OsEDR1 and inhibits its scaffold function to promote rice disease resistance. Mol Plant, 2021, 14: 620-632.
doi: 10.1016/j.molp.2021.01.008
[6] Yuan Y X, Zhong S H, Li Q, Zhu Z R, Lou Y G, Wang L Y, Wang J J, Wang M Y, Li Q L, Yang D L, He Z H. Functional analysis of rice NPR1-like genes reveals that OsNPR1/NH1 is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility. Plant Biotechnol J, 2007, 5: 313-324.
doi: 10.1111/j.1467-7652.2007.00243.x pmid: 17309686
[7] Tong X H, Qi J F, Zhu X D, Mao B Z, Zeng L J, Wang B H, Li Q, Zhou G X, Xu X J, Lou Y G, He Z H. The rice hydroperoxide lyase OsHPL3 functions in defense responses by modulating the oxylipin pathway. Plant J, 2012, 71: 763-775.
doi: 10.1111/tpj.2012.71.issue-5
[8] Wang Z H, Wang Y, Hong X, Hu D H, Liu C X, Yang J, Li Y, Hung Y Q, Feng Y Q, Gong H Y, Li Y, Fang G, Tang H R, Li Y S. Functional inactivation of UDP-N-acetylglucosamine pyrophosphorylase 1 (UAP1) induces early leaf senescence and defence responses in rice. J Exp Bot, 2015, 66: 973-987.
doi: 10.1093/jxb/eru456 pmid: 25399020
[9] Wang J C, Liu X, Zhang A, Ren Y L, Wu F Q, Wang G, Xu Y, Lei C L, Zhu S S, Pan T, Wang Y F, Zhang H, Wang F, Tan Y Q, Wang Y P, Jin X, Luo S, Zhou C L, Zhang X, Liu J L, Wang S, Meng L Z, Wang Y H, Chen X, Lin Q B, Zhang X, Guo X P, Cheng Z J, Wang J L, Tian Y L, Liu S J, Jiang L, Wu C Y, Wang E T, Zhou J M, Wang Y F, Wang H Y, Wan J M. A cyclic nucleotide-gated channel mediates cytoplasmic calcium elevation and disease resistance in rice. Cell Res, 2019, 29: 820-831.
doi: 10.1038/s41422-019-0219-7 pmid: 31444468
[10] Zhang Y, Liu Q, Zhang Y X, Chen Y Y, Yu N, Cao Y R, Zhan X D, Cheng S H, Cao L Y. LMM24 encodes receptor-like cytoplasmic kinase 109, which regulates cell death and defense responses in rice. In J Mol Sci, 2019, 20: 3243.
doi: 10.3390/ijms20133243
[11] Wang L J, Pei Z Y, Tian Y C, He C Z. OsLSD1, a rice zinc finger protein, regulates programmed cell death and callus differentiation. Mol Plant Microb Interact, 2005, 18: 375-384.
doi: 10.1094/MPMI-18-0375
[12] Wang S H, Lim J H, Kim S S, Cjo S H, Yoo S C, Koh H J, Sakuraba Y, Paek N C. Mutation of SPOTTED LEAF3 (SPL3) impairs abscisic acid-responsive signalling and delays leaf senescence in rice. J Exp Bot, 2015, 66: 7045-7059.
doi: 10.1093/jxb/erv401
[13] Liu J, Park C H, He F, Nagano M, Wang M, Bellizzi M, Zhang K, Zeng X S, Liu W, Ning Y, Kawano Y, Wang G L. The RhoGAP SPIN6 associates with SPL11 and OsRac1 and negatively regulates programmed cell death and innate immunity in rice. PLoS Pathog, 2015, 11: e1004629.
doi: 10.1371/journal.ppat.1004629
[14] Mori M, Tomita C, Sugimoto K, Hasegawa M, Hayashi N, Dubouzet J G, Ochiai H, Sekimoto H, Hirochika H, Kikuchi S. Isolation and molecular characterization of a Spotted leaf 18 mutant by modified activation-tagging in rice. Plant Mol Biol, 2007, 63: 847-860.
doi: 10.1007/s11103-006-9130-y pmid: 17273822
[15] Jiang C J, Shimono M, Maeda S, Inoue H, Mori M, Haegawa M, Sugano S, Takatsuji H. Suppression of the rice fatty-acid desaturase gene OsSSI2 enhances resistance to blast and leaf blight diseases in rice. Mol Plant Microbe Interact, 2009, 22: 820-829.
doi: 10.1094/MPMI-22-7-0820
[16] You Q Y, Zhai K R, Yang D L, Yang W B, Wu J N, Liu J Z, Pan W B, Wang J J, Zhu X D, Jian Y K, Liu J Y, Zhang Y Y, Deng Y W, Li Q, Lou Y G, Xie Q, He Z H. An E3 Ubiquitin ligase-BAG protein module controls plant innate immunity and broad- spectrum disease resistance. Cell Host Microbe, 2016, 20: 758-769.
doi: 10.1016/j.chom.2016.10.023
[17] Koji K, Yaeno T, Kusumi K, Mstsumura H, Fujisawa S, Terauchi R, Iba K. Regulatory mechanisms of ROI generation are affected by rice spl mutations. Plant Cell Physiol, 2006, 47: 1035-1044.
doi: 10.1093/pcp/pcj074 pmid: 16816407
[18] 王小虎. 水稻类病变早衰基因LMES3LMES4的克隆与功能研究. 扬州大学博士学位论文, 江苏扬州, 2018.
Wang X H. Map-based Cloning and Function Analysis of Two Lesion Mimic and Early Senescence Gene LMES3 and LMES4 in Rice. PhD Dissertation of Yangzhou University, Yangzhou, Jiangsu, China, 2018. (in Chinese with English abstract)
[19] Jiang J, Yang G Z, Xin Y F, Wang Z G, Yan W, Chen Z F, Tang X Y, Xia J X. Overexpression of OsMed16 inhibits the growth of rice and causes spontaneous cell death. Genes, 2021, 12: 656.
doi: 10.3390/genes12050656
[20] Cui Y J, Peng Y L, Zhang Q, Xia S S, Ruan B P, Xu Q K, Yu X Q, Zhou T T, Liu H, Zeng D, Zhang G H, Gao Z Y, Hu J, Zhu L, Shen L, Guo L B, Qian Q, Ren D Y. Disruption of EARLY LESION LEAF 1, encoding a cytochrome P450 monooxygenase, induces ROS accumulation and cell death in rice. Plant J, 2021, 105: 942-956.
doi: 10.1111/tpj.v105.4
[21] Ma J, Wang Y F, Ma X D, Meng L Z, Jing R N, Wang F, Wang S, Cheng Z J, Zhang X, Jiang L, Wang J L, Wang J, Zhao Z C, Guo X P, Lin Q B, Wu F Q, Zhu S S, Wu C Y, Ren Y L, Lei C L, Zhai H Q, Wan J M. Disruption of gene SPL35, encoding a novel CUE domain-containing protein, leads to cell death and enhanced disease response in rice. Plant Biotechnol J, 2019, 17: 1679-1693.
doi: 10.1111/pbi.13093 pmid: 30771255
[22] Hu H T, Ren D Y, Hu J, Jiang H Z, Chen P, Zeng D L, Qian Q, Guo L B. WHITE AND LESION-MIMIC LEAF1, encoding a lumazine synthase, affects reactive oxygen species balance and chloroplast development in rice. Plant J, 2021, 108: 1690-1703.
doi: 10.1111/tpj.v108.6
[23] Chen X F, Hao L, Pan J W, Zheng X X, Jiang G H, Jin Y, Gu Z M, Qian Q, Zhai W X, Ma B J. SPL5, a cell death and defense- related gene, encodes a putative splicing factor 3b subunit 3 (SF3b3) in rice. Mol Breed, 2012, 30: 939-949.
doi: 10.1007/s11032-011-9677-4
[24] 刘林, 张迎信, 李枝, 刘群恩, 余宁, 孙滨, 杨正福, 周全, 程式华, 曹立勇. 水稻类病变突变体g303的鉴定和基因定位. 中国水稻科学, 2014, 28: 465-472.
Liu L, Zhang Y X, Li Z, Liu Q E, Yu N, Sun B, Yang Z F, Zhou Q, Cheng S H, Cao L Y. Characterization and gene mapping of a lesion mimic mutant g303 in rice. Chin J Rice Sci, 2014, 28: 465-472. (in Chinese with English abstract)
[25] Kumar D, Yusuf M A, Singh P, Sardar M, Sarin N B. Histochemical detection of superoxide and H2O2 accumulation in Brassica juncea seedlings. Bio-Protocol, 2014, 4: e11108.
[26] Christensen T H, Zhang Z G, Wei Y D, Collonge D B. Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J, 1997, 11: 1187-1194.
doi: 10.1046/j.1365-313X.1997.11061187.x
[27] Kauffman H E, Reddy A, Hsieh S, Merca S D. Improved technique for evaluating resistance of rice varieties to Xanthomonas oryzae. Plant Disease Rep, 1973, 57: 537-541.
[28] 陈析丰, 刘亚萍, 马伯军. 图位克隆技术新型遗传学实验教学项目的设计与实践. 植物学报, 2019, 54: 797-803.
doi: 10.11983/CBB19107
Chen X F, Liu Y P, Ma B J. Design and practice of a new teaching project of the map-based cloning. Acta Bot Sin, 2019, 54: 797-803. (in Chinese with English abstract)
[29] Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res, 1980, 8: 4321-4325.
doi: 10.1093/nar/8.19.4321 pmid: 7433111
[30] International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature, 200, 436: 793-800.
doi: 10.1038/nature03895
[31] Kumar S, Stecher G, Tamura K. MEGA 7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol, 2016, 33: 1870-1874.
doi: 10.1093/molbev/msw054
[32] Smith P K, Krohn R I, Hermanson G T, Mallia A K, Gartner F H, Provenzano M D, Fujimoto E K, Goeke N M, Olson B J, Klenk D C. Measurement of protein using bicinchoninic acid. Anal Biochem, 1985, 150: 76-85.
doi: 10.1016/0003-2697(85)90442-7 pmid: 3843705
[33] Urrutia M, Blein-Nicolas M, Prigent S, Deborde C, Balliau T, Maucourt M, Jacob D, Ballias P, Benard C, Sellier H, Gibon Y, Giauffret C, Zivy M, Moing A. Maize metabolome and proteome responses to controlled cold stress partly mimic early sowing effects in the field and differ from those of Arabidopsis. Plant Cell Environ, 2021, 44: 1504-1521.
doi: 10.1111/pce.v44.5
[34] Sun J, Song W, Chang Y, Wang Y, Lu T, Zhang Z. OsLMP1, encoding a deubiquitinate, regulates the immune response in rice. Front Plant Sci, 2022, 12: 814465.
doi: 10.3389/fpls.2021.814465
[35] 张长波, 孙红霞, 巩中军, 祝增荣. 植物萜类化合物的天然合成途径及其相关合酶. 植物生理学通讯, 2007, 43: 779-786.
Zhang C B, Sun H X, Gong Z J, Zhu Z R. Plant terpenoid natural metabolism pathways and their synthases. Plant Physiol Commun, 2007, 43: 779-786. (in Chinese with English abstract)
[36] Umate P. Genome-wide analysis of thioredoxin fold superfamily peroxiredoxins in Arabidopsis and rice. Plant Signal Behav, 2010, 5: 1543-1546.
doi: 10.4161/psb.5.12.13494
[37] Addlesee H A, Hunter C N. Rhodospirillum rubrum possesses a variant of the bchP gene, encoding geranylgeranyl-bacteriopheophytin reductase. J Bacteriol, 2002, 184: 1578-1586.
doi: 10.1128/JB.184.6.1578-1586.2002 pmid: 11872709
[38] Zhang C, Zhang W, Ren G, Li D, Cahoon R E, Chen M, Zhou Y, Yu B, Cahoon E B. Chlorophyll synthase under epigenetic surveillance is critical for vitamin E synthesis, and altered expression affects tocopherol levels in Arabidopsis. Plant Physiol, 2015, 168: 1503-1511.
doi: 10.1104/pp.15.00594
[39] Marla S S, Singh V K. LOX genes in blast fungus (Magnaporthe grisea) resistance in rice. Funct Integr Genomics, 2012, 12: 265-275.
doi: 10.1007/s10142-012-0268-1
[40] 何晓玲, 刘鹏程, 马伯军, 陈析丰. 基于CRISPR/Cas9的基因编辑技术研究进展及其在植物中的应用. 植物学报, 2022, 57: 208-531.
He X L, Liu P C, Ma B J, Chen X F. Advance in gene-editing technology based on CRISPR/Cas9 and its application in plants. Acta Bot Sin, 2022, 57: 508-531 (in Chinese with English abstract).
[41] Li Z, Ding B, Zhou X, Wang G L. The rice dynamin-related protein osdrp1e negatively regulates programmed cell death by controlling the release of cytochrome C from mitochondria. PLoS Pathog, 2017, 13: e1006157.
doi: 10.1371/journal.ppat.1006157
[42] Zheng Y, Zhu Y, Mao X, Jiang M, Wei Y, Lian L, Xu H, Chen L, Xie H, Lu G, Zhang J. SDR7-6, a short-chain alcohol dehydrogenase/reductase family protein, regulates light-dependent cell death and defence responses in rice. Mol Plant Pathol, 2022, 23: 78-91.
doi: 10.1111/mpp.13144
[43] Rao Y C, Jiao R, Wang S, Wu X M, Ye H F, Pan C Y, Li S F, Xin D D, Zhou W Y, Dai G X, Hu J, Ren D Y, Wang Y X. SPL36 encodes a receptor-like protein kinase that regulates programmed cell death and defense responses in rice. Rice, 2021, 14: 34.
doi: 10.1186/s12284-021-00475-y pmid: 33825994
[44] Lee D, Lee G, Kim B, Jang S, Lee Y, Yu Y, Seo J, Kim S, Lee Y H, Lee J, Kim S, Koh H J. Identification of a Spotted Leaf Sheath gene involved in early senescence and defense response in rice. Front Plant Sci, 2018, 9: 1274.
doi: 10.3389/fpls.2018.01274
[45] Huang K, Wang D, Duan P, Zhang B, Xu R, Li N, Li Y. WIDE AND THICK GRAIN 1, which encodes an otubain-like protease with deubiquitination activity, influences grain size and shape in rice. Plant J, 2017, 91: 849-860.
doi: 10.1111/tpj.2017.91.issue-5
[46] Shi C, Ren Y, Liu L, Wang F, Zhang H, Tian P, Pan T, Wang Y, Jing R, Liu T, Wu F, Lin Q, Lei C, Zhang X, Zhu S, Guo X, Wang J, Zhao Z, Wang J, Zhai H, Cheng Z, Wan J. Ubiquitin specific protease 15 has an important role in regulating grain width and size in rice. Plant Physiol, 2019, 180: 381-391.
doi: 10.1104/pp.19.00065 pmid: 30796160
[47] Chen Y, Yan Y, Wu T T, Zhang G L, Yin H, Chen W, Wang S, Chang F, Gou J Y. Cloning of wheat keto-acyl thiolase 2B reveals a role of jasmonic acid in grain weight determination. Nat Commun, 2020, 11: 6266.
doi: 10.1038/s41467-020-20133-z pmid: 33293512
[1] 朱忠林, 文月, 周棋, 巫燕飞, 杜雪竹, 盛锋. 水稻OsCNGC10基因抗倒伏性以及抗旱性功能研究[J]. 作物学报, 2024, 50(5): 1351-1360.
[2] 苏帅, 刘孝伟, 牛群凯, 时子文, 侯雨微, 冯开洁, 荣廷昭, 曹墨菊. 玉米多叶矮化突变体lyd1的鉴定与基因克隆[J]. 作物学报, 2024, 50(5): 1124-1135.
[3] 胡明明, 丁峰, 彭志芸, 向开宏, 李郁, 张宇杰, 杨志远, 孙永健, 马均. 多元化种植模式下秸秆还田配合水氮管理对水稻产量形成与氮素吸收利用的影响[J]. 作物学报, 2024, 50(5): 1236-1252.
[4] 耿孝宇, 张翔, 刘洋, 左博源, 朱旺, 马唯一, 汪璐璐, 孟天瑶, 高平磊, 陈英龙, 许轲, 戴其根, 韦还和. 江苏省滨海盐碱地籼粳杂交稻产量优势形成特征[J]. 作物学报, 2024, 50(5): 1253-1270.
[5] 万应春, 班义结, 蒋钰东, 王亚欣, 刘晶晶, 刘晓晴, 程育林, 王楠, 冯萍. 水稻雄性不育突变体tpa1的表型鉴定与精细定位[J]. 作物学报, 2024, 50(5): 1104-1114.
[6] 王亚琪, 徐海风, 李曙光, 傅蒙蒙, 余希文, 赵志鑫, 杨加银, 赵团结. 大豆类病变皱叶突变体NT301遗传分析和2对基因定位[J]. 作物学报, 2024, 50(4): 808-819.
[7] 王吕, 吴玉红, 秦宇航, 淡亚彬, 陈浩, 郝兴顺, 田霄鸿. 紫云英稻秸秆协同还田与氮肥减量配施对水稻干物质积累、氮素转运及产量的影响[J]. 作物学报, 2024, 50(3): 756-770.
[8] 张丽洁, 周海宇, MUHAMMAD Zeshan, MUNSIF Ali Shad, 杨明冲, 李波, 韩世健, 张翠翠, 胡利华, 王令强. 水稻花粉小肽锌指蛋白基因OsFLZ13功能研究[J]. 作物学报, 2024, 50(3): 543-555.
[9] 韦还和, 张翔, 朱旺, 耿孝宇, 马唯一, 左博源, 孟天瑶, 高平磊, 陈英龙, 许轲, 戴其根. 盐胁迫对水稻籽粒灌浆特性及产量形成的影响[J]. 作物学报, 2024, 50(3): 734-746.
[10] 吴昊, 张瑛, 王琛, 顾汉柱, 周天阳, 张伟杨, 顾骏飞, 刘立军, 杨建昌, 张耗. 栽培优化对长江下游水稻灌浆期根系特征和稻米淀粉特性的影响[J]. 作物学报, 2024, 50(2): 478-492.
[11] 吴宇, 刘磊, 崔克辉, 齐晓丽, 黄见良, 彭少兵. 低氮条件下超级杂交稻苗期根系特征的变化及与其高氮素积累的关系[J]. 作物学报, 2024, 50(2): 414-424.
[12] 李明月, 张文婷, 李阳, 张保龙, 杨立明, 王金彦. 小肽Ospep5对水稻耐镉性的影响[J]. 作物学报, 2024, 50(1): 67-75.
[13] 杨晨曦, 周文期, 周香艳, 刘忠祥, 周玉乾, 刘芥杉, 杨彦忠, 何海军, 王晓娟, 连晓荣, 李永生. 控制玉米株高基因PHR1的基因克隆[J]. 作物学报, 2024, 50(1): 55-66.
[14] 徐高峰, 申时才, 张付斗, 杨韶松, 金桂梅, 郑凤萍, 温丽娜, 张云, 吴冉迪. 土壤微生物对长雄野生稻及其化感潜力后代抑草作用的影响[J]. 作物学报, 2023, 49(9): 2562-2571.
[15] 胡艳娟, 薛丹, 耿嫡, 朱末, 王天穹, 王晓雪. 水稻OsCDF1基因突变效应及其基因组变异分析[J]. 作物学报, 2023, 49(9): 2362-2372.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .